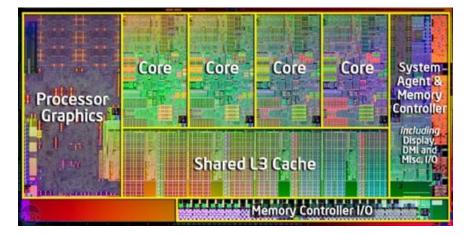
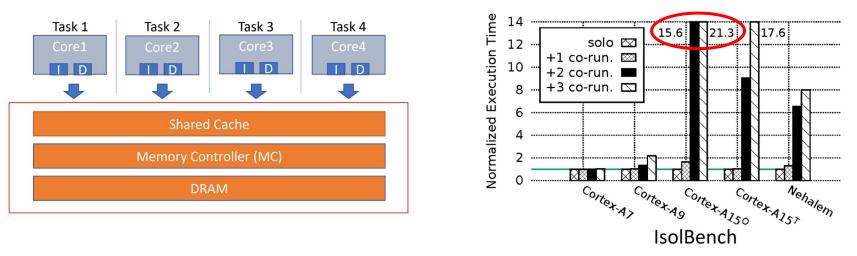
BRU: Bandwidth Regulation Unit for Real-Time Multicore Processors

<u>Farzad Farshchi</u>[§], Qijing Huang[¶], Heechul Yun[§] [§]University of Kansas, [¶]University of California, Berkeley RTAS 2020



Multicore Processors in Real-time Systems

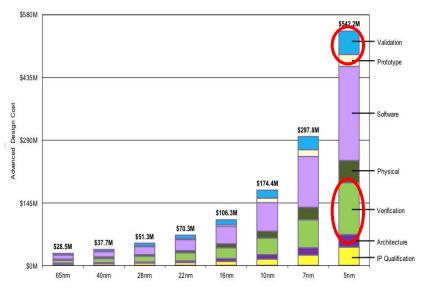

- Provide high computing **performance** needed for intelligent real-time systems
- Allow **consolidation** reducing cost, size, weight, and power

Challenge: Inter-core Memory Interference

- Memory system is shared between the cores
- Memory performance varies widely due to **memory interference**
- Task WCET can be **extremely pessimistic**: >10x or >100x

P.K. Valsan et al. "Addressing Isolation Challenges of Non-blocking Caches for Multicore Real-Time Systems". *Real-time Systems Journal*

Software Solutions


- To **bound memory interference**: MemGuard¹, PALLOC², etc.
- Usually implemented in OS or hypervisor
- Use COTS processors features (performance counters, MMU, etc.)
- **X** Fundamentally limited due to lack of full control over hardware
- X Treat hardware as a black box
- X Overhead. E.g. interrupt-handler overhead

¹ H. Yun et al. "Memguard: Memory bandwidth reservation system for efficient performance isolation in multi-core platforms" RTAS'13 ² H. Yun et al. "PALLOC: DRAM bank-aware memory allocator for performance isolation on multicore platforms" RTAS'14

Hardware Solutions

- Real-time architectures: T-CREST¹, MERASA²
- Priority-aware memory components: LLC³, DRAM controller⁴
- K Low average performance
- Verifying a new IP is costly
- K Hard to justify commercially

Cost of Developing a New Chip

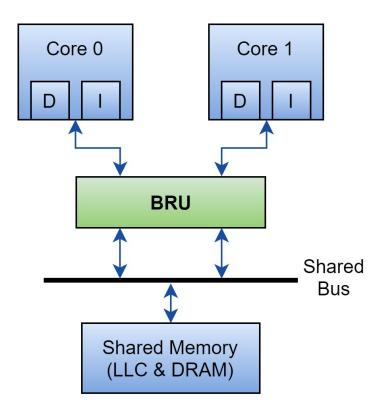
https://www.extremetech.com/computing/272096-3nm-process-node

- ¹ M. Schoeberl et al. "T-CREST Time-predictable multi-core architecture for embedded systems" Journal of Systems Architecture 2015
- ² T. Ungerer et al. "MERASA: Multicore execution of hard real-time applications supporting analyzability" Micro'10
- ³ J. Yan et al. "Time-predictable L2 cache design for high performance real-time systems" RTCSA'10
- ⁴ F. Farshchi et al. "Deterministic memory abstraction and supporting multicore system architecture" ECRTS'18

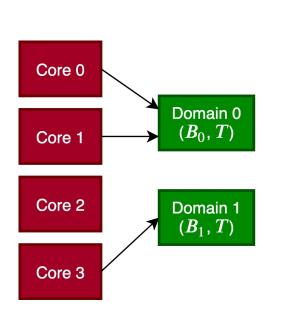
Outline

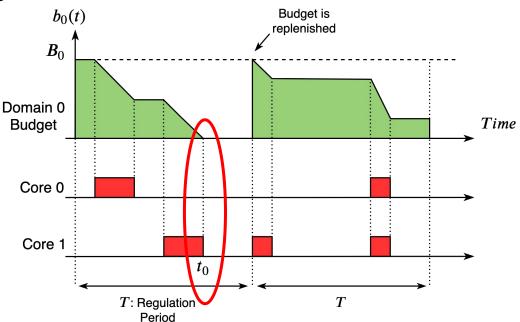
Motivation

• BRU


- Access Regulation
- Writeback Regulation
- Implementation
- Evaluation

BRU: Bandwidth Regulation Unit


- BRU is a hardware IP
- Drop-in module, less intrusive
- No runtime overhead (e.g. interrupt handling)
- BRU enables
- Fine-grained regulation period
- Group-regulation for multiple cores


Bird's Eye View of BRU Architecture

- Located between private caches and the shared memory
- Regulates bandwidth by throttling private caches misses and writebacks
- Low logic complexity due to direct connection to private caches
- Can throttle each core independently without interfering with the other cores
- No LLC metadata to store core ID

Access (Cache Miss) Regulation

 t_0 : Access to shared memory by cores 0~1 is throttled

Multiple cores can be assigned to a **domain**. B/W is **regulated collectively** for these cores.

Domain budget is decremented when a private cache miss causes access to shared memory.

Bandwidth Budget Equation

$$B/W = \frac{B}{T} \cdot LS \cdot f_{clk}$$

Shared memory is accessed at the granularity of a cache line

LS: Cache line size

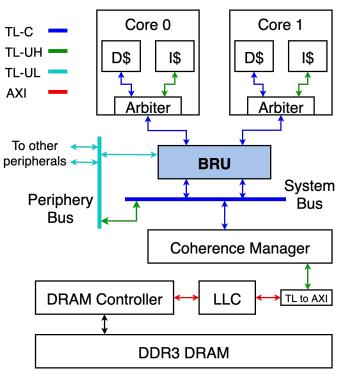
 $f_{\it clk}$: System clock frequency

Writeback Regulation

• Cause and effect relationship between **cache misses** and **writebacks**:

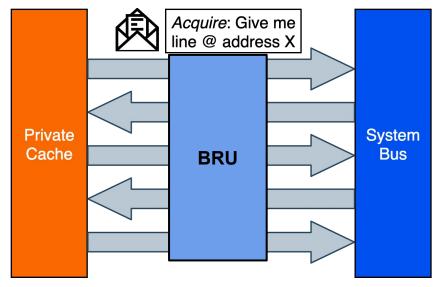
Cache miss \rightarrow cache conflict \rightarrow dirty line eviction \rightarrow writeback

- With access bandwidth set to X MB/s, the writeback bandwidth is also limited to X MB/s
- Writes contend more severely in shared memory [1]. We want to set a lower budget for writebacks
- Add a writeback budget to each domain. When writeback budget depletes, throttle writebacks


Outline

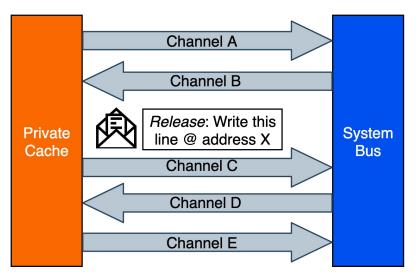
- Motivation
- BRU
 - Access Regulation
 - Writeback Regulation
- Implementation
- Evaluation

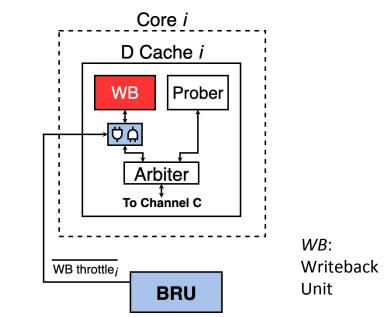
Rocket Chip SoC¹


- An open-source system on chip
- Can be configured with BOOM² out-of-order processor
- Uses TileLink cache-coherent protocol for on-chip communication and accessing memory

 ¹ K. Asanovic et al. "The Rocket Chip Generator" UC Berkeley Tech. Rep. 2016
² C. Celio et al. "The Berkeley Out-of-Order Machine (BOOM): An Industry-Competitive, Synthesizable, Parameterized RISC-V Processor" UC Berkeley Tech. Rep. 2015

Rocket Chip augmented with BRU

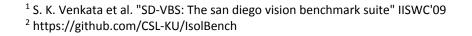

Access Regulation Implementation


Channels of a TileLink link

- On a cache miss, an *Acquire* message is transferred over Channel A
- BRU counts Acquires and when the budget deplates, throttles Channel A

Writeback Regulation Implementation

- On a writeback, a *Release* message is transferred over Channel C
- Cannot throttle Channel C due to other messages (*Probe responses*) going through this channel

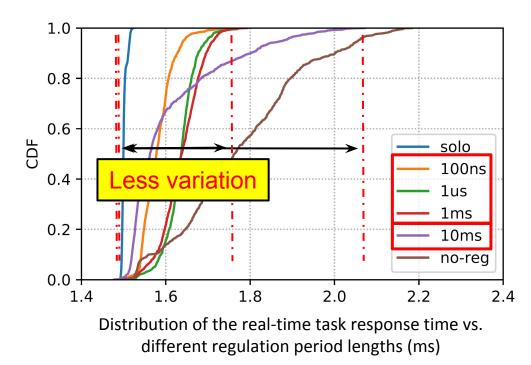

- A special throttle logic inserted after WB unit (only two AND gates)
- BRU sends a signal to D cache to throttle writebacks

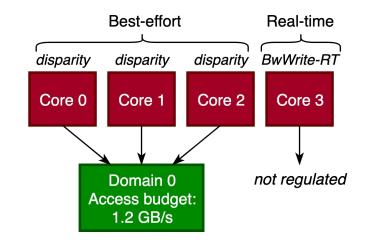
Outline

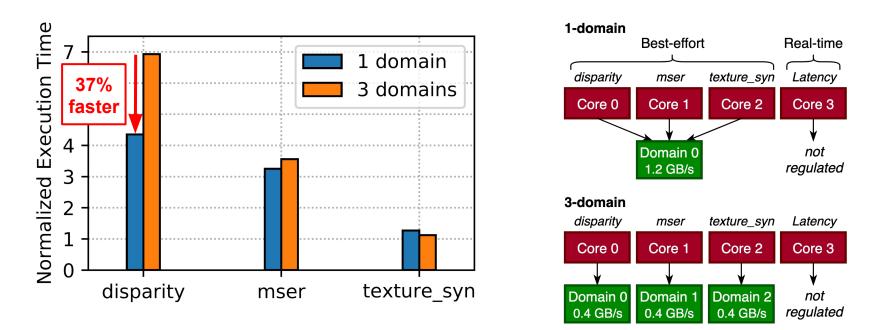
- Motivation
- BRU
 - Access Regulation
 - Writeback Regulation
- Implementation
- Evaluation

Evaluation

- FireSim FPGA-accelerated simulator
 - Directly derived from RTL
 - Runs on FPGAs in Amazon cloud
 - Fast, highly accurate
- Setup
 - Quad-core out-of-order (RISC-V ISA) 2.13 GHz
 - Caches: 64-byte lines, Private L1-I/D: 16/16 KiB, Shared LLC: 2MiB
 - DDR3-2133, 1 rank, 8 banks, FR-FCFS
- Workloads
 - SD-VBS¹, IsolBench² (synthetic)




FireSim


Effect of Regulation Period Length

- Real-time task **WCET: 1.5ms** in isolation, run for 1k periods
- Regulation period shorter than task WCET reduces response time variation

Effect of Group Bandwidth Regulation

- Memory intensity: disparity > mser > texture_syn
- Group bandwidth regulation of best-effort tasks improves utilization

Effect of Writeback Regulation

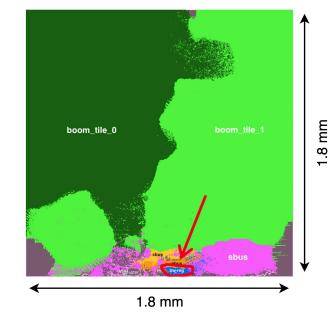
3.5 3.5 Read Traffic **Read Traffic** 3.0 3.0 Write Traffic Write Traffic LLC Bandwidth (GB/s) LLC Bandwidth (GB/s) 2.5 2.5 2.0 2.0 1.5 1.5 1.0 1.0 0.5 0.5 0.0 0.0 200 400 600 800 1000 200 400 600 800 1000 0 n Time (ms) Time (ms)

> Writeback regulation: **disabled** Access budget: 1.28 GB/s

Writeback budget: **0.64 GB/s** Access budget: 1.28 GB/s

- Access regulation limits writeback bandwidth
- Writeback regulation allows setting a lower budget for writebacks

Benchmark: sift


21

Hardware Overhead

- Synthesis and place and route for 7nm
- The area overhead is negligible: < 0.3%
- < 2% impact on max clock frequency

BOOM PROCESSORS AREA BREAKDOWN	(mm^2)
--------------------------------	----------

	Dual-core	Quad-core	Octa-core
BRU	0.005 (0.19%)	0.007 (0.17%)	0.023 (0.28%)
BOOM Cores	2.310 (92.41%)	4.072 (95.13%)	8.144 (96.99%)
Others (Buses, Manager, etc.)	0.185 (7.40%)	0.201 (4.70%)	0.230 (2.74%)
Total	2.499	4.280	8.397

A dual-core processor chip layout with BRU circled in red

Conclusion

- BRU enables **bounding the memory interference** with minimal changes to the hardware
- Single drop-in module; **less intrusive** than other hardware solutions
- No runtime overhead; reduces response time variation and improves utilization
- Negligible hardware overhead

Thank you for listening!

Acknowledgement:

This research is supported in part by NSF CNS 1718880 and CNS 1815959, NSA Science of Security initiative contract #H98230-18-D-0009, and AWS Cloud Credits for Research.