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Abstract: With the growing popularity of online social
networks, a large amount of private or sensitive infor-
mation has been posted online. In particular, studies
show that users sometimes reveal too much information
or unintentionally release regretful messages, especially
when they are careless, emotional, or unaware of pri-
vacy risks. As such, there exist great needs to be able
to identify potentially-sensitive online contents, so that
users could be alerted with such findings. In this pa-
per, we propose a context-aware, text-based quantita-
tive model for private information assessment, namely
PrivScore, which is expected to serve as the founda-
tion of a privacy leakage alerting mechanism. We first
solicit diverse opinions on the sensitiveness of private
information from crowdsourcing workers, and examine
the responses to discover a perceptual model behind the
consensuses and disagreements. We then develop a com-
putational scheme using deep neural networks to com-
pute a context-free PrivScore (i.e., the “consensus” pri-
vacy score among average users). Finally, we integrate
tweet histories, topic preferences and social contexts to
generate a personalized context-aware PrivScore. This
privacy scoring mechanism could be employed to iden-
tify potentially-private messages and alert users to think
again before posting them to OSNs.
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1 Introduction
In the wake of Facebook data breach scandal, users be-
gin to realize how vulnerable their personal data are
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and how blindly they trust the online social networks
(OSNs) by giving them an inordinate amount of private
data that touch on every area of their lives. Moreover,
social networks fundamentally encourage users to share
their privacy more or less to improve their presence in
the virtual world. As a lot of private information are
buried in the text format postings, human stalkers or
automated bots could navigate/crawl historic posts to
re-assemble scattered pieces of sensitive information.

Regrettable posts are not seldom posted according
to surveys [66, 82]. Meanwhile, the side effect of some
posts is often neglected until it is too late to regret. Even
the most privacy-savvy users are likely to post some-
thing aggressive or divulge too much information. Even
worse, although for most of the users, their posts are
only intended to be shared with friends/followers, the
audience of OSNs is significantly larger than users’ ex-
pectation, which includes advertisers, recruiters, search
engine bots, etc. Therefore, it is critical to automati-
cally identify potentially sensitive posts and alert users
before they are posted, i.e., #DontTweetThis.

Conventional privacy protection mechanisms on
data or OSN mainly focus on the protection of individu-
als’ identities or private attributes [9, 18, 28, 47, 53, 71,
88]. However, according to a survey in [30], only 0.1%
of users mentioned identifiable attributes such as email
addresses or phone numbers in their tweets. Therefore,
leaking identities or identifiable attributes during nor-
mal socialization is not the only privacy concern in
OSNs. On the contrary, since the offline identities of
OSN users are often known to their online friends, es-
pecially in strong-tie oriented OSNs such as Facebook,
sensitive or inappropriate content is truly at risk due to
careless or unintentional disclosure during socialization.
Therefore, we argue that another key component in pri-
vacy protection in OSNs is protecting sensitive/private
content, beyond the protection of identities and profile
attributes, i.e., privacy as having the ability to control
the dissemination of sensitive information.

Meanwhile, friends may leak one’s private informa-
tion. Threats from within users’ friend networks – in-
sider threats by human or bots – may be more con-
cerning because they are much less likely to be miti-
gated through existing solutions, e.g., the use of pri-
vacy settings [35, 73, 75, 87]. Therefore, a mechanism
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to distinguish potentially sensitive/private posts before
they are sent is urgently needed. Such a mechanism
could also benefit non-human users such as social me-
dia chatbots. For instance, Microsoft’s Twitter bot, Tay,
started to deliver racist and hateful content soon after it
was launched in 2016. Tay “learned” from inappropriate
messages it had received. Unfortunately, there did not
exist a mechanism to assess the sensitiveness of tweets
before they were exposed to Tay or posted by Tay.

In this paper, we present the first quantitative
model for private information assessment, which gener-
ates a PrivScore that indicates the level of sensitiveness
of text content. We examine users’ opinions on the lev-
els of sensitiveness of content, and then build a seman-
tic model that comprehends the opinions to generate a
context-free PrivScore. The model learns the sensitive-
ness of the content from text features (e.g., word embed-
dings) and sentiment features using a Recurrent Neural
Network (RNN). To further personalize PrivScore and
make it aware of the societal context, we integrate the
topic-based personal attitudes and the trending top-
ics into privacy scoring, to generate the personalized
PrivScore and the context-aware PrivScore, respectively.
With intensive experiments1, we show that PrivScores
are consistent with users’ privacy perceptions.

PrivScore, to the best of our knowledge, is the first
quantitative assessment for sensitive content. It has the
potential to be utilized in various applications: (1) It
could be adopted by individual users for self-censorship
and parental controls, to prevent highly sensitive con-
tent from being posted to online social networks, es-
pecially when the users are careless or emotional. (2)
PrivScore could be integrated with AI-based interactive
agents, especially the ones with learning capabilities,
such as social media chatbots (Twitterbots, Dominator)
and virtual assistants (Siri, Alexa, Cortana), to evalu-
ate the content before delivering to users. (3) PrivScore
could be aggregated over a large population (across de-
mographic groups, friend circles, users in an organiza-
tion, etc.) to examine privacy attitudes from a statisti-
cal perspective. This method and the results could be
used for research purposes, assisting policy making, or
privacy education/training.

The contributions of this paper are three-
fold: (1) We collect the privacy perceptions from a
diverse set of users, and examine the consensuses in
the responses to model the sensitiveness of content. (2)

1 Since the experiments involve human subjects, we have ob-
tained an IRB approval.

We make the first attempt to develop a computational
model for quantitative assessment of content sensitive-
ness using deep neural networks. The context-free pri-
vacy score resembles the “consensus” perception of aver-
age users. (3) We further integrate social contexts and
topic-specific personal privacy attitudes to extend the
predictive model to generate context-aware and person-
alized privacy scores.

The rest of the paper is organized as follows: Sec-
tion 2 formally introduces the problem and briefly
presents the solution. Section 3 explains the data collec-
tion and annotation processes, followed by the context-
free, context-aware and personalized PrivScore models
in Sections 4, 5, and 6. We present the security analysis
and discuss the performance, usability, and limitations
in Section 7. We then summarize the literature in Sec-
tion 8 and finally conclude the paper in Section 9.

2 Problem Statement and
Solution Overview

2.1 The Problem and Challenges

Threat Model. In this work, we aim to protect social
network users (and chatbots) from accidentally dissem-
inating any type of inappropriate content, especially the
private or sensitive information about themselves. We
mainly consider the risk of inappropriate dissemination
to two types of audience: (1) followers or friends (insid-
ers), who receive updates of the user’s posts; (2) stalkers
or strangers, who peek into a target user’s social network
posts. Both are likely to know the offline identity of the
user. We do not focus on protecting identities or at-
tributes (e.g., location), since they have been intensively
studied in the literature. We do not block the user from
publishing the (sensitive) content or block the receiver
from viewing the content, instead, we provide an alert
to assist users’ decision making. We assume the adver-
saries can browse the OSN through the user interface
or collect data using an automated crawler through the
OSN’s API, i.e., there is no hacking or phishing. Finally,
we do not consider the retraction of previous posts.
Objectives. The objective of this work is to develop a
computational model to quantitatively assess the level
of privacy/sensitiveness of unstructured text content,
which will be further adjusted to reflect the impacts of so-
cietal contexts and personal privacy attitudes. We make
the first attempt to generate a privacy score (PrivScore)
for each short text snippet, e.g., a tweet (limits to 280
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Fig. 1. Key components of the three-phase privacy scoring model.

characters), to reflect its level of sensitiveness within its
societal context. The privacy scoring mechanism is ex-
pected to serve as the foundation of a comprehensive
privacy monitoring and user alerting solution.

The problem is very challenging due to several fac-
tors: (1) privacy or sensitiveness is a very subjective per-
ception [17, 31]. Due to the peculiarity, complexity and
diversity of human cognition, it is difficult to precisely
capture the privacy calculus model for each individual,
and generate a consensus privacy score that is unani-
mously agreed by all users. (2) Text understanding and
natural language processing is still an area with active
ongoing research. In particular, modeling and under-
standing of unstructured, short, and non-standard text
snippets, such as microblogs, is very difficult. (3) The
subjective perception of privacy is often influenced by
many factors, such as personal privacy attitude, emo-
tions, societal context, culture, etc. The complexity of
modeling the influencing factors is also excessive.

2.2 Overview of the Proposed Solution

We propose a three-phase privacy scoring model (Fig.
1): (1) context-free privacy scoring, (2) context-aware
privacy scoring, and (3) personalized privacy scoring.
1. The context-free PrivScore is an autonomous assess-
ment of the degree of sensitiveness of short, unstruc-
tured text snippets purely based on the textual content,
i.e., free from its context. We first collect data about
users’ opinions on the level of sensitiveness of poten-
tially private content through a user survey on Amazon
Mechanical Turk (MTurk) (Fig. 1 (A)). We then statis-
tically analyze the responses to identify the consensus
of human perceptions (Fig. 1 (B)). Based on the results,
we develop a deep learning model with word embedding
and long-short term memory to model text content to
develop a privacy scoring mechanism (Fig. 1 (C)).
2. In Context-aware privacy scoring, we model the in-
fluence of the societal context and incorporate it into
PrivScore. We observed that privacy perceptions are
dynamic and influenced by societal contexts. In par-
ticular, when a popular topic triggers significant inter-

ests/discussions in OSNs, users become less concerned
about its sensitiveness. For example, the political at-
titude is normally considered private. When one bil-
lion tweets were posted about the election during the
midterm elections in 2018, the degree of sensitiveness
of political content implicitly decreases from the non-
election days. The context-aware PriScore model mea-
sures the influence of societal context using the volume,
duration, and relevance of trending topics (Fig. 1 (E)).
We integrate it into context-free PrivScore to reflect the
societal influence on privacy perceptions (Fig. 1 (G)).
3. The Personalized privacy score adjusts PrivScore for
each user with a personalized topic-specific attitude. We
recognize that the privacy perception is subjective and
differs for each user, who has her own level of toler-
ance in private information disclosure. Individual pri-
vacy perception is shaped by various psychological fac-
tors such as personality and emotion [55]. To provide
privacy alerts that are customized for each user, we first
analyze her activity history to discover her topic-based
privacy attitude (Fig. 1 (D)). A personalized privacy
scoring model is then developed to integrate personal
attitudes into context-free PrivScore (Fig. 1 (F)).

Eventually, we develop a computational model for
personalized context-aware PrivScore (Fig. 1 (H)). A
PrivScore is generated for each social network post (such
as a tweet) to reflect a quantitative assessment of the es-
timated sensitiveness. The scoring mechanism could be
adopted for individual users or integrated with AI-based
interactive bots. For instance, when a user attempts to
post a tweet with sensitive content that is detected by
the proposed mechanism, the user will be alerted that it
might become a regrettable tweet, i.e. #DontTweetThis.
This warning message intends to trigger self-censorship
[65]. A delayed posting mechanism suggested in [82]
could be invoked, especially for sensitive posts written
under strong emotions.

3 Data Collection, Annotation,
and Analysis

3.1 Data Collection

We selected Twitter as the OSN platform because of
its openness and popularity. We performed a snowball
crawling process in March 2016 for about a month and
collected 31,495,500 tweets from 29,293 users. We elimi-
nated non-English speaking users, and tweets beginning
with “RT @”, since forwarded articles and re-tweets do
not contain private information of the forwarder.
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It is impractical to ask annotators to label 31 million
tweets. Meanwhile, since the dataset is highly imbal-
anced, if we randomly sampled tweets for labeling, the
majority of the samples would be non-sensitive. There-
fore, we selected potentially sensitive tweets as candi-
dates for labeling to save labor and cost. Note that our
goal is not to develop an accurate classifier in this step.
Instead, we aim to construct a balanced dataset by elim-
inating most of the clearly non-private tweets.

First, we referred to [33, 50, 78, 91] to identify po-
tentially private topics, such as Health & Medical, Drugs
& Alcohol, Obscenity, Politics, Racism, Family & Per-
sonal. For each topic, we selected a root set of “seed
terms” and expanded the set using Urban Dictionary,
an Internet dictionary containing slang words and ab-
breviations (frequently used in Twitter). After proper
cleaning, we collected more than 100 terms for each
topic. Terms are available at http://bit.ly/privscore. By
selecting a relatively large set of keywords, we aim to
increase recall, i.e., to include a majority of potentially
private tweets. We then filtered all the tweets with the
candidate terms. In total, we extracted 6,917,044 can-
didate tweets (i.e., 21.9% of the crawled tweets) that
contained at least one of the terms.

In order to collect testing samples that are irrelevant
to the training data and add trending topic information
(for societal context modeling) into the dataset, we per-
formed a second crawl in March 2018. We monitored
the trends at a 15-minute interval, and recorded the cor-
responding tweet_volume [74]. In total, 1,130 trending
topics with volume larger than 10,000 were collected.
We also collected 8,079 new tweets from the same set of
users that we crawled in 2016. This new dataset is used
later to evaluate our privacy scoring approaches.

3.2 Data Labeling

Keyword spotting achieved high recall but low preci-
sion in identifying sensitive tweets. Hence, we further
collected opinions from a large number of users through
a crowd-sourcing platform Amazon Mechanical Turk.

We sampled from 6M potentially sensitive tweets to
generate questionnaires of 20 tweets each. The number
of tweets containing each keyword conforms to Zipf’s
distribution [36]. To ensure that less frequent terms still
get represented in the labeling set, we used a biased
sampling process (i.e., using a biased die) that gives
higher probabilities to rarer terms.

Turkers (English speakers in the US, with 95%+
approval rates) were asked to annotate each tweet

Table 1. Interrater Agreement based on Fleiss’ Kappa, Pear-
son, and Spearman (P:Poor; Sl:Slight; F:Fair; M+:Moderate+;
VW:Very Weak; W:Weak; M:Moderate; St+:Strong+)

Fleiss’ Kappa Pearson Spearman

P k < 0 12 VW r < .2 35 VW r<.2 37
Sl [0, .2) 353 W [.2, .4) 125 W [.2, .4) 158
F [.2, .4) 175 M [.4, .6) 240 M [.4, .6) 249

M+ [.4, 1] 12 St+ [.6, 1) 152 St+ [.6, 1] 108

as: [1:Very sensitive]; [2:Sensitive]; [3:Little Sensitive];
[4:Maybe]; [5:Nonsensitive]. That is, a score st ∈
{1, ..., 5} is assigned to each tweet by a Turker.
Note that we did not use the standard 5-level Lik-
ert: [2:very-sensitive][1:Sensitive][0:neutral/undecided]
[-1:nonsensitive][-2:very-nonsensitive], because it is hard
to judge between [-1] and [-2] in the Likert scale, i.e., to
tell if a tweet is “more non-sensitive” than another.

Each Turker was paid $0.45 per questionnaire. For
attention check, we embedded two non-random ques-
tions in each questionnaire, which were selected from
two very small sets of clearly non-sensitive or very sen-
sitive tweets, e.g. Q16 (non-sensitive): Btw if you’re my
friend, I love you and Q17 (sensitive): Wild crazy strip
cloths off at club the. Forgot this morning where I parked
/: drank way to f–king much!!! #gayboyproblem. We
discarded questionnaires answering s16 6 s17 and re-
posted the tasks to MTurk. Tasks passing the attention
check were completed in 140 to 647 seconds, with a me-
dian of 249 seconds. Each Turker was limited to answer
only one questionnaire and each questionnaire was an-
swered by three Turkers. Eventually, we collected 552
qualified questionnaires from 1,656 Turkers. After elim-
inating the attention-check tweets, our final dataset con-
tains 9,936 distinct tweets and 29,808 scores.

3.3 IRA, Observations and Score
Adjustment

To examine the consistency across three annotators,
we assess the Inter-rater Agreement (IRA) using Fleiss
Kappa, Pearson and Spearman (see Appendix C for
details of the algorithms). The results are shown in
Table 1. Note that k in Fleiss’ Kappa and r in Per-
son/Spearman are not equivalent, so that we cannot di-
rectly compare the absolute values. In the table, we use
the category definitions that are widely accepted in the
community. From the results, we observe higher IRAs
based on Pearson/Spearman than Fleiss’ Kappa. This
is because: (i) Fleiss’ Kappa treats each score as an in-

http://bit.ly/privscore
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dependent label but ignores the similarity between dif-
ferent answers, i.e., it treats scores 1 and 2 in the same
way as 1 and 5; and (ii) Pearson and Spearman cap-
ture the trend between series. That is, when one Turker
consistently provides “more sensitive” annotations than
another Turker, the correlation of the trend is still high.

Observations. Through further examination of the an-
notated tweets, we have the following observations:
I. A small number of users were extreme in their privacy
perceptions: some were extremely open, who rated most
of the tweets as [5: nonsensitive], while some were ex-
tremely conservative. We eliminated most of such users,
who rated s16 = s17, with the quality-control questions
in the questionnaire. The remainder Turkers appeared
to be more consistent with the majority of users.
II. Turkers tended to be more consistent in rating
clearly non-sensitive and extremely private/sensitive
tweets, while demonstrating a relatively low consistency
in rating non-extreme tweets. The use of labels 2 “Sen-
sitive” and 3 “A Little Sensitive” were significantly less
frequent that the use of other categories.
III. Consistency varied significantly across topics. For
example, Turkers were more consistent in rating highly
private topics, e.g., obscenity, drug and racism, but less
consistent with topics on work, politics and travel.

Such observations implicate the following: (1) Only
using the binary notion of private/non-private to iden-
tify private tweets is insufficient, especially with the
large number of non-extreme tweets. (2) Our collected
dataset needs to be re-organized to (partially) eliminate
the inconsistency caused by the attitude variances. (3)
A personalized privacy scoring mechanism needs to take
users’ privacy attitudes on each topic into consideration.
Score Adjustment Based on the above observations,
we decide to merge all “sensitive” categories (i.e., scores
1, 2 and 3) and assign with a new score “1”. Corre-
spondingly, we re-assign scores 2 and 3 to the other two
categories. So, we have three labels in the final dataset:

1 [Sensitive], 2 [Maybe], 3 [Nonsensitive]
The feasibility and validity of re-scaling Likert-type

data was proved in [15], and similar re-scaling or scale
merging has been adopted in other projects such as [67].

Next, we examine the agreement of the raters for
each tweet using the adjusted scores. There are 3,008
tweets receiving consistent (identical) scores from all
three Turkers, among which 1,435 have three “1 [Sensi-
tive]” scores, 61 have three “2 [Maybe]”, and 1,512 have
three “3 [nonsensitive]”. This is consistent with Observa-
tion II presented above. Moreover, among 5,709 tweets
receiving two different scores from three raters, approx-

imately half of them are annotated as [1, 1, 3] or [1,
3, 3], indicating conflicting opinions among raters. Fur-
ther examination of these tweets shows that many of
them are non-extreme tweets on less sensitive topics.
This is consistent with our Observation III. The anno-
tated data and our observations will serve as the basis of
the context-free scoring model, which intends to capture
the consensus of privacy opinions of the regular users. To
further examine the level of agreements among annota-
tors, we added another MTurk task, in which each tweet
was labeled by 10 Turkers. Meanwhile, to gain a deeper
understanding of annotators’ rationale, we posted one
more task that asked Turkers to justify their labels. Re-
sults from both tasks are presented in Appendix E.

4 Context-free Privacy Score

4.1 Preliminaries

Vector Representation of Words. Conventional text
classification adopts the vector space model [25] to rep-
resent each document as a vector in a feature space.
The word frequency vectors are further weighted by
document frequencies, e.g., TF-IDF or BM25 [63]. How-
ever, the bag-of-words approaches neglect word ordering
and semantic meanings. The sparse vector space also in-
curs the curse of dimensionality. To tackle this problem,
word-embedding approaches attempt to capture the se-
mantic similarities between words by modeling the con-
texts, e.g. co-occurrences. The Word2Vec model [51], for
example, scans the corpus with a fixed-sized window and
learns their vector representations. GloVe [57] was pro-
posed to further leverage the global word co-occurrence
statistics. Please refer to Appendix A for more details.

In this work, we used Word2Vec with the CBoW
loss function to train a word embedding model over our
dataset of 30 million tweets, and compared it with the
pre-trained datasets (e.g., Google’s Word2Vec dataset
using 300-dimensional embeddings [24] and GloVe’s
dataset using 100-dimensional embeddings [57]). Con-
sidering our dataset is much smaller than two pre-
trained datasets, and it contains extremely informal
writing, such as “Gooooood!”, we adopted Glove’s 100-
dimensional word-representation instead of Google’s
300-d Word2Vec word vectors to avoid overfitting.
Document Classification. The extracted feature vec-
tor representations are input into learning algorithms
for classification. It is widely recognized that deep neu-
ral networks generate impressive performance in certain
learning tasks. In particular, the Recurrent Neural Net-
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work (RNN) has revolutionized the natural language
processing tasks [23]. It takes a complex architecture
to deal with variable sized input, in which the connec-
tions of units form a circle by itself to enable the sharing
of parameters across different parts of the model [39].
However, the repeated training of the same parame-
ters also causes the exploring/vanishing problems dur-
ing backpropagation. The Long Short Term Memory
(LSTM) RNN architecture [29] was proposed to add sev-
eral critical components, such as the self-looping state
and the input, forget and output gates, to solve this
problem. Therefore, we selected LSTM to train the base-
line classifiers for our textual dataset, and implemented
our scheme with the Keras deep learning library [13].
For more technical details on RNN and LSTM models,
please refer to Appendix B.

4.2 The Context-Free PrivScore

The Conceptual Model of Context-Free Privacy
Score. From our observations (Section 3.3), although
different users have different opinions on the sensitive-
ness of a tweet, ordinary users are likely to achieve weak,
moderate, to strong consensus (Table 1), depending on
the content of the tweet. Since the context-free PrivS-
core is to reflect a “commonly agreed” perception among
average users, it is reasonable to define:

Scf =
∑

ri × P (sensitiveness(T ) = i) (1)

where P (sensitiveness(T ) = i) is the percentage of
users who assess the sensitiveness level of a tweet T as i,
and ri is the sensitiveness score of level i. If there are m
sensitiveness levels and ri ∈ [1,m], Scf is also between
1 and m since

∑
P (sensitiveness(T ) = i) = 1.

The ideal Scf should be calculated as the average
opinion from all users, which is practically impossible.
We resemble this assessment process at a smaller scale
by recruiting 1,656 qualified Turkers to provide 29,808
individual opinions over 9,936 distinct tweets. Based on
the opinions, we train a classifier to estimate the sen-
sitiveness of an input tweet. Note that this probability
only captures the percentage of annotators who would
assess T with a sensitiveness level of i. Therefore, the
PrivScore approximates the ideal privacy score defined
in Equation (1), if the annotators closely resemble av-
erage users’ attitudes.
Training Dataset Construction. With the above
considerations, we expect to select the most reliable
data to train the classifier. So, we exclude data with low
IRA due to conflicting opinions among the raters. Mean-

Fig. 2. Comparison of classification performance: SVM, Naive
Bayesian (NB), Linear Regression (LR) and LSTM.

while, this set is biased since only “potentially sensitive”
tweets are selected for annotation. To offset the bias,
we add back “non-sensitive” tweets (i.e., filtered out in
keyword spotting in Sec. 3.1, not labeled). The resulting
training set contains 2,870 tweets, with 1,435 sensitive
tweets receiving three “1 [Sensitive]” scores and 1,435
non-sensitive tweets (including 718 tweets sampled from
tweets receiving three “3 [non-sensitive]” scores and 717
tweets sampled from the non-sensitive tweets filtered
out in keyword spotting).
RNN-based Classifier. We build our classifier using
the RNN architecture, which consists of an embedding
layer, an LSTM layer and a dense layer with softmax ac-
tivation. In the embedding layer, we tokenize each tweet
into a matrix, in which rows are vector representations
of the tokens in the tweet. With Twitter’s new 280-
character limit, there are at most 140 tokens in a tweet
(140 single-letter words and 140 spaces/punctuation).
Hence, we set LSTM sequence length to 140. To repre-
sent the token, word embeddings are used to model the
semantic meanings of words. We use GloVe’s 100 dimen-
sional embeddings to obtain a better performance. Fi-
nally, each tweet is converted into a 140×100-dimension
tensor and input into the LSTM layer.

Our LSTM layer takes text features as input and
generates a 16-dimensional vector. In training, we use
“dropout” regularization that randomly drops neuron
units at a rate of 20%, to overcome overfitting. The
output of LSTM is connected to a dense layer to reduce
dimensionality. The dense layer with an output of length
2 returns two probabilities p1 and p2 (p1 + p2 = 1), de-
noting the probabilities that the input belongs to the
“sensitive” and “nonsensitive” class, respectively. We
use cross-entropy to compute training loss and the Adam
optimizer [37] to accelerate the learning process. We also
employ the Stanford sentiment tool [67] to extract sen-
timent features and combine it with text features from
LSTM layer as the new input to the dense layer.
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We test our classifier using 5-fold cross validation.
It achieves an average precision of 0.85 and an av-
erage recall of 0.85. Figure 2 shows the performance
comparison with other features and other text classi-
fiers. Clearly, our GloVe+LSTM scheme outperforms all
other mechanisms, so that it provides a solid foundation
for the proposed privacy scoring approach. Note that
GloVe+Naive Bayesian achieves a relatively high recall
on nonsensitive samples but a very low recall on sensi-
tive samples, by classifying a large amount of samples as
nonsensitive. In terms of efficiency, all the heavy compu-
tations, such as training the GloVe model, are performed
offline. In testing, all approaches are sufficiently efficient
to support online applications. For instance, the average
end-to-end processing time for each tweet in the fastest
(LR+TFIDF) and slowest (GloVe+LSTM) approaches
are 65.42ms and 66.39ms, respectively.

Finally, we also try Brown Clustering (BC) [8] to
pre-process tweets in three different approaches: (i) con-
verting all terms in the same cluster into one token to
be used in TFIDF; (ii) converting each matching term
with the most frequent term in the cluster, and feed-
ing the output to GloVe and LSTM; and (iii) only pre-
processing terms that do not exist in the GloVe dataset.
In all cases, the performance difference is insignificant,
and none of them outperforms the GloVe+LSTM ap-
proach that we use. We interpret the results as follows:
(1) while BC converts slang and informal writings into
regular terms, it also maps words with different mean-
ings into the same token in some cases. (2) Both BC and
GloVe are based on the distributional hypothesis so that
they tend to pose similar effects in content modeling.
However, the GloVe dataset that we use is trained with
a significantly large dataset, which leads to advantages
in performance.
The Context-free PrivScore The perception of pri-
vacy is a complex psychological process, but not a sim-
ple binary decision of sensitive vs. nonsensitive. So, we
mimic the aggregate crowd opinion in (1) to generate the
context-free privacy score. In particular, our RNN-based
classifier returns probabilities, which can be interpreted
as the votes from RNN for determining to which class
the input belongs. Therefore, the context-free PrivScore
for a tweet T is defined as:

Scf = 1× P (sen|T ) + 3× P (non-sen|T ) = p1 + 3p2 (2)

where p1, p2 are the probabilities returned by our clas-
sifier. Scf ∈ [1, 3] is the PrivScore for each tweet, where
1 means most sensitive while 3 denotes least sensitive.

Fig. 3. Distribution of privacy scores of tweets in 10 label sets

Analysis. We use the most reliable tweets to train the
classifier. Now, we compute the context-free PrivScore
for all 9,936 labeled tweets and show the distribution
of Scf for each label set in Figure 3. For example, the
top-left sub-figure contains tweets receiving scores [1, 1,
1] from three Turkers, i.e., they are considered sensitive
by all three Turkers. As we can see, the majority of the
tweets in this set gets PrivScores close to 1. Similarly,
the bottom-right sub-figure is for tweets annotated as [3,
3, 3], whose PrivScores lean toward 3. Moreover, PrivS-
cores in sets [1,1,2] and [2,3,3] also demonstrate clear
tendencies towards 1 and 3, respectively. It is worth
pointing out that the PrivScore distribution of set [1,2,3]
shows the maximal randomness (i.e., almost uniformly
distributed in [1, 3]). This is consistent with our Ob-
servation III in Section 3.3. In this case, Turkers do not
agree with each other in the sensitiveness of the content,
so that there is no clear clue to determine if some tweets
are more sensitive than others. Similarly, the remaining
sets with lower inter-rater agreements also demonstrate
some randomness (e.g., almost equal number of scores
between [1,2] and [2,3]).

4.3 Evaluation

We further evaluate the context-free privacy scoring
model with the testing dataset collected in 2018 (as
described in Section 3.1), which contains 8,079 tweets.
These are random tweets with only a small portion of
sensitive content. The distribution of the context-free
PrivScores in this dataset is shown in Figure 5 (a).

We sample a smaller dataset to be annotated. To
include a reasonable number of private tweets in test-
ing, we select 10% of the tweets with scf ∈ [1, 2.5]
and 5% of the tweets with scf ∈ (2.5, 3]. 566 sampled
tweets are shuffled and randomly assigned to 8 human
evaluators (graduate students who are not working in
privacy-related projects) to be labeled as “1 Sensitive”,
“2 Maybe” or “3 Nonsensitive”. Each questionnaire is
labeled by two annotators, with an average completion
time of 20 minutes.
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Fig. 4. (a) Distribution of Scf of tweets in the testing set and
Scf of SecretTweets: X: Scf ranges, Y: percentage of tweets in
range; (b) Distribution of potentially sensitive tweets Scf < 2.3
of users 5447*** and 2214*** in different topics: Health & med-
ical, Work, Drug, Obscenity, Religion, Politics, Racism, Family,
Relationships, Sexual Orientation, Travel, School, Entertainment.

Table 2. Pearson correlation between human labeled scores (SR1
and SR2) and the the context-free privacy scores (Scf ).

SR1 &
SR2

SR1 &
Scf

SR2 &
Scf

SR &
Scf

All tweets 0.587 0.458 0.430 0.499
Selected 0.697 0.557 0.564 0.609

Pearson Correlation. We first compute the Pearson
Correlations for all annotated tweets and show the re-
sults in the first row of Table 2: (1) correlation between
two human annotators (SR1 & SR2); (2) correlation be-
tween annotator 1 and the context-free privacy scores
(SR1 & Scf ); (3) correlation between annotator 2 and
Scf (SR2 & Scf ); and (4) correlation between the aver-
age annotated score and Scf (SR & Scf ). According to
the standard interpretation of Pearson correlation, all
the k values fall into the moderate correlation category.

Next, we select tweets that are marked as “highly
private” and “clearly nonsensitive” by the context-free
PrivScore model, i.e. tweets with scf ∈ [1, 1.5] and
scf ∈ [2.5, 3]. The Pearson Correlations for this sub-
set of tweets are shown in row 2 of Table 2. In this case,
all the k values fall into the strong correlation category.

From the results, we can conclude that: (1) Human
evaluators achieve the moderate inter-rater agreement,
which is consistent with Table 1 and our findings in
Section 3.3. (2) The context-free PrivScore model is
moderately consistent with human evaluators – it shows
slightly lower correlations but is still in the same cate-
gory. (3) The PrivScore model shows a stronger correla-
tion with the average of the human evaluators than with
any individual evaluator. This is consistent with our de-
sign goal of the context-free PrivScore – to resemble the
consensus perception of the average users. (4) Both hu-
man evaluators and the PrivScore model demonstrate a
strong correlation in cases of extremely private tweets

and clearly nonsensitive tweets. This is consistent with
our Observation II in Section 3.3.
Score Distribution. For a fine-grained analysis of the
results of our context-free privacy scoring model, we ex-
amine the distribution of human annotations vs. pri-
vacy scores generated by the PrivScore model. First, we
separate the tweets into 20 bins based on their context-
free privacy scores, so that bin i contains tweets whose
Scf ∈ [1+0.1i, 1+0.1(i+1)) for 0 ≤ i < 20. Figure 5 (b)
demonstrates the density of “1”s annotated by the hu-
man evaluators. That is, the Y-axis is the percentage of
“1”s out of all the scores received in this bin. This figure
clearly shows that the density of “sensitive” annotations
decreases, when PrivScore increases. From a statistical
perspective, tweets with lower Scf scores receive fewer
“sensitive” annotations from human evaluators.

Similarly, Figure 5 (c) and (d) show the density
of “2”s and “3”s in each bin, respectively. There is no
strong pattern in Figure 5 (c). This phenomenon is also
consistent with our observation of MTurk annotations:
“Maybe” appears to be a difficult area for both human
evaluators and our autonomous model. Looking into the
details of tweets annotated with “2”, we find that hu-
man evaluators have different attitudes on the “less sen-
sitive” topics, such as politics and religion. Lastly, we
observe the similar consistency in tweets that are anno-
tated oppositely by annotators. For instance, the tweet
“Hey girls with #thighgaps, how does it feel to walk and
not sound like you have on windbreaker pants?”, which
was labeled as 3 (non-sensitive) by a male annotator and
1 (sensitive) by a female annotator, receives a context-
free PrivScore of 2.1.

4.4 Applicability in other Domains

Besides alerting users for sensitive content disclosure on
Twitter, PrivScore could be utilized for other purposes,
such as facilitating self-censorship of Chatbots. More-
over, PrivScore may work for any type of text, as long
as there exist labeled training samples that are homo-
geneous to testing samples. Here, we also demonstrate
that our trained model could be adopted in applications
with short text snippets that are similar to Tweets.
Chat Bots. We have crawled 28,883 tweets from 9 ac-
tive twitter Chatbots, and collected the tweets from Mi-
crosoft Tay, which is still live on the Internet. We first
calculate the context-free PrivScore for all the tweets.
According to PrivScore, an overwhelming majority of
them is benign: the mean Scf of all bot-generated tweets
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Fig. 5. Evaluation of context-free privacy scores using new testing data: X-axis: context-free PrivScore Scf . Y-axis: (a) distribution of
Scf of all tweets; (b) density of “1 [sensitive]” annotations in each bin; (c) density of “2 [maybe]”; (d) density of “3 [nonsensitive]”.

Fig. 6. Context-aware and personalized PrivScores: X-axis: (a) PrivScores Scf & Sc, (b, c, d): Personalized PrivScore. Y-axis: (a) dis-
tribution of Scf & Sc; (b) density of “1 [sensitive]” labels in each bin; (c) density of “2 [maybe]”; (d) density of “3 [nonsensitive]”.

is 2.719. However, we also identify sensitive content from
some tweets, such as the three examples shown in Table
3. In particular, there is a bot named @meanbot, which
intentionally generates offensive content. With PrivS-
cores, we are able to identify 80 tweets with Scf < 1.5,
and their average Scf is 1.296. They should be deemed
as sensitive or insulting to other users.
Secret Tweets. SecretTweet was a website that facili-
tates users to tweet anonymously. The website is offline
now. However, previously published tweets could be ac-
cessed from Internet Archive2. We have collected 1,069
secret tweets posted between 8/28/09 and 3/19/11. Two
examples of secret tweets are shown in Table 3.

Manual inspection reveals that most of the tweets
fall into three categories: (1) tweets with sensitive con-
tent (e.g., cursing or obscenity) that may seriously dam-
age one’s social image; (2) tweets with personal thoughts
or opinions that may be sensitive in its context; and (3)
random tweets. A side-by-side comparison of PrivScore
distribution of secret tweets and regular tweets (from
our testing set) is provided in Figure 4 (a). The Scf of se-
cret tweets clearly leans toward the sensitive end. In par-
ticular, 34% of the secret tweets have an Scf ∈ [1, 1.5].
For comparison, only 8% of regular tweets receive an
Scf ∈ [1, 1.5]. This is consistent with the motivation
behind the SecretTweet website and our previous ob-
servations.

2 E.g., http://web.archive.org/web/20091217183606/http:
//secrettweet.com/book

YouTube Comments. To evaluate PrivScore on short
text snippets other than tweets, we also download the
Kaggle YouTube Comments dataset and randomly sam-
ple 1000 comments. The median length of the comments
is 233.1 characters (or 40.3 words), which is longer than
tweets (88.2 characters or 16.5 words). We compute the
PrivScores for the sampled comments, and find that
8.2% of them are sensitive (Scf < 1.5). The ratio of
sensitive YouTube comments is similar to the ratio of
sensitive tweets in our Twitter dataset. An example of
the sensitive comments is shown in Table 3.

In summary, with experiments on different datasets,
we demonstrate the soundness of the context-free PrivS-
core model. We also observed personal differences in
privacy attitudes and topic-specific attitudes, which are
not yet captured in the context-free model.

5 Context-Aware Privacy Score
The level of sensitiveness of a topic changes with the
context, therefore, we use the societal context to ad-
just the context-free privacy score. A potentially private
tweet becomes less sensitive when it is on a “hot topic”,
e.g., political tweets may be private in general, however,
during the election season when Twitter is dominated by
political tweets, they appear less sensitive.

In this work, we model the societal context with
trending topics. Through Twitter API, we can retrieve:
(1) current trending topics for the world or a specific
location; (2) trends customized for the user; and (3)

http://web.archive.org/web/20091217183606/http://secrettweet.com/book
http://web.archive.org/web/20091217183606/http://secrettweet.com/book
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Table 3. Experiments with SecretTweets and AI Chat Bots on Twitter.

TweetID Source Scf Examples

1 SecretTweet 1.1414 i’m becoming an alcoholic. I rely on booze to numb my pain.
2 SecretTweet 2.7588 i always think the people on youtube can see me when i watch their videos
3 Tay 1.0477 I f—— hate feminists and they should all die and burn in hell
4 meanbot 1.1995 @meanbot is gonna get medieval on your ass
5 BotlibreBot 1.4611 You guess that’s global warming for me. No one gives a crap about the government.
6 YouTube 1.3219 Fat disgusting pig!.

volume and duration of the trend. Volume of a trend
represents the strength of the context. In our testing
dataset collected in 2018, there are 1,130 trends, among
which the maximum volume is 4,362,206 and the min-
imum volume is 10,000. The 25%, 50% and 75% per-
centiles are 16,048, 27,233, and 62,743, respectively.

Therefore, we define the logarithmically normalized
popularity of a trending topic as:

p = log v − log vmin
log v′max − log vmin

(3)

where v′max is the 95% percentile of v (volume of the
trend). We use v′max instead of vmax, to offset the
impacts of the extremely high volume outliers. Our
context-aware PrivScore for tweet T is defined as:

Sc = Scf + ωc · rc ·∆Sc (4)

where Scf is the context-free PrivScore, ωc is the weight
for the societal impact, which is adjusted by the user.
If a user does not want her privacy assessment to be
influenced by the context, she sets ωc to zero. rc is the
relevance between T and the topic, which can be cal-
culated as content similarity or #hashtag matching, as
Twitter trends are often represented by hashtags. We
use the Jaccard similarity of hashtags in the trend and
in the tweet to compute rc. A threshold rt is imposed
(rc ← 0, when rc < rt) so that low relevance (mostly
noise) would not trigger context-based adjustment. A
tweet may be relevant to multiple trending topics. In
this case, we choose the topic with the largest rc. ∆Sc
is the actual societal impact. Note that a smaller S in-
dicates “more private”, therefore, ∆Sc is expected to
increase when the degree of sensitiveness decreases.

Intuitively, the impact of the societal context should
include the following factors. (F1) The normalized
strength of the context p, as defined in (3): ∆Sc is ex-
pected to increase with p, i.e., when a topic is more
popular in the trend, more voices are heard in the com-
munity so that opinions on the topic become less pri-
vate. (F2) The normalized duration of the trending topic
N (t): ∆Sc is expected to increase with N (t), i.e., when

a trend has lasted longer, it becomes less sensitive. The
normalization function is defined as:

N(t) =

{
t/tmax if t < tmax

1 if t > tmax
(5)

That is, when the topic has been popular for longer than
a pre-defined window tmax, its normalized duration is
1; otherwise, the duration is normalized by tmax. (F3)
The context-free PrivScore of the tweet: when the tweet
is extremely private (i.e. Scf → 1), the impact of the so-
cietal context should be minimum. This factor resembles
the fact that extremely sensitive tweets should never be
posted regardless of the societal context. Moreover, we
expect the impact of Scf in ∆Sc to soon grow into nor-
mal and stay relatively flat. This means for less sensitive
tweets, ∆Sc should be primarily determined by p and
N (t). Eventually, we define ∆Sc and Sc as:

∆Sc =p · N (t) · log3 Scf (6)
Sc =Scf + ωc · r · (p · N (t) · log3 Scf ) (7)

Since Scf ∈ [1, 3], we use log3 so that log3 Scf ∈ [0, 1].
We evaluate the context-aware PrivScore with the new
(2018) dataset. Sc is calculated for each tweet with the
following parameters: weight of the societal context:
ωc = 0.5; maximum window size: tmax = 2 days, as we
have observed that the majority of the trends becomes
significantly weaker after two days.

Out of 8,079 tweets in this dataset, 887 are rele-
vant to at least one trending topic, so that they trig-
ger context-aware adjustment of Scf . Their Scf and Sc
distributions are shown in Fig. 6 (a). Many of them
are moderately sensitive tweets about politics, which
is a potentially sensitive topic that often makes into
the trend, e.g. #marchforourlives and #neveragain are
popular trends in our data. Meanwhile, the dataset was
crawled during the 2018 NCAA Basketball Tournament.
The most popular trend in the data is #FinalFour. We
have observed many tweets about basketball games use
improper words to demonstrate strong emotions.

As shown in Fig. 6 (a), the distribution of Sc is
more skewed rightwards (i.e., towards “less sensitive”)



#DontTweetThis: Scoring Private Information in Social Networks 82

Table 4. Examples of context-aware PrivScores (Sc) in comparison with the original context-free PrivScores (Scf ).

TweetID Trends Scf Sc Examples

1 Blue Devils 1.0566 1.1607 I don’t wanna come back to Omaha and I don’t wanna hear a f—–
word about the Blue Devils. Still p—–...

2 Stephon Clark 1.4230 2.1873 During the Stephon Clark protests, a woman stood in front of a police
car. The police car sped up and mowed her down.

than Scf . This is because Sc is always greater than Scf
for any tweet, if it triggers context-based adjustment,
since matching with a popular societal context reduces
the perceived sensitiveness. For the set of 887 tweets
that triggered context-aware adjustment, the difference
between the average Sc and Scf is: S̄c − S̄cf = 0.187,
while the maximum difference for a single tweet is:
max(Sc − Scf ) = 0.322. Table 4 shows two exam-
ples of context-aware PrivScores, in comparison with
the context-free scores. Tweet 1 is an example that
very dirty words are always very sensitive. Although
users often show strong emotions during certain events,
e.g., NCAA tournament, using improper words seriously
damages personal image. Therefore, when Scf is very
low, ∆Sc is still low even when p and N (t) are both
close to 1. Meanwhile, Tweet 2 is an example that a
less sensitive tweet on politics is adjusted to “Maybe”
because of its societal context.

6 The Personalized Privacy Score
Privacy is a subjective perception, where each user has
her own level of tolerance in private information dis-
closure. More importantly, the privacy attitude varies
across topics. To capture personal privacy attitudes, we
further develop the personalized PrivScore model.

6.1 Privacy Attitude and the Personalized
Privacy Scoring Algorithm

We first autonomously assess each user’s privacy atti-
tude. The initial attitudes are discovered from the users’
tweet history, with the assumptions that: (1) posting a
significant amount of semi-private messages on a certain
topic indicates that the user considers the topic less pri-
vate; and (2) not deleting a tweet indicates that the
user is comfortable with (i.e., not regretting) the tweet.
The assumptions may not hold in a single tweet. For in-
stance, a user may accidentally post a regrettable tweet
under strong emotions (e.g., tweets on NCAA tourna-

ment) but forget to delete it later, so the uncomfortable
tweet remains in her data. However, both assumptions
are generally valid from an aggregate perspective.
Personal Privacy Attitude. With the context-free
PrivScore Scf , we can quantitatively assess the person-
alized privacy attitude as the average Scf of all her
previous posts. The personal average is then normal-
ized with the personal PrivScores among her friends,
to demonstrate her privacy attitude in comparison with
her societal context. Therefore, the average privacy at-
titude in this context is defined as:

µUc
= 1
|Uc|

·
∑
uj∈Uc

Scf,j (8)

where Uc is the set denoting the societal context of
user ui, |Uc| is the size of this set, and Scf,j is the
mean context-free PrivScore of uj . The context could
also cover a larger scope, such as the school, city, or the
entire social network. The corresponding standard devi-
ation of the personal privacy attitude is σUc

. Therefore,
the normalized privacy attitude for user ui is defined as:

PA,i =
Scf,i − µUc

σUc

(9)

A negative personal privacy attitude (PA,i < 0) in-
dicates that ui has revealed more sensitive information
to the social network than her peers. On the contrary, a
positive attitude (PA,i > 0) indicates that ui has better
protected her private information than her peers. For
example, the µUc

for all the users in our 2018 testing
dataset is 2.3025. If we consider it as the societal con-
text, the personal privacy attitudes of user 5447*****
and user 2214***** are 0.7990 and -0.6721, respectively.
The distributions of their potentially sensitive tweets
(Scf > 2.3) are shown in Figure 4. As we can see, user
5447***** sometimes posts moderately sensitive tweets
on religion and family activities, while 2214***** posts
a lot of sensitive tweets with obscenity content.
Topic-specific Privacy Attitude. PA,i only indi-
cates the overall privacy attitude on “all” sensitive top-
ics. However, as we have pointed out in Observation III
(Section 3.3), privacy attitude highly depends on topics.
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Fig. 7. Topic-specific privacy attitude of Annotator A1 and A2 on
topics C1: health&medical, C4: Obscene, C8: Family.

Hence, we extend PA,i into a topic-specific personalized
privacy attitude: PTk,i, where Tk denotes the topic k.

We have developed a private tweet classifier similar
to [40, 69], which categorizes tweets into 13 predefined
topics (Section 3.1). Figure 7 demonstrates the topic-
specific privacy attitude of two human annotators for
our 2018 testing dataset. We classify potentially sen-
sitive tweets (Scf < 2.3) into 13 topics, and show the
difference between the context-free PrivScore and the
human-annotated score (Scf − SAi

) for each tweet. A
positive value indicates that the annotator rates the
tweet as “more sensitive” than Scf . We can see that
Annotator A1 consistently rates “health & medical”
tweets as more sensitive. Meanwhile, her attitude with
obscene/cursing content is in general close to Scf , while
she treats “family” tweets as less sensitive. On the con-
trary, Annotator A2 is less concerned about obscene
and cursing content. This example demonstrates indi-
vidual differences in topic-specific privacy attitudes and
the need for topic-specific personalization.

To model the topic-specific privacy attitude for a
user, we classify all potentially sensitive tweets (with
Scf < 2.3) in her tweet history. For user ui, the number
of tweets classified into topic Tk (k ∈ N≤13) is denoted
as ck,i. The average number of sensitive posts on Tk for
all the users in her societal context is denoted as:

µk,Uc
= 1
|Uc|

·
∑
uj∈Uc

ck,j (10)

and the standard deviation is σk,Uc
. The normalized

topic-specific privacy attitude for ui is defined as:

PTk,i =
−(ck,i − µk,Uc

)
σk,Uc

(11)

A negative PTk,i, i.e., ck,i > µk,Uc
, indicates that ui

cares less about her privacy on topic Tk (posting more
sensitive tweets on this topic than average users); while
a positive PTk,i indicates that ui has better protected
her private information on the topic.

Intuitively, when a user cares less about her privacy
on topic Tk (i.e., PTk,i < 0), we should increase Scf for
her to indicate “less private” on this topic. Meanwhile,

the strength of the adjustment should increase when a
tweet is more relevant to the topic, and it should be
configurable by the user. Hence, the personalized topic-
specific PrivScore for user ui and tweet T is defined as:

Sp,i = Scf − ωp · rp · PTk,i (12)

while the personalized context-aware PrivScore is:

Spc,i = Sc − ωp · rp · PTk,i (13)

where Scf is the context-free PrivScore defined in (2),
and Sc is the context-aware PrivScore defined in (7).
ωp is the weight configured by the user (we used 0.5 in
the experiments). rp is the relevance between T and the
topic Tk, which is the confidence of the classification.

6.2 Evaluation

Evaluation with Annotated Data. Using our 2018
dataset, we further evaluate the personalized privacy
scoring algorithm. As described in Section 4.3, 566
tweets were annotated by 8 human annotators (2 anno-
tations/tweet). We perform 5-fold cross-validation for
each annotator. In each round, the objective is to learn
an annotator’s topic-specific privacy attitude from 80%
of the annotated tweets (training samples), and to gen-
erate personalized PrivScores for the remaining 20% of
the tweets. In particular, we assume that all tweets la-
beled as “3 Nonsensitive” would be posted by the anno-
tator, and thus could be utilized to learn PTk,i. Mean-
while, tweets labeled as “2” or “1” would not be posted
by the annotator, so that they would not appear in the
annotator’s tweet history – they cannot be used as neg-
ative training samples. Hence, we mimic the annotator’s
“tweet history” as all training samples annotated as “3”,
and ignore other training samples. We follow Eq. (11)
to compute PTk,i using “all annotators” as the personal
context. We then calculate Sp,i as defined in Eq. (12).
We do not consider the societal context since the anno-
tators were not exposed to the context during annota-
tion (e.g., did not see excessive tweets on NCAA tourna-
ment). We impose weak personalization (ωp = 0.3) since
we only have limited “tweet history” to learn from.

Using the same method in Section 4.3, we exam-
ine the distribution of the human annotations vs. the
newly generated personalized PrivScores. Figure 6 (b)
to (d) demonstrate the density of “1”s, “2”s and “3”s
annotated by the human evaluators for each Sp,i range.
This figure clearly shows that the density of “sensitive”
annotations is more skewed towards smaller Sp,i. For in-
stance, all the tweets with Sp,i ∈ [1, 1.1) are labeled as
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“sensitive” by human evaluators. In the same way, the
density of “nonsensitive” annotations is more skewed to-
wards larger Sp,i. That is, the personalized PrivScores
Sp,i are more consistent with human annotations.

We also quantitatively measure the differences be-
tween the PrivScores and human annotations. The
Mean Square Error (MSE) between Scf and annotated
scores is 0.55. With personalized topic-specific PrivS-
core, the MSE between Sp,i and annotated scores is
0.46. Note that the PrivScores are real numbers in rage
[1, 3], while the annotated scores only take integer values
{1, 2, 3}. This difference will unavoidably impact MSE.
Evaluation with Twitter Users. We compute the
personalized PrivScores for Twitter users. Examples
of Sp,i are shown in Table 5, while the correspond-
ing personal topic attitudes are shown in Fig. 4. Most
of user 5447*****’s tweets are clean and nonsensitive.
She sometimes tweets about religion, family, and travel
(moderately private). Her first tweet in the example has
an Scf of 1.4730. However, this tweet should be adjusted
to “more sensitive” due to her clean tweet history (these
words are very unusual to her). User 22149**** often
uses dirty words in tweets. Therefore, the sensitiveness
of his first tweet is reduced, as he does not care about
obscene/cursing words. However, it is still in “maybe”
range, which is consistent with public opinions – most
people feel uncomfortable with this content.

7 Security Analysis & Discussions

7.1 Security, Performance, and Usability

The PrivScore model will be employed in social net-
works for user alerting or self-censorship of AI chat-
bots. When an alerting mechanism is properly deployed
and the user follows the warnings, sensitive content will
not be disseminated to followers or malicious stalkers.
However, the protection performance will be primarily
impacted by two factors: the accuracy of the privacy
scores, and the design/usability of the alerting mecha-
nism. First, the privacy scoring approach may generate
two types of errors: false positives and false negatives.
False negative. When the PrivScore is (significantly)
higher than what the users would perceive, a sensitive
tweet will be labeled as nonsensitive, i.e., a false neg-
ative. In a user alerting system, false negatives cause
missed alerts, so that messages containing sensitive in-
formation may be posted. While it is impossible to
completely eliminate false negatives from any statisti-
cal learning approach, the problem may be mitigated:

(1) The performance of privacy scoring will increase
with more training data and advances in NLP (to be
elaborated later). (2) We also observed that sensitive
tweets often lead to sensitive responses (e.g., cursing
tweets get cursing replies), hence, hints of missed alerts
may be learned by monitoring responses. (3) An audit-
ing mechanism could be developed to periodically re-
evaluate past tweets with the updated scoring model,
to alert users to fix any possible damage [66].
False positives. When the PrivScore is (significantly)
lower than users’ perceptions, a nonsensitive tweet will
be labeled as sensitive, i.e., a false positive. When the
false alarms are sporadic and the alerting mechanism
is not intrusive, they may not cause burdens to the
users. However, frequent false alarms affect the usabil-
ity of the alerting mechanism, which may prevent users
from adopting it. In practice, false positives may be
mitigated: (1) A well-designed configuration interface
will allow user to specify her own topic-specific prefer-
ences so that alerts could be adjusted accordingly. (2)
Personalized privacy scoring model observes personal
privacy attitudes/behaviors, and tunes privacy scoring.
Online learning could be employed to continuously im-
prove scoring accuracy when more personal data be-
comes available. (3) Better alert and response interfaces
could be designed to minimize the disruption to users.
The Accuracy of Keyword Spotting. In Section
3.1, we employ a keyword spotting approach to identify
a candidate tweet set to be labeled by Turkers. While
similar approaches have been employed in the literature
to identify if a tweet belongs to a pre-defined topic. We
aim to increase recall in this process, i.e., to include
a majority of potentially private tweets. However, we
acknowledge that there exist both false positives and
false negatives in this process. A false positive is a tweet
that contains at least one keyword but is indeed not
sensitive. A significant portion of the candidate tweets
belongs to this category and they pose major challenges
to our classifier. We handle them through the labeling,
representation and classification processes. On the other
hand, a false negative is a tweet that does not include
any keyword but contains sensitive content. We do not
anticipate such false negatives to cause any noticeable
impact in scoring performance due to the following:
(1) False negatives are very rare. We have used a rel-
atively large set of keywords for each category: more
than 100 for each category (as a reference, the privacy
dictionary [76], which was used in Privacy Detective
[33], contains 355 terms in eight categories). To estimate
the false negative rate, we randomly selected 500 tweets
from the non-candidate set, i.e., tweets do not contain
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Table 5. Examples of topic-specific personalized privacy scores for users 5447***** (top) and 22149**** (bottom).

Topic PTk,i Scf Sp,i Examples

Obscene 1.0553 1.4730 1.1564 Caught her looking at my boobs. #nevermind #roommateproblems
Family -0.8043 2.6227 2.9243 All I want to do is spend quality time with my family. #changingpriorities

Obscene -1.4720 1.6116 1.85448 I’m gonna sip wine and talk s— on Villanova
School 0.3763 2.1680 2.0551 S/o to @XXX and @XXX for doing my homework while I serve them beer

any keyword, and posted them on MTurk, where each
tweet was annotated by two Turkers. We also added
approximately 50% of sensitive tweets in the question-
naires to keep Turkers’ attention. As a result, only one
tweet was labeled as “1 [sensitive]” by both Turkers:
“Just got tazed trying to get into the CBC basketball
game....Half hour before the game starts.”, while one
tweet received “1, 2”, 11 tweets received “1, 3”, and all
other tweets received “2, 3” or higher. For these “maybe
sensitive” tweets, most of them only imply a very subtle
sensitiveness that was hidden behind the words.
(2) Missing terms are captured by word embedding. Un-
like the conventional bag-of-words model that treats any
two different words as orthogonal in the vector space,
word embedding models capture words’ meanings from
their context, and discover the semantic and syntactic
similarities between terms. Therefore, as long as a term
is included in the GloVe dataset (pre-trained with 2B
tweets and 27B tokens) and appeared in similar seman-
tic contexts with known sensitive words, it will be repre-
sented close to sensitive words in the model. Meanwhile,
LSTM also attempts to capture the semantic mean-
ings behind word sequences, so that the privacy scoring
mechanism does not solely rely on the occurrences of
sensitive terms, and could overcome a small number of
missed sensitive terms. For instance, tweet “wipe that
ugly smile off your face” does not contain any keyword
in our list, however, its PrivScore of 1.62 (moderately
sensitive) indicates that our mechanism captured the
rude and judgmental tone from the textual content.
Deleted Tweets. Research has shown that users may
delete regretted posts to repair the potential damage
[66, 82]. However, study also showed that no substan-
tial differences were observed in the “distributions of
stereotypically regrettable topics” among deleted and
undeleted tweets [3]. [5] found that “possible sensitive
text” is a weak feature in predicting tweet deletion.
Manual examination in [91] revealed that a regrettable
reason was identified for only 18% of the deleted tweets,
while the others cannot be explained by the tweet con-
tent. Therefore, we did not use deleted tweets in our pri-

vacy scoring models or experiments. However, we sug-
gest that deleted tweets could be employed in person-
alized privacy scoring, as a factor of the topic-specific
privacy attitude. In particular, Eq. (11) will be modified
to infer privacy attitude from two factors: tweet history
and deleted tweets, where explicitly deleted tweets on a
topic may imply that the user is more conservative on
this topic. Further investigation of deleted tweets and
employing them in privacy scoring is in our future plans.
User Alerting and Usability. Research on private
tweet modeling attempts to discover the psychologi-
cal factors and cognitive models behind private tweets
(see Section 8 for details). They suggested that tools
could be developed to “detect potentially regrettable
messages” [66] and “a content-based reminder could be
triggered” [82] to alert the users. To achieve this goal,
we first need a mechanism that automatically assesses
message content to identify sensitive tweets to trigger
the alerts. Therefore, PrivScore serves as a fundamen-
tal building block for a comprehensive privacy protec-
tion solution. The solution could be implemented as a
browser add-on or a mobile app. It first takes users’
baseline preferences through an interactive configura-
tion interface. When the user starts to type a message,
its PrivScore is evaluated on-the-fly. If the user attempts
to post sensitive content (determined by pre-set topic-
specific thresholds), a warning message will be displayed
to trigger self-censorship. A proof-of-concept evaluation
for user alerting is presented in Appendix D.

The usability and user experience aspects of an
alerting system is a challenging issue, which requires
intensive further investigation. As references, browsers’
alerts (phishing attacks, HTTPS certificate errors) and
users’ responses have been intensively investigated in
the literature [2, 19, 62, 68, 70, 83, 84]. For instance, a
recent study [62] examines users’ responses to security
alerts in Chrome and Firefox, analyzes the decision fac-
tors, and makes suggestions to designers. In our applica-
tion, intuitively, a good alerting mechanism is expected
to be less disturbing and provide the user with sufficient
but concise information of the alert rationale. Mean-
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while, different levels of warning may be enforced for
different levels of sensitiveness, e.g, alerting the user of
sensitive content and the potential audience [66]. More-
over, [80–82] suggested a delayed posting mechanism us-
ing a timer nudge for Facebook, to “encourage users to
pause and think” before posting a message. Last, con-
figuration of parameters and personalization of alerting
are also important topics that need to be studied.

7.2 Limitations and Future Improvements

We make a first attempt to assess the level of sensitive-
ness of text content. Our mechanism still has its limi-
tations, for instance: (1) PrivScore is designed as a pre-
ventative privacy protection solution. When a sensitive
message is posted, PrivScore does not provide a mech-
anism to withdraw the tweet or prevent potential dam-
ages. (2) As a statistical learning approach, false pos-
itives/negatives are practically unavoidable, especially
due to the subjective nature of privacy perception.

The accuracy of privacy scoring could be further
improved from three aspects: (1) More annotated data
and higher quality labels (e.g., professional annotators)
could improve the performance of classification and
privacy scoring, however, it requires significant costs.
(2) Advances in NLP, such as new embedding models
(ELMo [59], USE [10]), are expected to benefit their
downstream tasks, including PrivScore. (3) Once pri-
vacy scoring and alerting mechanisms are deployed to
users, we can adopt online learning to train the PrivS-
core model. When users reject warning messages of false
alarms, new annotated data is incrementally added to
the model to improve privacy scoring performance.

Besides the plan to further improve the accuracy
of PrivScore and to address the challenges in enhanc-
ing user experiences in private content alerting, we also
identify several future research directions: the effective
integration of privacy scoring and classification will be
beneficial, especially for personalized privacy protec-
tion. Privacy scoring with consideration of the audience,
and the integration of privacy scoring with access con-
trol, are both challenging research questions.

8 Related Work
Privacy in OSN. Existing research on social network
privacy mainly follows three thrusts: (1) privacy mod-
eling, (2) protecting user identities, and (3) prevent-
ing unauthorized access to private data. Thrust (1) at-

tempts to understand the users’ privacy perceptions, at-
titudes, behaviors, and expectations [6, 21, 22, 27, 89].
Many of them employ user studies to examine the fac-
tors that influence the privacy models, such as age, gen-
der, culture, social status, etc. [7, 41, 44, 64]. In (2),
privacy-enhancing techniques such as k-anonymity [71],
l-diversity [48], t-closeness [42] and differential pri-
vacy [18] are developed to sanitize the dataset before
publishing. They have shown to be vulnerable against
several re-identification attacks, e.g., [1, 26]. Meanwhile,
they are not applicable in online socialization, since
friends are allowed to access profile, posts, etc. In (3), re-
searchers focus on privacy configuration and control for
OSNs. Access control frameworks such as Persona [4]
and EASiER‘[34] have been developed. However, these
systems require the user to explicitly define what is pri-
vate and needs what type of protection. Liu et al. pro-
pose to compute privacy scores based on the unique-
ness and visibility of information [45]. FORPS [58] cal-
culates friends-oriented reputation privacy scores based
on topics, object types and behavioral factors. These
approaches take user profiles and network structures as
input to learn private information types and protection
requirements that are implicitly expressed by users. Dif-
ferent from these schemes, our privacy scoring system
aims to autonomously assess the scale of privacy or sen-
sitiveness from the content shared by the user.
Regret Tweets and Content-based Privacy Pro-
tection. While short, tweets contain rich information
about the user (e.g., gender [14, 46], location [11, 12,
32, 43], home [49, 60], socio-demographic and socio-
economic status [38, 61, 77], etc.). Research on pri-
vate/sensitive tweet content could be classified into two
categories: (A) private tweet modeling and (B) private
tweet identification and classification.
(A) Private tweet modeling. A significant body of re-
search attempts to model (i) regret tweets and (ii) pri-
vacy leakage from various angles, such as causes and
cognitive models, cultural influences, possible mitiga-
tion, etc. [55, 56, 82, 86, 91]. For (i), large-scale
user studies have been conducted to analyze the psy-
chological and social perspectives of regret posts in
OSNs [66, 82]. They examined the types of regrets (e.g.,
sensitive content, criticism, private information), causes
of posting and regretting (e.g., negative emotions, un-
derestimated consequences), awareness of regrets, and
the consequences. They suggested content-based pri-
vate post identification to alert users, however, they did
not specify how such mechanisms could be developed.
Similarly, for (ii), Mao et al. [50] model three specific
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types of privacy leakage to identify the nature, cause,
and influencing factors (culture) of such leaks. In both
(i) and (ii), studies followed up to model and exam-
ine private and/or regrettable posts and user percep-
tions [16, 85, 86]. Last, damage control of undesired
disclosure of private/regrettable content is studied in
the literature. For instance, [66, 82] identified repair
strategies for regret Facebook posts/tweets such as dele-
tion, apologize, excuse, justify. [54] showed that infor-
mation may be leaked through residual activities af-
ter past tweets were deleted. Age-based and inactivity-
based withdrawal have been proposed in the literature
[54, 90] and adopted in commercial OSN platforms,
such as Snapchat, Dust, 4chan, WeChat. Recently, [52]
identified the problem that tweet deletion attracts un-
wanted attention from stalkers. In defense, a temporary
withdrawal mechanism was developed to offer deletion
privacy, so that adversarial observers could not (confi-
dently) identify whether a tweet was really deleted.
(B) Private tweet identification. With the qualitative
modeling of private/regrettable tweets, the need for
automatic tweet assessment. In [50], Mao et al. de-
veloped one of the first mechanisms to identify po-
tentially private tweets. They designed a classifier for
private tweets using naive Bayes and SVM classifiers.
However, the features and classifiers need to be fine-
tuned for each category, and they only achieve ap-
proximately 80% accuracy in binary classifications. To
tackle the challenges in handling short text in twit-
ter, [33] aggregates tweets for each user, extracts topic
matching, NER and sentiment features, and uses Ad-
aBoost with Naive Bayes to classify each user into cat-
egories labeled as privacy score 1, 2 and 3. Recently,
Zhou et al. proposed to examine the features of deleted
tweets to predict if a tweet will be deleted [91]. They
pre-selected ten topics that are commonly considered
as sensitive (e.g., curses, drugs, etc.), and classified a
tweet as sensitive or non-sensitive by checking if it con-
tains keywords from the sensitive topics. Another recent
project further classified private tweets into 13 or 14
pre-defined categories, using BoW/TFIDF features and
Naive Bayes classifier [78, 79]. They assumed that sen-
sitive tweets are pre-identified, without explaining how
that could be achieved. Existing private tweet identifi-
cation/classification approaches employ term-based fea-
tures (BoW, TF-IDF, sentiment) and simple supervised
classifiers, which cannot capture semantic features, or
accurately discover topics containing subtle yet sensitive
content. Moreover, the classification approaches only
generate a binary notion on whether a tweet belongs
to a pre-defined category.

Our project is primarily motivated by (A), which
called for methods to assess private/sensitive tweet con-
tent, so that users could be alerted accordingly. While
we have been inspired by existing methods in (B), our
approach is novel in the following aspects: (1) We em-
ploy the state-of-art content representation and classifi-
cation algorithms (word embedding and RNN) to signif-
icantly improve the accuracy of assessing general tweet
content; (2) Instead of a binary notion of sensitive vs.
nonsensitive, we generate a real score that provides more
information on the level of sensitiveness and enables
personalization in setting alerting preferences. (3) We
have developed a general purpose solution that works
for a broader scope of tweets, instead of only identify-
ing certain types of private/sensitive tweets.
Tweet Classification. [40] integrated network infor-
mation with text features to classify tweets into trend-
ing topics. [72] extracted time-related features such as
time expressions to classify tweets based on their expi-
ration. Similarly, [69] extracted features from authors’
profiles and tweet histories to classify tweet topics. Al-
though inspired by these approaches, our purpose and
application domain are completely different from them.

9 Conclusion
In this paper, we make the first attempt to develop
a computational model using deep neural networks to
quantitatively assess the level of privacy/sensitiveness
for textual content in OSNs. Our framework consists
of four key components: (1) collection and analysis of
privacy opinions on potentially private information; (2)
the context-free privacy scoring model, which mimics
users’ privacy perceptions to assess the degree of privacy
mainly based on text content; (3) the context-aware pri-
vacy scoring model, which considers the influences of the
societal context on privacy perceptions; and (4) the per-
sonalized privacy scoring model, which integrates topic-
specific personalized privacy attitude into the privacy
scores. With experiments on human annotated data, we
show that the PrivScore model is consistent with human
perception of privacy.
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A The GloVe Model
The Global Vectors for Word Representation
(GloVe) [57] word embedding algorithm leverages the
global word co-occurrence statistics in the training set
and the vector space semantic structure captured in
Word2Vec. It represents an aggregated global word-
word co-occurrence matrix as X, in which the element
Xij denotes the number of times a word j occurs in
the context of the word i. The soft constraints for each
word pair is defined as:

wTi w̃j + bi + b̃j = logXij (14)

where wi and w̃j are the main and context word vec-
tors, and bi and b̃j are scalar biases for main and con-
text words. To avoid weighing all co-occurrences equally,
GloVe adopts a weighted least squares cost function:

J =
V∑
i=1

V∑
j=1

f(Xij)(wTi w̃j + bi + b̃j − logXij)2 (15)

where f(Xij) is the weighting function in the form of:

f(Xij) =

{
(Xij/Xmax)α if Xij < Xmax

1 otherwise
(16)

The model generates two sets of word vectors, W
and W̃. Since X is a symmetric matrix, W and W̃ are
equivalent and differ only as a result of their random
initializations. Therefore, the sum W + W̃ is used as
the word vectors to reduce overfitting.

B RNN and LSTM
Deep neural networks (e.g., RNN [23], LSTM [29]) are
widely adopted to boost the performance of classifiers.
In an RNN with one hidden layer, the input, output
and hidden layers are denoted as X, y and h, and the
network is formalized as:

ht = σ(WhX + Wrht−1)
y = σ(Wyht)

(17)

where Wh and Wy are the weights from input layer to
hidden layer and from hidden layer to out layer, and Wr

is the weight of the recurrent computation. Each layer
trains a single unit, which can be an arbitrarily shaped
network taking a vector as input and outputting another
vector of the same size. Therefore, it fits the processing
of sequential information.

The repeated training of the same parameters in
RNN also cause the exploring/vanishing problems dur-
ing backpropagation. To avoid overfitting, it is vital to
adopt proper regularizations and complex architectures
that fit the specific formats and requirements of the
data. LSTM [29] proposed to add several neural lay-
ers to control the flow of information, such as what is
added to the state, what is forgotten or output from the
state. The forget gate can be represented as:

f
(t)
i = σ(bfi +

∑
j

Ufi,jx
(t)j +

∑
j

W f
i,jh

(t−1)
j ) (18)

where x(t) is the current input vector and h(t−1) is the
previous hidden layer vector. bf ,Uf and Wf are biases,
input weights and recurrent weights for the forget gates,
respectively. Similarly, the external input gate g(t)

i and
output gate q(t)

i can be computed as:

g
(t)
i = σ(bgi +

∑
j

Ugi,jx
(t)
j +

∑
j

W g
i,jh

(t−1)
j ) (19)

q
(t)
i = σ(boi +

∑
j

Uoi,jx
(t)
j +

∑
j

W o
i,jh

(t−1)
j ) (20)

The output h(t)
i is controlled by output gate q(t)

i , while
the self-loop weight is controlled by both the forget gate
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and the external input gate as:

s
(t)
i = f

(t)
i s

(t−1)
i +g(t)

i σ(bi+
∑
j

Ui,jx
(t)
j +

∑
j

Wi,jh
(t−1)
j )

(21)
Finally, we get the basic architecture of the LSTM as:

h
(t)
i = tanh(s(t)

i )q(t)
i (22)

With the self-loop state and three gates, LSTM
learns to memorize long time dependency but forgets
the past information if needed so that it does not need
to keep track of information over long sequences.

C Inter-Rater Agreement
In this section, we introduce three approaches that
are used to assess Inter-rater Agreement (IRA): Fleiss’
Kappa measures the agreements between raters on cat-
egorical labels, Pearson Correlation measures the linear
dependency between two variables, and Spearman Cor-
relation measures the strength of monotonic (but not
necessarily linear) relationship between two variables.
Fleiss Kappa. To statistically measure the agreement
between two raters on categorical labels, Cohen’s Kappa
was introduced as a more reliable indicator than calcu-
lating percentage of agreements. Fleiss’ Kappa extended
Cohen’s Kappa to measure the agreement between more
than two raters. The Kappa, k, is defined as:

k = P̄ − P̄e
1− P̄e

(23)

In this formula, the denominator denotes the agree-
ment by chance, i.e., the degree of agreement among
multiple raters that is attainable above chance. The nu-
merator denotes the observed agreement, i.e., the de-
gree of agreement that is achieved by these raters. That
is, Fleiss’ Kappa quantitatively measures the actual de-
gree of agreement in comparing with completely random
raters, i.e., the level of agreement when the raters’ se-
lections are completely random [20]. A smaller k (e.g.,
k < 0) indicates poor agreement among raters, while a
larger K (e.g., k → 1) indicates good agreement.
Pearson Correlation. Fleiss’ Kappa was designed for
categorical data, therefore, it treats each label as an
independent category. In our experiments, when two
raters label a tweet as [1 Very sensitive] and [2 Sen-
sitive], while another two raters label two tweets as [1
Very sensitive] and [5 Nonsensitive], they are considered
as equally inconsistent by Fleiss’ Kappa. But in reality,
1 and 2 are significantly more consistent than 1 and 5.

To better handle numerical data, Pearson Correlation
was designed to capture the linear dependency between
two variables X and Y , which is denoted as:

r = (
n∑
i=1

(xi− x̄)(yi− ȳ))/(

√√√√ n∑
i=1

(xi − x̄)2

√√√√ n∑
i=1

(yi − ȳ)2)

(24)
where xi and yi are indexed samples from two variables,
x̄ and ȳ denotes the sample mean. The numerator cap-
tures the covariance of the two variables, while the de-
nominator denotes the standard deviations of X and Y .
For non-negative variables, r = 0 indicates that there is
no linear correlation, while r = 1 indicates a perfectly
linear relationship between X and Y .
Spearman’s Rank Order Correlation. Last, the
Spearman Correlation captures the agreement between
two annotators in terms of the correlation between the
ranks of their labels. It is very similar to Pearson, but it
considers the relationships between the ranks of X and
Y , instead of directly on X and Y . It is specified as:

rs = cov(rgX , rgY )
σrgXσrgY

(25)

where rgX and rgY denotes the rank order of X and
Y . The correlation coefficient is interpreted similarly as
Pearson correlation, where 0 indicates no correlation in
rank orders and 1 indicates perfect correlation between
rank orders of X and Y .

D User Study
To demonstrate the effectiveness of employing PrivS-
core in triggering self-censorship, we perform a proof-
of-concept evaluation for user alerting (an IRB approval
was obtained for this evaluation).
a. We recruited college students to evaluate tweets
crawled from the Internet. Each participant received a
URL to an anonymous online questionnaire, which in-
cludes 15 tweets (sampled with higher density of sensi-
tive tweets than the original distribution).
b. Participants were asked to select “1. Yes I feel com-
fortable posting this to Twitter” or “2. No, I do NOT
feel comfortable posting this” for each tweet, as shown
in Fig. 8 (a). To mimic an emotional or urgent scenario,
we asked students to “follow your first instinct to pro-
vide a quick selection–just act like you are in a hurry.”
c. If the student chose “Yes” for a low score tweet (i.e., a
tweet with Scf < 1.5), a warning message was displayed
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(as shown in Figure 8 (b)). The student has the option
to adhere to the advice or stick to her original option.

We record the participant’s selection for each tweet.
We also record whether the warning message was trig-
gered, and whether the participant adhered to the mes-
sage. Out of 780 tweets (52 questionnaires) that was
answered in 10 days, 93 tweets triggered the warning
message, while users changed opinions on 58 tweets: an
adherence rate of 62.3%. Manual inspection also showed
that users stick to their original selection of “Yes”
mostly for political and judgemental tweets, which in-
dicates that our annotators were more conservative on
political content than the evaluators. There were also
a few false positives. One example was a tweet criticiz-
ing racism, which received a PrivScore of 1.21 (strong
critical tones and racist terms). However, since it was
criticizing racism, it should not receive such a low score.

E Understand the Annotations
To learn more insights of annotators’ rationale and
agreements, and to confirm our prior observations, we
added two small-scale experiments on MTurk.
I. More Annotators for Each Tweet. We posted 20
questionnaires to MTurk, and recruited 10 Turkers to
annotate each questionnaire. Each tweet was annotated
as: “1 Sensitive”, “2 Maybe”, or “3 Nonsensitive”. Ex-
cluding attention check tweets, we collected 3,600 anno-
tations for 360 tweets. For each tweet, we calculated the
mean annotated score S̄A, and displayed its distribution
across all the tweets in Fig. 9 (a). We also calculated the
mean absolute deviation (MAD) of the 10 annotations
for each tweet. Fig. 9 (b) shows the average of MAD for
tweets in each category of S̄A. The results are consistent
with our observations: Turkers show more consistency
with the clearly nonsensitive or highly sensitive tweets,
i.e., both ends of X-axis in Fig. 9 (b). They demonstrate
relatively low consistency on non-extreme tweets.
II. Annotation with Open-ended Questions. In
the second experiment, we asked each Turker to justify
his/her annotation in a textbox. We posted 65 question-
naires (10 tweets in each questionnaire) to MTurk at the
rate of $1.2 per questionnaire. We accepted 61 responses
that passed the attention check tweets. They were com-
pleted in 286 to 2845 seconds. The median completion
time was 811.5 seconds. Most of the responses that cor-
responds to “very sensitive”, “sensitive” and “little sen-
sitive” annotations point out a type of sensitive content.

(a)

(b)
Fig. 8. User study on the effectiveness of user alerting.

Fig. 9. Statistics of tweets with 10 annotations: (a) Distribu-
tion of the mean annotated score, X: Mean annotated score S̄A

of tweets, Y: Number of tweets in each bin; (b) Distribution of
Mean Absolute Deviation (MAD), X: S̄A, Y: average MAD of
tweets in each bin.

However, some of them were simply justified as “inap-
propriate content” or “bad personal image”.

We qualitatively analyzed the responses by cod-
ing each response and categorize them according to
the types of sensitive information. The most popu-
lar types of sensitive tweets are “obscene content”,
“drug”, “cursing”, “attack”,“dirty words”, “discrimina-
tion”, and “personal information”. Meanwhile, the most
popular justifications for non-sensitive tweets are: “does
not contain sensitive/personal information”, “nothing
harmful/offensive”, “positive or nothing negative”, and
“nothing big”. Although the scale of this experiment is
small due to limited timing/budget, our results are con-
sistent with existing research in the literature [66, 82].
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