
BRU: Bandwidth Regulation Unit for Real-Time
Multicore Processors

Farzad Farshchi
University of Kansas

farshchi@ku.edu

Qijing Huang
University of California, Berkeley

qijing.huang@berkeley.edu

Heechul Yun
University of Kansas
heechul.yun@ku.edu

Abstract—Poor time-predictability of the multicore processors
is a well-known issue that hinders their adoption in the real-time
systems due to contention in the shared memory resources. In
this paper, we present the Bandwidth Regulation Unit (BRU),
a drop-in hardware module that enables per-core memory
bandwidth regulation at fine-grained time intervals. Additionally,
BRU has the ability to regulate the memory access bandwidth
of multiple cores collectively to improve bandwidth utilization.
Besides eliminating the overhead of software regulation methods,
our evaluation results using SD-VBS and synthetic benchmarks
show that BRU improves time-predictability of real-time tasks,
while it lets the best-effort tasks to better utilize the memory
system bandwidth. In addition, we have synthesized our design
for a 7nm technology node and show that the chip area overhead
of BRU is negligible.

Index Terms—Bandwidth Regulation, Real-time, Multicore
Processor, RISC-V, TileLink

I. INTRODUCTION

In recent years, high performance multicore processors are
increasingly demanded for many safety-critical real-time ap-
plications in automotive and the aviation industries. However,
execution time variations caused by inter-core interference in
multicore processors make their adoption in such applications
challenging. The major contributors to inter-core interference
are shared hardware resources such as shared caches and
DRAM that can be accessed concurrently by multiple cores,
which results in unpredictable memory access delays.

The poor time-predictability in multicore processors is a
serious problem especially for safety-critical systems such as
avionics that often require evidence of bounded execution
time [1]. A common industry practice is to disable all but
one core (known as the ”one-out-of-m” problem [2]) as rec-
ommended by the Federal Aviation Administration (FAA) for
certification of multicore based avionics [1], but it obviously
wastes computing capabilities of multicore processors.

There have been many proposals to bound the inter-core
interference in multi-core processors, which we categorize
as software- and hardware-based solutions. Software-based
solutions are typically implemented at the OS or the hyper-
visor level and apply various resource partitioning and access
control schemes utilizing hardware features available in COTS
processors, such as MMU [3]–[6], hardware performance
counters [7], [8] and cache partitioning capabilities [9], [10].
However, due to the black-box nature of COTS hardware, the
degree of isolation that can be achieved by these software

solutions are fundamentally limited [11], [12]. Furthermore,
they often incur considerable performance impact and suffer
from high overhead.

On the other hand, hardware based solutions range from
proposals to design new memory components such as
caches [13]–[15] and DRAM controllers [16]–[19] to a com-
pletely new processor and memory system architecture tar-
geted at real-time systems [20]–[23]. When it comes to
the average performance, however, these architectures that
are designed specifically for the real-time applications are
difficult to compete with COTS processors. Due to the high
development cost of making a new chip, manufacturers tend
to target high production volume and it is hard to justify
processors that are only suitable for real-time applications. The
path to modify the memory components in COTS processors
has its own issues. Verification and validation of hardware
is a costly and time-consuming task, especially for memory
components that deal with complex issues such as cache
coherency and memory consistency [24].

In this paper, we propose Bandwidth Regulation Unit
(BRU), a hardware unit that enables bounding inter-core
interference in the shared memory hierarchy by regulating
memory bandwidth at the core-level. At its baseline design,
BRU does not modify any memory component and can be
dropped in existing multicore processor designs seamlessly.
Unlike prior software-based memory bandwidth regulation
approaches [7], [8], which often incur high software over-
head (e.g., interrupt handling), BRU is a hardware unit and
thus incurs no software overhead at runtime. Furthermore, it
enables a cycle-granularity fine-grained bandwidth regulation
capability compared to the millisecond granularity regulation
capabilities in the prior software-based regulation mechanisms.
In addition, BRU supports a domain-based regulation scheme
where each domain can be composed of one or more cores.

We implement BRU in an open-source out-of-order mul-
ticore processor [25] and evaluate its performance with the
FireSim simulator [26] running on the Amazon FPGA cloud.
We conduct a set of experiments using both synthetic and
real-world benchmarks from IsolBench [11] and SD-VBS [27]
benchmark suites to evaluate BRU’s effectiveness in improving
time-predictability of real-time tasks and overall bandwidth
utilization. We find that BRU offers superior regulation per-
formance over prior software-based bandwidth regulators at a
very low added hardware complexity.

1



Lastly, we synthesize a BRU augmented processor design
in a 7nm technology node and analyze the area and timing
overhead. Our analysis results show that BRU introduces
insignificant (up to 2%) timing overhead and negligible (less
than 0.3%) chip area overhead.

We make the following contributions in this paper:
• We present Bandwidth Regulation Unit (BRU), a cycle-

granularity hardware-based memory bandwidth regulator
for multicore-based real-time systems.

• We implement BRU in an open-source multicore design
in an FPGA-accelerated full-system simulator and evalu-
ate its performance using a set of synthetic and real-world
benchmarks, showing its feasibility and effectiveness1.

• We synthesize the design with a 7nm technology node
and present area and timing overhead analysis, showing
negligible overhead of using BRU.

The remainder of the paper is organized as follows. Sec-
tion II describes the necessary background. In Section III,
we explain the BRU architecture and its register interface.
Section IV describe the implantation details of BRU, in-
cluding aspects which are specific to the multicore platform
our prototype is based on. Section V presents evaluation
results. We review related work in Section VI and conclude
in Section VII.

II. BACKGROUND

We use the Rocket Chip generator [28] to implement BRU.
Although the design of BRU is not fundamentally limited to a
specific implementation, we would like to build the necessary
background on the platform we use to better describe our
design in the following sections.

Rocket Chip is an open-source System-on-Chip (SoC) gen-
erator that implements the RISC-V instruction set architecture
(ISA) [29]. It can generate both in-order and out-of-order
processors, which are capable of running Linux. The out-of-
order processors are supported through the Berkeley Out-of-
Order Machine (BOOM) [25] project. The processor designs
are written in the Chisel hardware design language [30] and
are taped out multiple times. Rocket Chip is also used as the
basis for building several commercial SoCs and IP cores [31].

Rocket Chip uses TileLink protocol for on-chip communi-
cation and accessing the shared memory. Since knowing the
basics of TileLink is necessary for understanding the details
of our current implementation of BRU, we briefly describe the
specification in the following.

A. TileLink

TileLink is an interconnect standard for on-chip communi-
cation, which enables coherent access to the shared memory
and peripheral devices [32]. TileLink standard defines three
protocol conformance levels: TileLink Uncached Lightweight
(TL-UL), TileLink Uncached Heavyweight (TL-UH), and
TileLink Cached (TL-C). TL-C is the most complete protocol

1BRU is available as open-source at https://github.com/CSL-KU/bru-
firesim

that allows managing and transferring cached data. Thus, we
focus on describing TL-C for the rest of this section.

TileLink standard is defined by a set of operations that
are allowed to be performed on a shared address range. A
TileLink operation is carried out by transferring messages
across point-to-point channels. These channels form a link
between a master agent and a slave agent [32]. A TL-C link is
comprised of five channels: A, B, C, D, and E. The channels
are strictly prioritized from A (lowest priority) to E (highest
priority). Each channel uses a pair of ready and valid signals
for handshaking and flow control.

Transfer messages. TileLink allows the design of the
interconnect protocol to be separated from the cache coherence
protocol implementation. It defines a set of messages to gov-
ern transferring cached data and permission across the chip.
These are known as transfer messages. A coherence protocol
implementation (e.g. MESI [33]) uses these messages to alter a
cache line state and transfer permission and data. We describe
some of the transfer messages by showing the message flow
for two fundamental templates that enable coherent access to
the cached memory [34].

Cache X
Coherence
Manager

Acquire

Probe

ProbeAck[Data]

GrantAck

Grant[Data]

(A)

(D)

(E)

(B)

(C)
access
backing
memory

Cache Y

Fig. 1. Cache X sends an Acquire message to the coherence manager then,
the manager probes Cache Y. The channel names are shown in parentheses.
Adopted from [34].

First template. Figure 1 shows the message flow in which
Cache X attempts to get data and read/write permission on
a cache line by sending an Acquire message to a coherence
manager agent (or a manager for short) on Channel A. Once
the manager receives the Acquire message, it sends a Probe
message to Cache Y to query or downgrade the permission that
Cache Y owns on the cache line. If needed, Cache Y updates
the permission on the cache line and sends a ProbeAck re-
sponse to the manager on Channel C. If Cache Y owns a dirty

2

https://github.com/CSL-KU/bru-firesim
https://github.com/CSL-KU/bru-firesim


copy of the cached data too, it responds with ProbeAckData
message which carries the payload.

Upon receiving ProbeAck or ProbeAckData, the manager
accesses the backing memory if required. Next, the manager
responds with a Grant or a GrantData to give the required
permission and/or data to Cache X. Finally, Cache X sends
a GrantAck message to the manager to indicate that the
operation is finished.

Second template. Figure 2 shows the message flow in
which a cache voluntarily releases permission on a block. This
typically happens when a cache performs a dirty eviction and
it has to do a writeback. Upon receiving ReleaseData from the
cache, a manager writes the dirty data to the backing memory
and sends a ReleaseAck response to the cache. Note that
ReleaseData is transferred over Channel C which is the same
channel used for transferring ProbeAck and ProbeAckData.
We will see how this affects our design when throttling
writebacks in Section IV.

Cache
Coherence
Manager

ReleaseData

(C)

ReleaseAck

(D)

write to
backing
memory

Fig. 2. A cache voluntary releases write permission on a cache line. The
channel names are shown in parentheses. Adopted from [34].

Access messages. In addition to the messages described
above, TileLink defines access messages to read/write the
uncachable memory addresses. These addresses include the
memory-mapped registers of I/O devices. Get is an example
of a read access message which is also used by the instruction
cache in the Rocket Chip to read the instructions.

III. BRU ARCHITECTURE

We start with defining the architecture of our proposed
design. BRU is a drop-in hardware module that regulates
memory traffic from the cores to the shared memory in a
multicore processor. Figure 3 shows a simplified view of a
typical multicore processor with a memory system shared
between the cores. Each core has its own private instruction
and data caches. It is also possible for a core to have multiple
levels of private caches. On a miss in the outermost private
cache, the memory request is sent to the shared memory
system. BRU is placed where the private caches are connected
to the shared memory and regulates memory traffic that goes
to it.

Since BRU is directly connected to the cores, it is capable
of counting the number of memory accesses per core and
controlling the flow of the memory traffic for each core

Core 0

I

BRU

Shared Memory
(LLC & DRAM)

D

Core 1

ID

M1
Shared

Bus

S1S0

M0

Fig. 3. A simplified view of a multicore processor with shared memory
resources. BRU regulates per-core bandwidth at source.

independently. This eliminates the need for adding metadata
to the bus and the LLC to transfer and store the information
about which core has requested the memory access. Note that
BRU has equal number of slave and master ports and it does
not reroute or arbitrate the traffic. For example, in Figure 3,
all the traffic from slave port S0 is routed to master port M0
and similarly the traffic from slave port S1 is routed to master
port M1.

We choose to regulate the maximum bandwidth in our
design. This is done by limiting the maximum number of
accesses to the shared memory in fixed time intervals. In our
design, once the number of memory accesses for a domain—a
regulation principal, which can be composed of one or more
cores—reaches a programmable maximum, no more accesses
are allowed to be issued to the shared memory by the cores
assigned to that domain until the current regulation period T is
finished. The memory access budget b is then replenished for
all domains at the beginning of the next period. The period T
is defined in terms of clock cycles, and the budget b is defined
in terms of the number of memory access transactions. The
size of each transaction is equal to the size of a cache line as
cache data transfers are typically performed at the granularity
of a cache line.

A. Access Bandwidth Regulation Interface

Access bandwidth regulation controls the rate at which
private cache misses send a request to the shared memory.
Figure 4 shows the registers of a BRU instance for a quad-core
processor that supports two regulation domains. At the high
level, three groups of registers—Period Registers, Processor
Control and Assignment Registers (PCAR), and Regulated
Domain Registers (RDR)—are collectively responsible for
creating domains and setting their bandwidth regulation pa-
rameters. Some of these registers are mapped to the memory
address space so that the processor can read or write to
them. These are indicated by brackets around their names in
Figure 4.

3



[BR Enable] = 1
[Domain ID] = 0

PCAR

RDR

Core 0

[BR Enable] = 1
[Domain ID] = 0

Core 1

[BR Enable] = 0
[Domain ID] = 0

Core 2

[BR Enable] = 1
[Domain ID] = 1

Core 3

[Maximum Access]
Access Counter

Domain 0

[Maximum Access]
Access Counter

Domain 1

[Period Length]
Period Counter

Bandwidth Regulation Unit (BRU)

Fig. 4. BRU register interface for access regulation. Cores 0 and 1 are assigned
to domain 0, and core 3 is assigned to domain 1. Bandwidth regulation is not
enabled for core 2.

Domain control. BRU’s bandwidth regulation is performed
on a domain. A domain is composed of one or more cores,
and can be created by configuring each core’s two domain
related registers: Domain ID Register (DIR) and Bandwidth
Regulation Enable Register (BRER). DIR determines a core
is mapped to which domain, and BRER is used to enable or
disable the association. For example, in Figure 4, cores 0, 1,
and 2 are assigned to domain 0 but only the cores 0 and 1 are
enabled for bandwidth regulation. On the other hand, core 3 is
assigned to domain 1 and its bandwidth regulation is enabled.
The maximum number of domains is a configurable hardware
parameter, which should be decided before taping out the chip
as each domain needs some hardware resources.

Budget control. The memory access budget is controlled
by two per-domain registers: Maximum Access Register (MAR)
and Access Counter (AC). AC is incremented by one on each
access to the shared memory by the cores assigned to the
domain. MAR is programmed by the software to set the
memory access budget b. The bandwidth regulation period T is
globally applied to all domains and is configured by updating
the Period Length Register (PLR) in number of clock cycles.
When a period begins, Period Counter (PC) starts counting
from zero and is incremented by one on every clock cycle.
Once PC reaches the value programmed in PLR, a period
completes, and the domain’s access counter (AC) is cleared to
replenish the memory bandwidth budget for the next period.
Recalling that the size of a memory transaction is equal to the
cache line size, the bandwidth budget is calculated using the
equation below:

B/W budget =
MAR

PLR+ 1
· LS · fclk, (1)

where MAR and PLR are values programmed in their
respective registers, LS is the cache line size, and fclk is the

system clock frequency. Note that since Period Counter starts
counting from zero, the regulation period is equal to PLR+1.

B. Writeback Bandwidth Regulation Interface

Our baseline access regulation mechanism described above
equally account both read and write accesses. In other words,
write and read accesses are regulated with respect to a single
user-defined bandwidth budget. However, prior works have
shown that on some COTS multicore processors, the write
accesses, particularly cache writeback traffics, can have a
more severe effect than read accesses [11], [12]. In order
to regulate the writeback traffic separately, BRU adds two
new registers to each domain: Writeback Counter (WC) and
Maximum Writeback Register (MWR). Similar to the AC and
MAR registers in the access bandwidth regulation, WC is
incremented by one on each writeback to the shared memory
and MWR determines the writeback budget wb over the reg-
ulation period T . Once WC reaches the value programmed in
MWR, writebacks are throttled until the beginning of the next
period at which writeback budget is replenished. We discuss
the implementation of writeback throttling in Section IV.

IV. IMPLEMENTATION

In this section, we describe implementation details that
are specific to the TileLink interconnection network and the
Rocket Chip SoC, on which our work is based.

A. Access Bandwidth Regulation

Figure 5 shows an example dual-core Rocket Chip SoC with
a BRU instance. In this setup, each core has private instruction
and data caches, which are connected to a shared bus, through
which the rest of the shared memory hierarchy is connected
to. The BRU module sits between the core’s private caches
and the shared bus so that it can regulate access to the shared
memory. Specifically, BRU is connected to the core private
TL-C links (see Section II). In addition, the memory-mapped
registers of BRU are accessed through a TL-UL link that is
connected to the periphery bus.

Let us begin by explaining how the private caches access
the shared memory. As we mentioned in Section II, a data
cache sends an Acquire message over Channel A, if it does
not own the permission or data to preform read/write on a
cache line due to a cache miss. On the other hand, in case
of an instruction cache miss, a Get message is sent over
Channel A. Both Acquire and Get messages are transferred
over Channel A of the TL-C link. Therefore, by throttling
this channel, we can control a core’s access to the first shared
memory component in the system’s memory hierarchy, which
is the system bus in this example.

TileLink uses a pair of ready and valid signals on each
channel for handshaking. A beat2 flows in the direction of the
channel when both ready and valid signals are high on the
rising edge of the clock. Figure 6 shows the logic that we use
to throttle Channel A. In this figure, when throttlei is set to the
logic high, the Channel A corresponding to core i is throttled.

2A beat is an individual data transfer in a burst.

4



Arbiter

D$ I$

Core 0

D$ I$

Core 1

BRU

Coherence Manager

Periphery
Bus

System
Bus

To other
peripherals

TL to AXILLCDRAM Controller

DDR3 DRAM

TL-C
TL-UH
TL-UL
AXI

Arbiter

Fig. 5. A dual-core Rocket Chip SoC with BRU.

The other signals of Channel A plus the signals of channels
B, C, D, and E pass through BRU without any alternations.
We show how the rest of the BRU logic drives throttlei to
implement the desired behavior in the following.

Core i (master)

Channel A
valid_out ready_in

BRU

throttlei

System Bus Port i (slave)
Channel A

valid_in ready_out

Fig. 6. The logic which controls the flow of messages on Channel A.
Boundaries of BRU are denoted with dashed lines.

Algorithm 1 shows the high-level pseudo-code of BRU,
which is evaluated at the rising edges of the clock. In this
algorithm n, memBase, and A(i) are the number of cores,
the base address of the main memory, and the handle for
Channel A corresponding to core i, respectively. The other
parameters represent the registers defined in Section III. In
essence, the algorithm performs two main tasks: (1) global
period management (line 1-6) and (2) per-domain memory
access counters and throttling signal management (line 7-18).

To manage global periodic regulation, the period counter,
PeriodCounter, is incremented at each clock (line 5) until
it reaches to the end the period (line 1), at which point both

Algorithm 1: Access Bandwidth Regulation

1 if PeriodCounter ≥ PeriodLength then
2 PeriodCounter = 0
3 foreach c in AccessCounters do c = 0
4 else
5 PeriodCounter++
6 end

7 for i← 0 to n− 1 do
8 throttle(i) = 0

// if enabled for core i
9 if BREnables(i) then

10 if AccessCounters(DomainIDs(i)) ≥
MaximumAccesses(DomainIDs(i)) then
// throttle Channel A of core i

11 throttle(i) = 1
12 end

// is message instruction fetch?
13 isInst = A(i).isGet ∧A(i).addr ≥ memBase

// if Acquire or intsruction fetch
14 if A(i).isAcquire ∨ isInst then
15 AccessCounters(DomainIDs(i))++
16 end
17 end
18 end

the global period and per-domain access counters are reset
(line 2-3).

On the other hand, per-domain memory access counters,
AccessCounters, are incremented whenever data or instruc-
tion is requested by the cores which belong to the corre-
sponding domains (line 13-16). To distinguish instruction from
memory-mapped I/O accesses, we check the address of the
Get messages against the base address of the main memory
(line 13). If a domain’s access counter reaches to the domain’s
budget (line 10), then the corresponding core’s throttle signal
is asserted (line 11).

B. Writeback Bandwidth Regulation

We now describe how BRU regulates the writeback traffic
from the core private caches to the shared memory. The
writeback regulation, when enabled, allows the user to set a
lower budget for writebacks compared to the default access
regulation (which only regulates cache misses). When write-
back regulation is disabled, writebacks are still limited by the
number of cache misses on a writeback cache.

Let us first explain how regulating cache misses (access reg-
ulation) limits writebacks. There are two types of writebacks
to the lower level of the memory from the L1 data caches.
The first type is a dirty eviction. A dirty eviction may happen
when the cache performs a refill and there is a cache conflict.
In such a scenario, a cache line must be evicted to free up
space for the refill. If the cache line selected for eviction is
dirty, a writeback is carried out to update the backing memory.
A refill, in turn, is the result of a cache miss. When the data

5



cache needs to perform a dirty eviction, it sends a ReleaseData
message over Channel C (second template in Section II).

The second type of writeback happens when data is shared
between two caches. Suppose that Cache X wants to get per-
mission to read/write a cache line (first template in Section II).
Then, Cache Y must be probed and if it has a dirty copy of
the same cache line, it responds with a ProbeAckData message
over Channel C. Upon receiving ProbeAckData, the coherence
manager writes the dirty cache line to the backing memory. As
we observe, the event that triggers a writeback for both types
of writebacks is a cache miss. Therefore, controlling the rate
of the cache misses at a certain bandwidth budget, as we do
in access regulation, limits the rate of the writeback issuance
at the same bandwidth budget.

From the explanation above, we can conclude that to
regulate the writebacks at a bandwidth budget lower than
the access regulation bandwidth budget, we need to count
and throttle ReleaseData and ProbeAckData messages sent
to the shared memory system. Counting these messages is
not complicated, however, unlike what we did to regulate
the cache misses by throttling Channel A, we cannot simply
throttle Channel C to regulate the writebacks. As we explained
for the first template in Section II, Cache Y must send a
ProbeAck message before the coherence manager can respond
to Cache X with the permission/data. If we delay the ProbeAck
message by throttling Channel C of Cache Y, the response to
the request of Cache X is delayed too. This essentially causes
undesired interference between cores assigned to different
domains. We refer to this as inter-domain interference. Note
that Cache Y must respond with a ProbeAck even if it does
not own a permission on the cache line.

The key takeaway from the above is that to regulate
writebacks, we need to find a way to throttle ReleaseData
and ProbeAckData messages without inhibiting ProbeAck
messages. Figure 7 shows how this can be done by slightly
modifying the data cache and sending a signal from BRU to
throttle the desired messages. In the data cache, WB unit
is responsible for sending ReleaseData and ProbeAckData
messages and Prober issues the ProbeAck messages. We have
inserted a logic—similar to the one in Figure 6—at the
output of the WB unit that throttles writeback messages when
WB throttlei is high. Note that there is a WB throttle signal
for each core. That means BRU can throttle writebacks for
each core independently. We kept the modifications to the data
cache as minimum as possible and only modified 5 lines of
code in the data cache module.

Algorithm 2 shows the pseudo-code which extends Al-
gorithm 1 to support writeback regulation. These algo-
rithms are very similar, except that in Algorithm 2, the
decision to drive WB throttle(i) is made by comparing
WritebackCounters and MaximumWritebacks. More-
over, WritebackCounters is incremented whenever a Re-
leaseData or a ProbeAckData message is transferred over
Channel C.

Sharing the dirty cache lines. Although we avoid throttling
ProbeAck, it is still possible to incur inter-domain interference

Arbiter

BRU

WB Prober

To Channel C

D Cache i
Core i

WB throttlei

Fig. 7. BRU sends a signal to the data cache to throttle writebacks.

Algorithm 2: Writeback Bandwidth Regulation

1 if PeriodCounter ≥ PeriodLength then
2 foreach c in WriteAccessCounters do c = 0
3 end

4 for i← 0 to n− 1 do
5 WB throttle(i) = 0
6 if BREnables(i) then
7 if WritebackCounters(DomainIDs(i)) ≥

MaximumWritebackes(DomainIDs(i))
then

8 WB throttle(i) = 1
9 end

10 if C(i).isReleaseData ∨ C(i).isProbeAckData
then

11 WritebackCounters(DomainIDs(i))++
12 end
13 end
14 end

by throttling ProbeAckData. The mechanism that results in
inter-domain interference is similar for both ProbeAckData
and ProbeAck, however, ProbeAckData is only issued when a
dirty cache line is accessed by a remote cache. Often times,
dirty cache lines are shared when two or more cores are
working on the same data set. An example of such scenario
is when a producer and a consumer are actively working on
the same job but are running on two different cores. In such
a case, these collaborating cores should be assigned to the
same domain so that the bandwidth is regulated collectively
for these cores.

V. EVALUATION

To evaluate the performance of BRU, we utilize
FireSim [26]—an FPGA-accelerated full-system simulator. We
use FireSim mainly for better accuracy and simulation speed
that it offers over the other options such as software simulators.
In FireSim, the simulated design is directly derived from
the RTL and is implemented on the FPGA. Thus, we can

6



get highly accurate performance results as if the design is
fabricated as a chip. Additionally, since FireSim is running on
FPGA, it is orders of magnitude faster than the architectural
software simulators such as gem5 [35]. In our experiments,
FireSim runs at about 60MHz. As we will see in the rest of
this section, this enables us to run real world benchmarks for
their entire execution time and to run a real-time task for one
thousand periods to analyze its response time.

Note that the approach that FireSim takes to simulate the de-
sign is different from FPGA prototyping, which is a common
industry practice for early software development before having
the chip delivered. The problem with FPGA prototyping is
that the processor is clocked at a lower frequency comparing
to an ASIC implementation but the DRAM is still fast. This
makes FPGA prototyping unsuitable for performance analysis.
FireSim uses a special technique to decouple the timing of the
simulated design from the host FPGA DRAM to simulate the
DRAM access time accurately [36]. As a result, we believe
our performance evaluation results in the remainder of this
section are realistic.

TABLE I
SYSTEM CONFIGURATION

Processor Quad-core BOOM (RISC-V ISA), 2.13 GHz
out-of-order, 1-wide, 3-issue, ROB: 16, LSQ: 8/8

Caches L1-I/D: 16/16KiB, 4-way, MSHRs: 4 (D), 1 (I)
LLC: 2MiB, 8-way, 20 MSHRs, 64-byte lines

System Bus TileLink, out-of-order completion, round-robin
DRAM Controller FR-FCFS, open-page policy, scheduler window: 8

DRAM DDR3-2133, 1 rank, 8 banks, 32KiB row-buffers

System Setup. Table I shows the system configuration. The
architecture of the SoC is similar to Figure 5 except that it is
configured as a quad-core processor. We choose the number
of BRU domains to be equal to the number of cores. The
L1 data caches are non-blocking with 4 MSHRs (Miss Status
Holding Registers) each. We configure LLC to have enough
MSHRs to handle all the parallel requests issued by the L1
caches ((4 data+ 1 instruction)× 4 = 20). This eliminates
the MSHR contention in the LLC [11], [37].

For the OS, we use the RISC-V port of the Linux kernel
4.15. We evaluate our design using the San Diego Vision
Benchmark Suite (SD-VBS) [27] with CIF input size. Ta-
ble II shows the average bandwidth utilization of SD-VBS
running on our system.3 Additionally, we use Bandwidth and
Latency benchmarks from the IsolBench benchmark suite [11].
Bandwidth is a synthetic benchmark that accesses the memory
at the cache line strides to generate the maximum memory
traffic. It is a memory-intensive program, which we use to
create the worst-case memory interference. Bandwidth can be
configured to either read or write from/to the memory. We
denote the read and write variants with BwRead and BwWrite,
respectively. There is also a periodic variant of Bandwidth
benchmark which we denote with BwWrite-RT and BwRead-
RT. Latency is another synthetic benchmark that traverses the

3We omitted the multi ncut benchmark due to its long simulation times.

nodes of a linked list with each node located on a separate
cache line. This benchmark it designed to be sensitive to the
memory access latency.

TABLE II
SD-VBS BENCHMARK CHARACTERISTICS (MB/S)

Benchmark Ave. LLC Ave. LLC Ave. DRAM Ave. DRAM
Read B/W Write B/W Read B/W Write B/W

disparity 2806 1165 276 155
localization 142 57 0.32 0.18
mser 1513 420 247 122
sift 602 124 128 66
svm 444 107 0.68 0.56
texture syn 148 50 20 15
tracking 479 199 61 45

A. Effect of Regulation Period in Regulation Performance

In the first set of experiments, we demonstrate the impact
of fine-grained bandwidth regulation over a coarse-grained
one. The experiments in this subsection run on one core.
Thus, to eliminate the impact of the other cores accessing
the memory on our measurements, we run the experiments in
this subsection on a single-core processor. The rest of system
parameters are as in Table I.

In the first experiment, we use the synthetic BwRead-RT
benchmark and configure it to access a 120KB array every
200µs to resemble an application with short burst accesses.
The average memory bandwidth of this application is equal
to 600MB/s (120KB ÷ 200µs) and each burst is about 22µs
in length. We set the access regulation bandwidth budget at
1280MB/s and run the application once with 1ms and another
time with 200ns regulation period. Based on the 2.13GHz
clock frequency, these periods are equal to 2.13×106 and 426
cycles, respectively. Also, Maximum Access Register (i.e. the
access budget) is programmed with 20, 000 and 4, respectively
based on the 64-byte cache line size (see Equation 1).

Figure 8 shows the LLC read bandwidth of these two
tests. We observe that the memory accesses are not throttled
with the 1ms period, however, we see that with the 200ns
period, the bursts are capped at 1280MB/s across the 1µs
measurement intervals. This experiment can help us better
understand how the periodic bandwidth regulation works.
This regulation method guarantees that the average bandwidth
across the regulation period does not exceed the budget. Since
the average memory bandwidth of the application across 1ms
is less than 1280MB/s, it is not throttled for the 1ms regulation
period. However the average demand across the length of a
burst is much higher (maximum 7.5GB/s). That is why the
memory accesses are throttled when the regulation period is
set to 200ns.

In the second experiment, we instead use real-world bench-
marks from the SD-VBS suite to further demonstrate the
effect of fine-grained regulation. For this experiment, we set
the bandwidth budget at 320MB/s, which is less than the
unregulated average LLC read bandwidth of most of the SD-
VBS benchmarks as can be seen in Table II. We repeat the
experiments using two regulation periods: 1ms and 200ns.

7



0 1 2 3 4 5
Time (ms)

0
1
2
3
4
5
6
7
8

LL
C 

Re
ad

 B
an

dw
id

th
 (G

B/
s)

(a) 1ms regulation period.

0 1 2 3 4 5
Time (ms)

0
1
2
3
4
5
6
7
8

LL
C 

Re
ad

 B
an

dw
id

th
 (G

B/
s)

(b) 200ns regulation period.

Fig. 8. Synthetic BwRead-RT benchmark with burst memory accesses
regulated with 1280MB/s access budget. Measured at 1µs and applied a 10-
point (over 10 µs) moving average.

Figure 10 and Figure 11 show the results for 1ms and 200ns
periods, respectively. We include only three benchmarks due to
space limitation. In case of the 1ms, we can see that although
the average bandwidth is below 320MB/s the peaks can be as
high as 3GB/s. However, for the 200ns period, the bandwidth
is capped at 320MB/s. Again, this is because fine-grained
regulation can handle bursty memory accesses more evenly
distributed over time.

B. Effect of Regulation Period in Protecting Real-time Tasks

In this experiment, we demonstrate the effect of regulation
period in protecting the real-time tasks. The basic experiment
setup is that we run a real-time task on core 3, while three
best-effort tasks are co-scheduled on cores 0~2. For the real-
time task, we use BwWrite-RT, which is configured to access
a 4MiB array periodically at every 4.1ms. The WCET of the
real-time task, measured in isolation, is 1.52ms. For the best-
effort tasks, we use three instances of disparity benchmark
from SD-VBS. The three cores for the best-effort tasks are
assigned to one regulation domain, which is regulated with
1280MB/s access bandwidth budget. We execute the real-time
task for one thousand periods under four different regulation
periods and plot the CDF of the task’s response times.

Figure 9 shows the results. In Solo, the real-time task is
running in isolation without the best-effort tasks. In No-reg,
the real-time task is co-scheduled with the best-effort co-
runners but regulation is disabled (i.e., BRU is not used).
In 100ns, 1µs, 1ms, and 10ms, regulation is enabled but at
different regulation periods. Note first that without regulation,
the real-time task’s observed response times vary considerably.
When BRU is used, the observed response time decreases

1.4 1.6 1.8 2.0 2.2 2.4
Response Time (ms)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F solo

100ns
1us
1ms
10ms
no-reg

Fig. 9. Response time CDF of BwWrite-RT co-scheduled with disparity best-
effort tasks under different regulation period configurations, but with the same
access bandwidth budget of 1280MB/s.

and variations of the real-time task are significantly reduced
because BRU’s bandwidth regulation limits the best-effort co-
runners impact on the real-time task.

Note, however, that at 10ms regulation, which is longer
than the real-time task’s solo WCET of 1.52ms, we still
observe large response time variations despite using BRU.
This is because the bandwidth regulation may not always be
applied when the real-time task is executed due to the long
regulation period. At 1ms, 1µs, and 100ns, the response time
variations are significantly reduced because shorter regulation
periods make bandwidth regulation to be applied more evenly
while executing the real-time task. In general, we find that the
smaller the regulation period is, the more effective the BRU
is in applying bandwidth regulation.

C. Effect of Group Bandwidth Regulation

In the following two experiments, we show the effects
of using group-based bandwidth regulation to the regulated
best-effort tasks and the protected real-time tasks. The basic
experiment setup is as follows. In the first experiment we
run Latency, which is used as the protected real-time task,
on core 3 and configure its working set size (WSS) to be
larger than the size of the LLC (i.e DRAM-fitting). We then
co-schedule three instances of BwWrite, which are used as
the best-effort tasks on cores 0~2 and set their WSS to be
DRAM-fitting. We regulate the bandwidth of cores 0~2 under
two different domain assignment schemes. In the first scheme,
1-domain, we assign the cores to one domain and regulate
their memory accesses collectively. In the second scheme, 3-
domain, we assign each core to a separate domain and split the
access bandwidth budget equally among them. For instance,
if the total access bandwidth budget is 320MB/s, each core
is assigned with 106.6MB/s. We run the experiment under
different budget assignments and measure the execution time
of Latency.

Figure 12 shows the execution times of the real-time task
(Latency) as a function of the total bandwidth budget for
the regulated best-effort tasks (three BwWrite instances). As
expected, assigning smaller bandwidth budgets to the best-
effort tasks helps protect the real-time task. Furthermore, as

8



0 1000 2000 3000 4000
Time (ms)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

LL
C 

Re
ad

 B
an

dw
id

th
 (G

B/
s)

(a) disparity

0 200 400 600 800 1000
Time (ms)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

LL
C 

Re
ad

 B
an

dw
id

th
 (G

B/
s)

(b) localization

0 200 400 600 800
Time (ms)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

LL
C 

Re
ad

 B
an

dw
id

th
 (G

B/
s)

(c) svm

Fig. 10. LLC read bandwidth for SD-VBS at 1ms regulation period and 320MB/s budget. Measured at 10µs and applied a 10-point moving average.

0 1000 2000 3000 4000
Time (ms)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

LL
C 

Re
ad

 B
an

dw
id

th
 (G

B/
s)

(a) disparity

0 200 400 600 800 1000
Time (ms)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

LL
C 

Re
ad

 B
an

dw
id

th
 (G

B/
s)

(b) localization

0 200 400 600 800 1000
Time (ms)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

LL
C 

Re
ad

 B
an

dw
id

th
 (G

B/
s)

(c) svm

Fig. 11. LLC read bandwidth for SD-VBS at 200ns regulation period and 320MB/s budget. Measured at 10µs and applied a 10-point moving average.

320
640
960
1280
1600
1920
2240
2560
2880
3200
3520
3840
4160
4480
4800

Co-runners Bandwidth Budget (MB/s)

0

1

2

3

No
rm

al
ize

d 
Ex

ec
ut

io
n 

Ti
m

e 1 domain
3 domains

Fig. 12. Normalized execution times of the real-time task (Latency on core 3)
as a function of the total access bandwidth budget given to the regulated best-
effort co-runners (three BwWrite instances on cores 0~2) under two different
domain assignment schemes.

long as the collective bandwidth budget of the best-effort
tasks is the same, both 1-domain and 3-domain regulation are
similarly effective in protecting the real-time task.

In the second experiments, the basic setup is the same but
we use three benchmarks from the SD-VBS suite as best-effort
tasks instead of the synthetic BwWrite benchmark. We choose
disparity, mser, and texture synthesis, which represent high,
medium, and low memory intensive workloads, respectively,
as per Table II. Similar to the first experiment, Latency is
running on core 3 and the SD-VBS benchmarks are running
on cores 0~2. We run the experiment under 1-domain and
3-domain regulation schemes. In the 1-domain scheme the
total budget of 1280MB/s is assigned to cores 0~2 and these
cores compete for the bandwidth with each other. In the 3-
domain scheme, on the other hand, each core is assigned with
426.7MB/s (1/3 of 1280MB), which cannot be shared with the

disparity mser texture_syn
0
1
2
3
4
5
6
7

No
rm

al
ize

d 
Ex

ec
ut

io
n 

Ti
m

e
1 domain
3 domains

Fig. 13. Normalized execution times of three best-effort SD-VBS bench-
marks, regulated under two different domain assignment schemes. The total
bandwidth budget is fixed at 1280MB/s in both schemes.

other cores.
Figure 13 shows the normalized execution times of the

three SD-VBS benchmarks. Note first that, under the group
regulation scheme (1-domain), the execution of the disparity,
which is the most memory intensive benchmark, is markedly
smaller, by 37%, than that of the per-core regulation scheme
(3-domain). This is because in group regulation, the total
bandwidth is more effectively utilized across all cores in
the group, while in per-core regulation, any under-utilized
bandwidth of an individual core is wasted.

D. Effect of Writeback Regulation

In the experiments above, we only set the budget for access
regulation i.e. we only regulated the cache misses. As we
described in Section IV-B, this results in regulating the read
and write traffic with the same budget. In this subsection, we
set up experiments to demonstrate how writeback regulation

9



0 200 400 600 800 1000
Time (ms)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5
LL

C 
Ba

nd
wi

dt
h 

(G
B/

s)
Read Traffic
Write Traffic

(a) Writeback regulation is disabled; access budget: 1280MB/s.

0 200 400 600 800 1000
Time (ms)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

LL
C 

Ba
nd

wi
dt

h 
(G

B/
s)

Read Traffic
Write Traffic

(b) Writeback budget: 640MB/s; access budget: 1280MB/s.

Fig. 14. LLC Bandwidth of sift under different access and writeback budgets.
Measured at 10µs and applied a 10-point moving average.

can be used to regulate the write traffic with a budget smaller
than the access budget.

First, Figure 14(a) shows the result of running sift with a
1280MB/s access bandwidth budget and no writeback regula-
tion. The regulation period is set to 100ns in this experiment.
We see that although we have not set the writeback budget,
the write traffic to the LLC is regulated at the same level as
the read traffic.

Next, we run another test in which we set the write-
back bandwidth budget to 640MB/s while maintaining the
1280MB/s access budget. Figure 14(b) shows the result. As
we can see that using writeback regulation, the write traffic
is regulated at 640MB/s while the reads are still regulated at
1280MB/s. This helps to reduce the peak rate at which writes
are issued to the shared memory while maintaining the same
budget for the read traffic.

E. Hardware Implementation Overhead

To study the implementation cost of our design in hardware,
we integrate BRU to a multi-core BOOM processor and run
synthesis to estimate the area and timing overhead. We use the
Cadence Genus synthesis tool with the Hammer [38] automa-
tion scripts targeting the ASAP 7nm technology node [39].

Table III shows the post-synthesis chip area breakdown of
dual-, quad-, and octa-core BOOM processors. As we can
see, the area overhead of BRU is very low as it is less than
0.3%. Note that this is a conservative number as the area for
SRAM needed to implement the caches is not included in the

Fig. 15. A dual-core BOOM processor chip layout with BRU circled in red.

measured area. Additionally, we synthesized the processors
without BRU to examine the effect of integrating BRU on
timing. The results show that BRU has less than 2% impact
on the maximum clock frequency. Consequently, both timing
and area results show that adding BRU leads to negligible
overhead in hardware. We also performed place and route on
the dual-core BOOM with integrated BRU. Figure 15 shows
the layout of the chip with BRU circled in red.

TABLE III
BOOM PROCESSORS AREA BREAKDOWN (mm2)

Dual-core Quad-core Octa-core
BRU 0.005 (0.19%) 0.007 (0.17%) 0.023 (0.28%)
BOOM Cores 2.310 (92.41%) 4.072 (95.13%) 8.144 (96.99%)
Others (Buses, 0.185 (7.40%) 0.201 (4.70%) 0.230 (2.74%)Manager, etc.)
Total 2.499 4.280 8.397

VI. RELATED WORK

Deterministic hardware architectures have been exten-
sively studied in the real-time community. PRET [40], T-
CREST [23], MERASA [22], and CoMPSoC [20] projects
have proposed processor architectures and complete systems
which are specifically targeted at real-time applications. Addi-
tionally, in works such as LEOPARD [21] and Deterministic
Memory [41], extensions are added to the bus, the L2 cache,
and the DRAM controller to facilitate timing analysis. The
architectures that are specifically targeted at real-time applica-
tions, however, generally do not perform well when it comes
to the average performance and because of the relatively small
market size [21], it is difficult to justify the cost of building
the such architectures.

There are also challenges involved with adding extensions
to the existing hardware. Firstly, validation and verification
of new hardware is a time-consuming and labor-intensive
task. Most of these solutions need to redesign the existing
hardware components. The problem is exacerbated when
adding complexity to the already complex and hard to verify
algorithms that deal with maintaining memory consistency
and coherency. Even with modifying the memory system

10



components, the challenge of coordinating these components
at multiple levels of the memory hierarchy still exists. In [42],
it is shown that independently enforcing the priority of the
requests at each memory resource may not be effective because
of the interactions between these resources and the effect of
prioritizing requests in one resource on the others.

In this work, we have chosen a less intrusive approach
which, at its baseline design, does not modify any existing
hardware components in the processor. There are two recently
proposed closely related works. MCCU [24] proposes to
extend the capabilities of hardware performance counters to
enable tracking and regulation of memory related interference.
One important difference of this work compared with our
proposal is that, MCCU interrupts the processor when the
budget is exhausted, similar to prior software based memory
bandwidth regulation solutions [7]. Therefore, it does not
eliminate the interrupt handler overhead and cannot regulate
the memory accesses at fine-grained time intervals as we do
in our proposal. ABU [43] is most similar to our work as it is
also a hardware-based memory bandwidth regulator. The main
difference is that ABU is aiming at regulating AXI [44] bus-
based hardware accelerators on FPGAs, whereas our design
focuses on regulating cores within a microprocessor design.
Note that AXI is not a cache coherent interconnect protocol,
thus it is not suitable for on-chip communication between the
cores. In contrast, BRU supports coherent on-chip interconnect
(TileLink TL-C) and takes into account the complexities that
come from communication between the coherence manager
and caches (e.g., the coherence traffic).

Understating the problem of the memory contention, ma-
jor processor designers and chip manufacturers have started
adding extensions to their multicore processors to bound the
inter-core memory interference. ARM has recently published
a specification [45] on the extensions to the architecture of its
server processors to partition and regulate the shared memory
resources. Similarly, AMD has released a specification [46]
on the extension to monitor and control the usage of shared
resources. Moreover, Intel incorporated a per-core memory
throttling mechanism in their server processors, which they
refer to as Memory Bandwidth Allocation (MBA) [47]. How-
ever, these are all targeted at enterprise networking and server
systems, and we are not able to find any published literature
evaluating the performance of these features. To the best of our
knowledge, our work is the first hardware bandwidth regulator
implementation to bound the inter-core interference in the
context of safety-critical real-time embedded systems.

In the real-time systems community, many OS-level so-
lutions have been proposed to manage the shared resources
in COTS multicore processors to improve temporal isolation
on such systems. For instance, page-coloring [3]–[5] is used
to partition the cache and the DRAM banks. There are also
proposals [7], [8] which use hardware performance counters
to improve the isolation in the multicore processors. However,
because the implementation details of the COTS platforms are
not typically disclosed by the manufacturers, the degree of
isolation that can be achieved by these solutions is limited.

Moreover, many of these software methods incur runtime
overhead. In particular, there is non-negligible interrupt han-
dling overhead in hardware performance counter-based OS-
level memory bandwidth regulation approaches [7], [8]. As
the result, it is not possible to regulate the bandwidth at fine
time intervals using these solutions.

VII. CONCLUSION AND FUTURE WORK

We have presented BRU, a hardware unit that regulates per-
core accesses to the shared memory resources. Since BRU
is implemented in hardware, it eliminates the runtime over-
head associated with prior software-based regulation solutions.
Moreover, BRU is able to regulate at a much finer time
intervals. This enables it to more effectively protect real-
time tasks, especially those with short execution times. In
addition, BRU improves bandwidth utilization for the best-
effort tasks using group bandwidth regulation that enables
efficient bandwidth sharing. Compared to most other hardware
solutions, BRU is less intrusive as it eliminates the need for
redesigning and verifying the existing hardware components.
We have synthesized BRU in a 7nm technology node and
showed that the overhead of integrating it on chip is limited.

For the future work, we plan to provide real-time response
analysis for the tasks that are protected using BRU. We also
consider extending BRU to regulate the memory traffic of
accelerators (e.g., NVDLA [48], [49]) that share the memory
system with the processor.

ACKNOWLEDGMENT

This research is supported in part by NSF CNS 1718880,
CNS 1815959, and NSA Science of Security initiative contract
#H98230-18-D-0009.

REFERENCES

[1] Certification Authorities Software Team, “CAST-32: Multi-core proces-
sors,” Federal Aviation Administration (FAA), Tech. Rep., May 2014.

[2] N. Kim, B. C. Ward, M. Chisholm, J. H. Anderson, and F. D. Smith,
“Attacking the one-out-of-m multicore problem by combining hardware
management with mixed-criticality provisioning,” Real-Time Systems,
vol. 53, no. 5, pp. 709–759, 2017.

[3] J. Liedtke, H. Hartig, and M. Hohmuth, “Os-controlled cache pre-
dictability for real-time systems,” in Proceedings Third IEEE Real-Time
Technology and Applications Symposium. IEEE, 1997, pp. 213–224.

[4] H. Yun, R. Mancuso, Z. Wu, and R. Pellizzoni, “PALLOC: DRAM
bank-aware memory allocator for performance isolation on multicore
platforms,” in Real-Time and Embedded Technology and Applicat. Symp.
(RTAS), 2014.

[5] N. Suzuki, H. Kim, D. d. Niz, B. Andersson, L. Wrage, M. Klein,
and R. Rajkumar, “Coordinated bank and cache coloring for temporal
protection of memory accesses,” in Computational Sci. and Eng. (CSE).
IEEE, 2013, pp. 685–692.

[6] L. Liu, Z. Cui, M. Xing, Y. Bao, M. Chen, and C. Wu, “A software
memory partition approach for eliminating bank-level interference in
multicore systems,” in Parallel Architecture and Compilation Techniques
(PACT). ACM, 2012, pp. 367–376.

[7] H. Yun, G. Yao, R. Pellizzoni, M. Caccamo, and L. Sha, “Memguard:
Memory bandwidth reservation system for efficient performance iso-
lation in multi-core platforms,” in 2013 IEEE 19th Real-Time and
Embedded Technology and Applications Symposium (RTAS). IEEE,
2013, pp. 55–64.

[8] J. Nowotsch, M. Paulitsch, D. Bühler, H. Theiling, S. Wegener, and
M. Schmidt, “Multi-core interference-sensitive wcet analysis leveraging
runtime resource capacity enforcement,” in 2014 26th Euromicro Con-
ference on Real-Time Systems. IEEE, 2014, pp. 109–118.

11



[9] Intel, Improving Real-Time Performance by Utilizing Cache Allocation
Technology, April 2015.

[10] M. Xu, L. Thi, X. Phan, H.-Y. Choi, and I. Lee, “vcat: Dynamic cache
management using cat virtualization,” in 2017 IEEE Real-Time and
Embedded Technology and Applications Symposium (RTAS). IEEE,
2017, pp. 211–222.

[11] P. K. Valsan, H. Yun, and F. Farshchi, “Taming non-blocking caches
to improve isolation in multicore real-time systems,” in Real-Time and
Embedded Technology and Applicat. Symp. (RTAS). IEEE, 2016, pp.
1–12.

[12] M. Bechtel and H. Yun, “Denial-of-service attacks on shared cache
in multicore: Analysis and prevention,” in 2019 IEEE Real-Time and
Embedded Technology and Applications Symposium (RTAS). IEEE,
2019, pp. 357–367.

[13] J. Yan and W. Zhang, “Time-predictable l2 cache design for high-
performance real-time systems,” in IEEE 16th International Conference
on Embedded and Real-Time Computing Systems and Applications
(RTCSA). IEEE, 2010, pp. 357–366.

[14] J. Yan and Z. Wei, “Time-predictable multicore cache architectures,” in
3rd International Conference on Computer Research and Development,
vol. 3. IEEE, 2011, pp. 1–5.

[15] B. Lesage, I. Puaut, and A. Seznec, “Preti: Partitioned real-time shared
cache for mixed-criticality real-time systems,” in Proceedings of the 20th
International Conference on Real-Time and Network Systems. ACM,
2012, pp. 171–180.

[16] S. Goossens, B. Akesson, and K. Goossens, “Conservative open-page
policy for mixed time-criticality memory controllers,” in Proceedings
of the Conference on Design, Automation and Test in Europe. EDA
Consortium, 2013, pp. 525–530.

[17] Y. Krishnapillai, Z. P. Wu, and R. Pellizzoni, “A rank-switching, open-
row dram controller for time-predictable systems,” in 26th Euromicro
Conference on Real-Time Systems (ECRTS). IEEE, 2014, pp. 27–38.

[18] L. Ecco and R. Ernst, “Improved dram timing bounds for real-time
dram controllers with read/write bundling,” in IEEE Real-Time Systems
Symposium. IEEE, 2015, pp. 53–64.

[19] P. K. Valsan and H. Yun, “MEDUSA: A Predictable and High-
Performance DRAM Controller for Multic ore based Embedded Sys-
tems,” in Cyber-Physical Systems, Networks, and Applications (CPSNA).
IEEE, 2015, pp. 86–93.

[20] A. Hansson, K. Goossens, M. Bekooij, and J. Huisken, “Compsoc:
A template for composable and predictable multi-processor system on
chips,” ACM Transactions on Design Automation of Electronic Systems
(TODAES), vol. 14, no. 1, p. 2, 2009.

[21] C. Hernández, J. Abella, F. J. Cazorla, A. Bardizbanyan, J. Andersson,
F. Cros, and F. Wartel, “Design and implementation of a time predictable
processor: Evaluation with a space case study,” in 29th Euromicro
Conference on Real-Time Systems (ECRTS). Schloss Dagstuhl-Leibniz-
Zentrum fuer Informatik, 2017.

[22] T. Ungerer, F. Cazorla, P. Sainrat, G. Bernat, Z. Petrov, C. Rochange,
E. Quinones, M. Gerdes, M. Paolieri, J. Wolf et al., “Merasa: Multicore
execution of hard real-time applications supporting analyzability,” IEEE
Micro, vol. 30, no. 5, pp. 66–75, 2010.

[23] M. Schoeberl, S. Abbaspour, B. Akesson, N. Audsley, R. Capasso,
J. Garside, K. Goossens, S. Goossens, S. Hansen, R. Heckmann et al.,
“T-crest: Time-predictable multi-core architecture for embedded sys-
tems,” Journal of Systems Architecture, vol. 61, no. 9, pp. 449–471,
2015.

[24] J. Cardona, C. Hernandez, J. Abella, and F. J. Cazorla, “Maximum-
contention control unit (mccu): Resource access count and contention
time enforcement,” in Design, Automation & Test in Europe Conference
& Exhibition (DATE). IEEE, 2019, pp. 710–715.

[25] C. Celio, D. A. Patterson, and K. Asanović, “The Berkeley Out-
of-Order Machine (BOOM): An Industry-Competitive, Synthesizable,
Parameterized RISC-V Processor,” EECS Department, University of
California, Berkeley, Tech. Rep., Jun 2015.

[26] S. Karandikar et al., “Firesim: Fpga-accelerated cycle-exact scale-out
system simulation in the public cloud,” in ISCA, 2018, pp. 29–42.

[27] S. K. Venkata, I. Ahn, D. Jeon, A. Gupta, C. Louie, S. Garcia,
S. Belongie, and M. B. Taylor, “Sd-vbs: The san diego vision benchmark
suite,” in IEEE International Symposium on Workload Characterization
(IISWC). IEEE, 2009, pp. 55–64.

[28] K. Asanović et al., “The Rocket Chip Generator,” EECS Department,
University of California, Berkeley, Tech. Rep., Apr 2016.

[29] A. Waterman and K. Asanović, “The RISC-V Instruction Set Manual,
Volume I: User-Level ISA, Document Version 20190608-Base-Ratified,”
2019.

[30] J. Bachrach, H. Vo, B. Richards, Y. Lee, A. Waterman, R. Avižienis,
J. Wawrzynek, and K. Asanović, “Chisel: constructing hardware in a
scala embedded language,” in Design Automation Conference (DAC).
IEEE, 2012, pp. 1212–1221.

[31] SiFive. SiFive’s Freedom Platform. [Online]. Available: https://github.
com/sifive/freedom

[32] SiFive, “SiFive TileLink Specification,” 2017.
[33] M. S. Papamarcos and J. H. Patel, “A low-overhead coherence solution

for multiprocessors with private cache memories,” in ACM SIGARCH
Computer Architecture News, vol. 12, no. 3. ACM, 1984, pp. 348–354.

[34] H. C. Cook, “Productive design of extensible on-chip memory hierar-
chies,” Ph.D. dissertation, UC Berkeley, 2016.

[35] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu,
J. Hestness, D. R. Hower, T. Krishna, S. Sardashti et al., “The gem5
simulator,” ACM SIGARCH Computer Architecture News, vol. 39, no. 2,
pp. 1–7, 2011.

[36] D. Biancolin, S. Karandikar, D. Kim, J. Koenig, A. Waterman,
J. Bachrach, and K. Asanovic, “Fased: Fpga-accelerated simula-
tion and evaluation of dram,” in International Symposium on Field-
Programmable Gate Arrays. ACM, 2019, pp. 330–339.

[37] P. K. Valsan, H. Yun, and F. Farshchi, “Addressing isolation challenges
of non-blocking caches for multicore real-time systems,” Real-Time
Systems, vol. 53, no. 5, pp. 673–708, 2017.

[38] “Highly agile masks made effortlessly from RTL,” https://github.com/
ucb-bar/hammer.

[39] L. T. Clark, V. Vashishtha, L. Shifren, A. Gujja, S. Sinha, B. Cline,
C. Ramamurthy, and G. Yeric, “ASAP7: A 7-nm finFET predictive
process design kit,” Microelectronics Journal, vol. 53, pp. 105–115,
2016.

[40] I. Liu, J. Reineke, D. Broman, M. Zimmer, and E. A. Lee, “A pret
microarchitecture implementation with repeatable timing and competi-
tive performance,” in IEEE 30th international conference on computer
design (ICCD). IEEE, 2012, pp. 87–93.

[41] F. Farshchi et al., “Deterministic memory abstraction and supporting
multicore system architecture,” in ECRTS, vol. 106, 2018.

[42] E. Ebrahimi, C. J. Lee, O. Mutlu, and Y. N. Patt, “Fairness via source
throttling: a configurable and high-performance fairness substrate for
multi-core memory systems,” in ACM Sigplan Notices, vol. 45, no. 3.
ACM, 2010, pp. 335–346.

[43] M. Pagani, E. Rossi, A. Biondi, M. Marinoni, G. Lipari, and G. Buttazzo,
“A bandwidth reservation mechanism for axi-based hardware accelera-
tors on fpgas,” in 31st Euromicro Conference on Real-Time Systems
(ECRTS). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2019.

[44] Arm, “AMBA AXI and ACE Protocol Specification,” 2013.
[45] Arm, “Arm Architecture Reference Manual Supplement, Memory Sys-

tem Resource Partitioning and Monitoring (MPAM), for Armv8-A,” July
2019.

[46] AMD, “AMD64 Technology Platform Quality of Service Extensions,”
August 2018.

[47] Intel. (2019) Introduction to Memory Bandwidth Allocation. [On-
line]. Available: https://software.intel.com/en-us/articles/introduction-
to-memory-bandwidth-allocation

[48] F. Farshchi, Q. Huang, and H. Yun, “Integrating NVIDIA Deep Learning
Accelerator (NVDLA) with RISC-V SoC on FireSim,” in 2nd Workshop
on Energy Efficient Machine Learning and Cognitive Computing for
Embedded Applications (EMC2), 2019.

[49] Nvidia. (2018) NVIDIA Deep Learning Accelerator. [Online]. Available:
http://nvdla.org

12

https://github.com/sifive/freedom
https://github.com/sifive/freedom
https://github.com/ucb-bar/hammer
https://github.com/ucb-bar/hammer
https://software.intel.com/en-us/articles/introduction-to-memory-bandwidth-allocation
https://software.intel.com/en-us/articles/introduction-to-memory-bandwidth-allocation
http://nvdla.org

	Introduction
	Background
	TileLink

	BRU Architecture
	Access Bandwidth Regulation Interface
	Writeback Bandwidth Regulation Interface

	Implementation
	Access Bandwidth Regulation
	Writeback Bandwidth Regulation

	Evaluation
	Effect of Regulation Period in Regulation Performance
	Effect of Regulation Period in Protecting Real-time Tasks
	Effect of Group Bandwidth Regulation
	Effect of Writeback Regulation
	Hardware Implementation Overhead

	Related Work
	Conclusion and Future Work
	References

