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Abstract. The growth of IoT apps poses increasing concerns about sen-
sitive data leaks. While privacy policies are required to describe how IoT
apps use private user data (i.e., data practice), problems such as miss-
ing, inaccurate, and inconsistent policies have been repeatedly reported.
Therefore, it is important to assess the actual data practice in IoT apps
and identify the potential gaps between the actual and declared data
usage. In this work, we conducted a measurement study using our frame-
work called IoTPrivComp, which applies an automated analysis of IoT
apps’ code and privacy policies to identify compliance gaps. We col-
lected 1,489 IoT apps with English privacy policies from the Play Store.
IoTPrivComp found 532 apps with sensitive external data flows, among
which 408 (76.7%) apps had undisclosed data leaks. Moreover, 63.4% of
the data flows that involved health and wellness data was inconsistent
with the practices disclosed in the apps’ privacy policies.
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1 Introduction

Regulations such as EU General Data Protection Regulation (GDPR) [43] and
the California Online Privacy Protection Act require a service provider (e.g.,
websites or mobile apps) who collects personally identifiable data from users
to disclose its actions with the collected data in the privacy policy. Therefore,
privacy policies nowadays become a standard practice to notify users about the
necessary data collection, management, and/or sharing operations that a mobile
or IoT app requests to perform. However, the state-of-the-art (SOTA) imple-
mentations of privacy policies face two main challenges: (i) the privacy policies
are often difficult to comprehend [17,29], while the users are unwilling to spend
the time and effort necessary to understand the policies; and (ii) while the ven-
dors should disclose user-data-related practices in privacy policies, recent stud-
ies [4,37,46,49,52] uncovered various issues showing the policies were incomplete
or inconsistent with the actual practices.
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Fig. 1. (A) Privacy compliance measurement for mobile/IoT apps.; (B) The flowchart
and key contributions of IoTPrivComp.

Such challenges motivate researchers to study privacy policies and practices.
Based on their objectives and methodologies, SOTA research efforts can be cat-
egorized into three directions: (1) privacy policy comprehension (Fig. 1-A 1©)
that focuses on facilitating the (automated) understanding of privacy policies
[22,42]; (2) privacy threat detection (Fig. 1-A 2© and 3©) that aims to examine
app code and behaviors to identify potential privacy threats [23,35]; and (3)
privacy compliance gap detection (Fig. 1-A 1© and 2©), which studies the gaps
between privacy policies and data practices [4,13,21,27,31,51,52].

In this paper, we present a measurement study to investigate the privacy
compliance gaps in IoT apps, which are mobile applications interacting with or
managing IoT devices. With the rapid deployment of IoT technologies in our
daily life, the IoT devices collect personal data such as heart rate, pulse, voice,
biometrics, and location, which raise increasing privacy concerns [25]. Therefore,
it is important to understand the privacy practices of IoT apps, as they often
access more sensitive data than general mobile apps. However, the compliance
gap between privacy policies and privacy practices in IoT apps is yet
to be investigated. Our initial exploration shows that the off-the-shelf (OTS)
tools for IoT code and privacy policy analysis provide insufficient performance.
Therefore, we first developed IoTPrivComp, a framework for IoT code and policy
consistency analysis. IoTPrivComp consists of five main components as shown
in Fig. 1-B: (1) a new ontology to represent entity and data object relation-
ships in privacy policies; (2) the SuSi-MNB-IoT sink analysis module that uses a
Multinomial Naive Bayesian (MNB) classifier to analyze data flows and identify
sinks; (3) a static code analysis module to identify leaks of sensitive informa-
tion through external data flows; (4) a model based on Bidirectional Encoder
Representations from Transformers (BERT) to identify entity and data objects
from IoT privacy policies; and (5) the PoliCheck-BERT-IoT compliance analysis
module that finally identifies the inconsistent privacy disclosures.
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With IoTPrivComp, we further present a large-scale measurement study of the
inconsistencies between the practices disclosed in privacy policies (Fig. 1-A 1©)
and the privacy practices implemented in app code (Fig. 1-A 2©). In particular,
we aim to answer the following questions: (1) what does the landscape of IoT app
privacy compliance look like? While we are interested in the current practices
that IoT apps take to be compliant with privacy regulations, there lacks such
an overview in the literature. (2) Which privacy compliance gaps exist in IoT
apps? Compliance issues exist when an app’s actual practices are not consistent
with the practices disclosed in its privacy policy. For example, does the privacy
policy of an app fully disclose all types of private data transmitted to the first
and third parties? And (3) does there exist any patterns in privacy compliance
gaps? For example, are certain types of IoT data more commonly associated
with compliance issues? Our primary contributions are three-fold:

1. We conduct a measurement study to identify the privacy gaps between the
privacy practices and disclosures in 1,951 IoT apps. IoTPrivComp is the first
attempt to autonomously validate privacy compliance of IoT apps at this scale.
2. We show that simply assembling OTS tools only provides limited
performance for IoT compliance validation and non-trivial modifications/
enhancements are necessary. We developed an automated privacy compliance
analysis tool for IoT apps, called IoTPrivComp, with a new SuSi-MNB-IoTmech-
anism for sink identification and a new PoliCheck-BERT-IoTmechanism for pri-
vacy policy analysis, and open-sourced it1. With all the novel improvements,
IoTPrivComp achieves significantly better performance (94% accuracy) than
the OTS baseline.
3. We examined 1,951 IoT apps from Google Play Store and analyzed the pri-
vacy disclosure gaps. For instance, out of 532 apps with sensitive data flows,
we identified compliance violations in 408 (76.7%) apps. We further provided a
comprehensive analysis of the inconsistent disclosures and the leaked data.

Ethics: This study did not involve any human subjects. All the data analyzed
in this work was collected from the publicly available data in the Play Store.

2 The Problem and Baseline Solution

2.1 Problem Statement

Our objectives are two-fold: (1) we conducted a large-scale measurement study
to examine the (in)consistencies between the privacy practices implemented in
IoT apps and the privacy disclosures released in privacy policies. In particular,
we focus on answering key questions about the current state of IoT privacy
policy usage, compliance gaps, and potential compliance patterns, e.g., how many
apps provide available privacy policies to the users, what type of private data is
transmitted to first/third-party entities, which of the practices are disclosed in

1 https://github.com/IoTPrivComp.

https://github.com/IoTPrivComp
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privacy policies? (2) Since existing OTS tools are unable to provide satisfactory
performance for IoT apps, we propose the IoTPrivComp framework to perform
app code analysis, privacy policy analysis, and compliance gap analysis.

In privacy practices and disclosures, we focus on information collection and
sharing. “Collection” means that certain (private) data is accessed by the app
and transmitted out of the app’s memory space to a first-party entity, e.g., the
app’s cloud server, while “sharing” takes place when the data is transmitted to
a third party, e.g., the app sends payment information to PayPal. The collection
and sharing practices take place as a result of certain API executions [5,51]. In
both cases, the data accessed is transferred externally, either outside the app or
out of the device. We refer to these leaks as external data flows. Some of the
external data flow scenarios that we have identified include sending the data to
an external server, sending the text messages and emails, sending the log data
outside the app, and sharing data with another app using exported components.

The problem of IoT privacy compliance analysis is challenging. Data leaks are
usually found by analyzing the APIs, permissions, and protected resources [16,
19,52], but identifying data sources and sinks is not straightforward as many
permission-protected methods are not source nor sink [34]. Moreover, like other
static flow analyzers for mobile apps, we assume the code is not obfuscated.
Privacy policy analysis approaches usually rely on a hand-annotated corpus [42,
51,52] but they are limited due to the manual effort. It is also difficult to identify
contradictory statements in the policies [3]. NLP still has limited capabilities
in analyzing statements that span multiple sentences and that use confusing
language [4].

Finally, we would like to note that our focus in this work is not on detect-
ing unknown privacy threats or providing security evaluations. This aspect of
IoT app security has been extensively studied in the literature. Instead, we aim
to understand the landscape of IoT app privacy compliance. While our find-
ings can be used to improve future privacy policies, we consider privacy policy
comprehension or enforcement out of the scope of this work.

2.2 The Baseline Solution Using Off-the-Shelf Tools

Privacy policy compliance in mobile applications has been extensively studied.
As shown in Fig. 1-B, it consists of three main tasks, i.e., app flow analysis
( C© and D©), privacy policy analysis (G© and H©), and flow-to-policy consistency
analysis ( I©). To avoid re-inventing the wheel, we examined several existing tools
and tested their effectiveness in identifying privacy gaps in IoT apps.

Tools and Implementation. First, we studied PoliCheck [4], which imple-
ments an automated, entity-sensitive privacy policy consistency analysis for
mobile apps. It employed AppCensus [16] for data flow analysis and PolicyLint [3]
for privacy policy analysis. Unfortunately, AppCensus was commercialized and
unavailable to the research community. Hence, we replaced the data flow anal-
ysis module of PoliCheck with two other open-source tools, i.e., SuSi [34] and
AndroShield [2]. SuSi was used to identify Android source and sink methods,
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while AndroShield was used to extract the paths between the identified sources
and sinks. In this baseline approach, we modified the interface to feed flow data
from AndroShield to PoliCheck and also implemented the necessary interfaces
to assemble all the off-the-shelf tools together.

Table 1. Sample IoT devices from four popular IoT platforms.

IFTTT Ai-Sync, Iotics, Lexi, LIFX, AirTouch, Arlo, Neato, Neo Smart

SmartThings Ring, Belkin, Leviton, Yeelight, Blaze, Awair, Danalock, Connected

OpenHAB Netatmo, BenQ, Nest, Nanaleaf, Ecobee, Nuki, Onkyo, OpenGarage

Zapier Phillips Hue, Luxafor, Flic, Kisi, bttn, Amazon Alexa, Tap NFC

Evaluation and Results. We extracted external data flows from 68 IoT apps
and manually verified them. Then, we randomly selected 100 external data flows
for evaluation. The baseline approach discovered only 64 external data flows and
correctly reported only 29 privacy disclosures including 2 clear disclosures and 27
omitted disclosures (see Sect. 3.4 for privacy disclosure definitions). Therefore, it
achieved an overall accuracy of 29%. In comparison, IoTPrivComp identified all
the external data flows and correctly reported 94 (consistent and inconsistent)
privacy disclosures, achieving a 94% overall accuracy. IoTPrivComp failed in 6
cases because the corresponding privacy policies did not include clear statements
about their privacy practices.

The baseline’s low performance may be caused by three issues. First, SuSi
and AndroShield were implemented over Android 4.2, which cannot correctly
handle new Android APIs (e.g., Android 29) and IoT-specific data flows. Second,
SuSi and PoliCheck adopted conventional machine learning models with limited
performance for classification and NLP tasks. Finally, PolicyLint used spaCy’s
NER engine (en core web lg model) for entity and data object identification.
Its outdated ontology cannot correctly handle the IoT-specific terminologies in
the privacy policies. In recognizing the root causes of the low performance, we
propose to revamp the baseline approach by tackling these three issues.

3 IoTPrivComp: Privacy Compliance for IoT Apps

In this section, we present IoTPrivComp, an automated privacy compliance ver-
ification framework for IoT apps. As shown in Fig. 1-B (our primary contribu-
tions are highlighted), the IoTPrivComp framework consists of four key compo-
nents: data collection (Sect. 3.1), ontology definition (Sect. 3.2), data flow anal-
ysis (Sect. 3.3), privacy policy analysis, and compliance validation (Sect. 3.4).

3.1 Data Collection

There is no clear or authoritative definition for IoT apps. In this work, we con-
sider all the mobile applications that control, manage, and/or interact with IoT
devices as IoT apps. According to [25], IoT devices are low-cost devices with
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sensors and/or actuators that generate sensing data and offer various services to
their users. Therefore, smartphones, laptops, and PCs are controller devices that
interact with IoT devices but they are not considered IoT devices themselves.

IoT Apps. To recognize the loosely-defined IoT apps from the Play Store, we
considered the popular IoT platforms studied in the literature [8,20,24,33,36,
48], e.g., IFTTT (If-This-Then-That), SmartThings, openHAB, and Zapier, and
identified IoT devices from each platform, as shown in Table 1. We also added
wearable devices that directly connect to smartphones using WiFi/Bluetooth to
this seed set. Next, we wrote a Scrapy script to collect the most relevant Play
Store apps for the seed devices and identified 543 unique app manufacturers
from the apps, for which we further scraped all their free IoT apps. Finally, we
employed a pattern matching approach to identify and remove any non-IoT apps
based on their names and descriptions. Our final dataset has 1,951 IoT apps.
We downloaded the original APK files of 1,915 IoT apps from the Google Play
Store, where 36 APKs failed to download.

Fig. 2. (a) Examples of entity and data ontologies; (b) A part of data ontology graph.

Privacy Policies. For each crawled app, we followed the embedded link to
retrieve its full policy page including the dynamically loaded contents, and then
converted it into a text file. Among 1,951 IoT apps, 234 apps did not have an
available privacy policy due to missing or broken links and 228 apps had non-
English policies (discussed in Sect. 4). Finally, we obtained the privacy policies
of 1,489 apps and used them in our privacy compliance analysis.

3.2 Ontology Definition for IoT App Privacy Policies

Ontologies are used to represent “is-a” relationships among the terms in pri-
vacy policies, which enable a semantic analysis of privacy policies. Since there
is no ontology for IoT privacy policies, we created our own in this work by
manually annotating 134 policies with entity objects and data objects and their
subsumptive (“is-a”) relationships and splitting the annotated data for train-
ing, validation, and testing. We trained a Tok2Vec relation classifier with 81%
precision. Next, we extracted entity/data objects with a BERT model that is
fine-tuned on a privacy policy corpus. BERT was introduced in [14] to fine-tune
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the pre-trained models for accomplishing various tasks without changing the
architecture significantly for each task. Then, we applied the Tok2Vec classifier
to the extracted objects and retained only the predictions with a confidence score
of 90% or higher. For example, for the below sentence, our model generated the
relation as (‘information’, ‘location’):

We collect information about you, including location.

We further extracted two types of ontology graphs from the relationships,
entity ontologies, and data ontologies, which represent the relationships between
entities and data objects, respectively. Figure 2(a) shows a few examples of the
extracted data and entity ontologies, while Fig. 2(b) shows a subset of the data
ontology graph. A few more ontology examples can be found in Appendix A.
Using the relationships found from ontology extraction, we also identified the
synonyms, i.e., functionally equivalent/similar entities and data objects. For
example, payment transaction and payment processing are identified as syn-
onyms of payment. Finally, the ontologies were fed into PoliCheck-BERT-IoT.

3.3 SuSi-MNB-IoT: Analyzing Sinks and Data Flows in IoT Apps

To extract the app code, we reverse-engineered the downloaded APK files. In
particular, we obtained the DEX (Dalvik Executable) files from the APKs using
Apkanalyzer [39] and converted them to Jimple files using the Soot program
analysis framework [38]. Then, we extracted the manifest files in binary format
and converted them into XML. The extracted Android code is analyzed to iden-
tify sources that are associated with the collection of sensitive data, sinks that
transmit that data external to app/device, and data flows from the sources to
the sinks. Manually classifying the sources and sinks is a costly task due to a
large number of supported methods. To tackle the challenge, automated code
analyzers such as SuSi [34] and AndroShield [2] proposed machine-learning-based
approaches to conduct flow analysis in three steps, i.e., source and sink identifi-
cation, data flow tracing, and sink categorization. However, our baseline study
showed that 71% of flows were missed or incorrectly reported when directly
applying Susi for IoT app analysis. Inspired by Susi, we developed a code analy-
sis module, called SuSi-MNB-IoT, which introduced non-trivial modifications as
follows to improve sink and data flow identification for Android code analysis.

Customization for IoT Devices/Apps. IoT apps collect new types of
data that are rarely accessed by general mobile apps. Therefore, existing code
analyzers fall short in identifying these sensitive data. In SuSi-MNB-IoT, we
defined several new sink categories pertaining to sensitive data types, includ-
ing Geolocation, Health wellness, Motion, Socialmedia activity, Music,
Payment, and Video. A detailed list of sink categories is shown in Table 2.

Advanced Machine Learning Approach. The Support Vector Machine
(SVM) model performs poorly when the training data is small [45]. To improve
the performance in text snippet classification, we built a Multinomial Naive
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Bayesian (MNB) classifier in SuSi-MNB-IoT. MNB is a probabilistic classifier
based on Bayes’ theorem that predicts using previous and current knowledge
[15]. Compared with SVM, our MNB model is two to six times faster [28].

Adding Support for Android 29. As most of the IoT apps in our dataset
use Android 29, we added a mechanism to handle the new API methods and
identified the new sinks from Android 29 API methods.

Adding Support for Exported Components. Exported components in
Android facilitate permissioned data sharing between apps. In SuSi-MNB-IoT,
we included exported components along with other data flows.

With the sources and sinks identified by SuSi-MNB-IoT, we traced data flows
and identified data leaks through Android API sinks. In particular, we followed
the AndroShield approach [2], which is based on FlowDroid [5], to construct call
graphs. The APIs and methods involved in sensitive data flows are identified as
nodes of the call graph. Then, we extracted tainted paths from the sources to the
sinks by traversing the call graph with a Depth-First Search (DFS) algorithm.
Sensitive data travels through these paths and is finally sent out through the
sinks. Next, we manually annotated 2,450 data flows (1,960 for training, 490 for
testing) across various sink categories. Using this dataset, we finally trained an
MNB classifier for automated app analysis, which categorizes data flows based
on their classes and sink methods.

Table 2. Sink categories and SuSi-MNB-IoT’s classification performance. R: Recall
(%); P: Precision (%).

Category R P Category R P Category R P Category R P

AAID 100 98 Audio 100 88 Calendar 100 98 Camera 81 94

Email 100 95 Gallery 96 96 Geolocation 97 92 Health Wellness 92 97

Motion 100 98 Music 100 97 NFC 97 97 Payment 100 95

Phone 92 98 Router 100 95 SIMID 100 100 Socialmedia Activity 96 94

SMS 100 100 Sound 100 97 Video 69 98 Weather 100 95

Voice 98 92 Weighted Average: Recall: 96%; Precision: 96%

3.4 PoliCheck-BERT-IoT: Policy and Consistency Analysis

To detect the inconsistencies between apps’ data flows and the disclosed pri-
vacy practices, we developed a new policy analyzer, called PoliCheck-BERT-IoT,
which followed the PoliCheck approach [4] originally developed for mobile pri-
vacy policy analysis. Compared with PoliCheck, PoliCheck-BERT-IoT introduced
two improvements to capture IoT-specific data practice statements.

IoT-Specific Ontology. PoliCheck uses PolicyLint [3] to identify entities and
objects in privacy policies. To process IoT policies, PoliCheck-BERT-IoT extended
PolicyLint to capture the IoT-specific ontologies developed in Sect. 3.2. It can
recognize the synonyms for entities and data objects and the IoT-specific rela-
tionship mappings. With domain adaptation, the improved PolicyLint module
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achieved an 89.6% precision and a 73.3% recall in identifying data objects, and
an 88.5% precision and a 69.5% recall in identifying entities, respectively.

Adapting State-of-the-Art NLP Model. PoliCheck/PolicyLint uses spaCy’s
NER engine with the en core web lg model, which is based on Convolutional
Neural Networks (CNN). To improve NER performance, we replaced the CNN-
based model with a transformer-based BERT model. Transformers enable down-
stream tasks to fine-tune a pre-trained model to a specific domain without incur-
ring the resource-intensive training process of complex models [47].

Based on the policy analysis results and the sensitive data flows obtained
in Sect. 3.3, PoliCheck-BERT-IoT performs a consistency analysis. It extracts
sentences about the app’s data practice from its privacy policy. Each state-
ment is then matched with the identified sensitive data flows to determine
the type of privacy disclosures. Data flows of the same data type and the
same root domain are combined to output unique data flows. For example,
two flows <com.samsung.auth, music.activity.SoundPickerActivity> and
<com.samsung.report, music.activity.SoundPlayerActivity> are consid-
ered the same flow in consistency analysis since they have the same data type
(i.e., music) and the same root domain.

Table 3. Privacy policies of IoT apps under study: (left) policy availability; (right)
External Data Flows (EDF).

App category # of apps % of apps App category # of apps % of apps

All crawled apps 1,951 100 Apps w. sensitive EDFs 623 100

Missing policy 234 12.0 Missing policy 33 5.3

Non-English policy 228 11.7 Non-English policy 58 9.3

Available policy 1,489 76.3 Available policy 532 85.4

PoliCheck-BERT-IoT identifies five types of privacy disclosures: (i) clear dis-
closures, in which the privacy policy precisely states that the data is being dis-
closed to the entity involved in the flow. (ii) vague disclosures, in which the
privacy policies use vague or broad terms to describe data types and/or entities,
e.g., stating that the app “collects your data” instead of “collects your finger-
print and voice data”, or the app “shares data with social networks”, instead of
“shares data with Facebook and Twitter”. (iii) omitted disclosures, where
the privacy policy fails to disclose the data flow, e.g., sharing data with Face-
book without mentioning it in the privacy policy. (iv) incorrect disclosures,
in which the privacy policy statement incorrectly states that the practice will
not take place, e.g., collecting camera information while the privacy policy states
not collecting such data. And (v) contradictory disclosures, where the flow
matches more than one privacy statement and the statements contradict each
other. We consider the privacy practice and disclosure as consistent in case of
clear and vague disclosures, whereas, inconsistent disclosures refer to omitted,
incorrect and contradictory cases. Moreover, when the entity names match with
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the app package names or a part of the privacy policy link, the flow is considered
first-party. Otherwise, the flow is considered third-party.

4 Evaluation and Analysis

In this section, we first evaluate the performance of IoTPrivComp in identifying
the inconsistencies between privacy disclosures and privacy practices and then
employ IoTPrivComp to measure the privacy compliance status of the IoT apps
and answer the research questions presented in Sect. 1.

4.1 Performance Evaluation of IoTPrivComp

We first evaluated the performance of the key components of IoTPrivComp. In
particular, SuSi-MNB-IoT achieved an average precision and recall of 96% for
sensitive sink identification, as shown in Table 2. For PoliCheck-BERT-IoT, we
manually annotated 50 privacy policies of IoT apps. We extracted the dictionary
of annotations and applied them to the large corpus of 2,050 policies (1,640
policies for fine-tuning and 410 policies for validation). The training process took
2 h on an NVIDIA Tesla P100 GPU (PCI-E 16GB). The final model achieved an
87.94% precision and an 88.09% recall for identifying data objects from privacy
policies, and a 90.89% precision and a 91.05% recall for identifying entities. The
performance is significantly improved over the CNN-based model.

Table 4. Number of flows and apps associated with different privacy disclosure types.

Privacy IoT 1st-party IoT 3rd-party Wearable 1st-party Wearable 3rd-party

disclosures Flows Apps Flows Apps Flows Apps Flows Apps

Consistent Clear 12 12 0 0 9 8 0 0

Vague 92 75 72 63 22 19 28 21

Inconsistent Omitted 171 136 253 203 52 46 98 61

Incorrect 1 1 1 1 0 0 0 0

Contradictory 1 1 4 3 0 0 0 0

Total # 277 225 330 270 83 73 126 82

Total Inconsistent 173 138 258 207 52 46 98 61

Inconsistent rate (%) 62.5 61.3 78.2 76.7 62.7 63.0 77.8 74.4

Next, we validated the overall performance of IoTPrivComp by sampling 68 IoT
apps and manually analyzing their data flows. We read the corresponding privacy
policies to verify the disclosure types and consistency results reported by IoTPriv-
Comp. If IoTPrivComp extracts a data flow and classifies the corresponding pol-
icy statement correctly, the result is marked as true positive. In particular, IoT-
PrivComp reported 100 sensitive data flows and labeled 18, 38, and 44 flows as
“clear disclosures”, “vague disclosures”, and “omitted disclosures”, respectively.
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There were no incorrect and contradictory disclosures, as they are very rare. We
found that 94 out of the 100 reported flows were true positives, indicating an over-
all accuracy of 94%. Moreover, all the “clear disclosures” were correctly reported,
while 5 “vague disclosures” and one “omitted disclosure” were incorrect. The dis-
crepancies occur because of the confusing language of privacy policies that do not
state clearly the collection and sharing practices.

4.2 Policy and Data Flow Analysis

In this study, we identified a total of 1,951 unique IoT apps and retrieved 1,489
privacy policies written in English and 1,825 APKs, where 36 APKs failed to
download and 90 apps failed during static analysis.

Missing Privacy Policies. As shown in Table 3, 234 (12%) apps did not have
available privacy policies. Among them, 188 apps did not provide any policy
URL, while 46 apps provided invalid URLs. The number of apps with missing
policies reported in this study was non-trivial, as these apps may have poten-
tially undisclosed data leakages. The result highlights the need for strict and
continuous enforcement of regulations. Meanwhile, there were 228 (11.7%) apps
with non-English privacy policies. Among them, 160 had app descriptions in
English, which indicates that they were intended for English-speaking users but
their privacy policies fell short in disclosing the app practices to the users.

Data Flows and Sinks. IoTPrivComp extracted a total of 23,959 external data
flows from 1,825 APKs, from which information flows out of the device or the
app’s memory space through first- or third-party code. Among them, 1,782 exter-
nal data flows disclosed sensitive information of 21 categories defined in Table 2.
These sensitive data flows involved 623 IoT apps and 1,075 distinct Android
APIs. com.facebook, com.samsung, and com.amazon are the most frequently
used APIs, which appeared in multiple flow categories, e.g., payment, social
media activity, voice, and video. Finally, we found 33 apps with missing policies
and 58 apps with non-English policies, which is 14.6% of all apps that disclose
sensitive data.

Table 5. Privacy disclosures of IoT-specific practices.

Privacy disclosures Clear Vague Omitted Total

# of flows 10 37 (26.4%) 93 (66.4%) 140

# of apps 10 37 (27.2%) 89 (65.4%) 136

4.3 IoT Privacy Compliance Analysis

Next, we conducted a privacy compliance analysis at the flow level and app
level of 532 apps with available privacy policies. As wearable devices collect
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more sensitive data such as biometrics and physical activities than general IoT
devices, we reported the results for wearable apps separately.

Flow-Level Compliance Analysis. IoTPrivComp extracted 6,823 sentences
with the positive or negative sentiment about the apps’ data practices and
associated them with 816 unique data flows. Each flow has a unique data type
and disclosure type. The results of the flow-level compliance analysis are sum-
marized in Table 4. For IoT apps, 173 (62.5%) first-party data flows and 258
(78.2%) third-party flows were reported with inconsistent privacy disclosures,
where most of them had “omitted disclosures”, indicating a direct compliance
violation in apps’ data practices. Similarly, for wearable apps, 52 (62.7%) and 98
(77.8%) inconsistent disclosures were detected in the first-party and third-party
flows, respectively. Overall, a total of 581 (i.e., 173+258+52+98) inconsistent
disclosures were reported, among which 574 (i.e., 171+253+52+98) were omit-
ted disclosures.

IoT apps often collect personal data that are rarely accessed by conventional
mobile apps. For example, among the 21 data categories defined in Table 2,
health and wellness, motion, and voice data are often collected by IoT
apps. Therefore, we further analyzed the flow-level compliance gaps specifically
in the IoT data practices. We extracted data flows to these three sink categories
and measured the number of flows with clear, vague, and omitted disclosures.
As shown in Table 5, 92.8% of IoT-specific data flows had vague or inconsistent
disclosures (26.4% vague and 66.4% omitted disclosures).

App-Level Compliance Analysis. 816 unique flows were associated with 411
IoT apps and 121 wearable apps. Table 4 summarizes apps with different types
of privacy disclosures. It is worth noting that an app may be counted more than
once if it has multiple flows with different types of disclosures. To understand the
disclosure behavior of individual apps, we further calculate the number of apps
with at least one disclosure of each type. As shown in Table 6, only 12 (2.9%)
of the 411 IoT apps clearly disclosed their data collection practices, while 123
(30%) IoT apps disclosed the data practices in vague terms. The majority of the
apps (74.5%) failed to disclose their privacy practices (omitted disclosures). The
situation is worse for wearable apps. Only 8 (6.6%) apps clearly disclosed the
data practices, while 36 (29.8%) apps disclosed the practices in vague terms and
96 (79.3%) apps did not disclose the practice at all.

Table 6. Apps’ privacy compliance; TP: Third Party, SMA: Social Media Activity.

App category # of IoT # of Wearable Total # % of apps

Apps analyzed for privacy disclosures 411 121 532 100

At least one clear disclosure 12 8 20 3.8

At least one vague disclosure 123 36 159 30.0

At least one omitted disclosure 306 96 402 75.6

At least one incorrect disclosure 2 0 2 0.4

At least one contradictory disclosure 4 0 4 0.8

At least one inconsistent disclosure 312 96 408 76.7

At least one omitted TP disclosure 203 61 264 49.6

Omitted disclosure about TP SMA 45 19 64 12.0
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In summary , we have the following observations regarding the privacy disclo-
sures and privacy compliance gaps in IoT and wearable apps.

(1) Very few IoT apps clearly disclosed their data collection practices. Among
all the apps analyzed in this work, only 3.8% clearly stated their practices of
first-party data collection, while none of them clearly disclosed third-party
data sharing actions. Figure 3(a) shows the breakdown of clear disclosures
across different data types. Most of the clear disclosures belong to the health
and wellness category, but only 8 out of 101 health and wellness flows
were disclosed.

(2) 30% of IoT apps had vague disclosures in their privacy policies. They often
use vague language or broad terms to describe data types (e.g., “your data”
instead of “voice data”) or the third-party entities (e.g., “social networks”,
“platforms” ”service providers”, “vendors”, “contractors”, and “sponsors”).
Such disclosures are considered consistent from the compliance perspective,
however, the practice is concerning because agreeing to the blanket poli-
cies puts the users in a very vulnerable situation. Figure 3(b) shows vague
disclosures of various data types. Health and wellness and social media
information are the most common data types with vague disclosure in first-
and third-party data access. Moreover, 3.7% and 10.3% of vague disclosure
flows are associated with voice data and payment information, which are
sensitive in IoT applications.

(3) 76.7% of the analyzed apps had at least one inconsistent data collection or
sharing practice. That is, they collected or shared at least one sensitive data
item that was incorrectly or contradictorily disclosed, or not disclosed at all.

(4) 75.6% of the apps contained at least one undisclosed sensitive data collection
or sharing practices. The most common type of inconsistent disclosure is
omitted, where the privacy policies did not mention the data collection and
data sharing practice at all. As compared to the first-party data collection
practices, it is more common for the app privacy policies to not disclose the
third-party data sharing practices, as shown in Fig. 3(c).

(5) 35.5% of all the flows with omitted disclosure involved personal data includ-
ing audio, photo, health and wellness, video, and voice data. Mean-
while, 12.0% of the apps shared social media information with third-party
platforms without disclosing the practice. There were only five social media
omitted disclosure flows for the first party but 65 omitted disclosures for the
third party.

(6) 49.6% of the apps had at least one data sharing practice with third parties
that were not disclosed in privacy policies. The third-party omitted flows
made up a surprisingly high (43.0%) percentage of all the flows. Incorrect
and contradictory disclosures were less frequent, as shown in Fig. 3(d) and
(e).
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Fig. 3. Statistics of flows for (a) clear disclosures, (b) vague disclosures, (c) omitted
disclosures, (d) incorrect disclosures, and (e) contradictory disclosures.

5 Case Studies

We present our case studies of real-world apps and use them as examples to
demonstrate the capability of IoTPrivComp in our measurement study. In par-
ticular, we examined 2 wearable apps (“Your Fitness” and “Fitness Tracker by
Echoronics”) and 3 IoT apps (“Ahome Light”, “Hager Coviva”, and “My Levi-
ton”), Two of them (“Your Fitness” and “Ahome Light”) were selected from the
manual evaluation set (in Sect. 2.2). In Table 7, we list the privacy policy and the
APIs used by each app to collect/share personal data. IoTPrivComp reported dif-
ferent types of vague and/or inconsistent privacy disclosures for each app, which
help to raise awareness among users and provide useful information for develop-
ers and regulators to identify and address the compliance issues.

Case 1: Your Fitness (com.yc.yourfitness) works with smart-bracelet
devices to manage daily exercise and sleep activities. IoTPrivComp identified
multiple APIs in the code that collected data about the steps taken by the user.
However, the privacy policy only vaguely mentioned the collection and disclosure
of “personal information”, for which IoTPrivComp identified as a vague disclo-
sure. It also used the com.baidu.location API for the third-party access of
the location data but did not disclose this practice in the privacy policy at all.
Therefore, it was reported by IoTPrivComp as an omitted disclosure.

Case 2: Fitness Tracker by Echoronics (com.mevofit.fitness.fitness
tracker.walkingjogginghrbp.echotrackers) manages Echoronics wearable
devices and tracks fitness-related information. Its privacy policy identifies spe-
cific types of personal data collected by the app, however, it does not mention
ECG (e.g., heart rate, rhythm, etc.) data and geolocation data. However, IoT-
PrivComp identified three APIs that were used for third-party sharing of ECG
and geolocation data, and therefore reported corresponding omitted disclosures.

Case 3: Hager Coviva (com.hager.koala.android) is used with a home con-
troller to monitor and control alarms, lights, and shutters that are deployed in
smart homes. Its privacy policy describes multiple types of personal data col-
lected by the Coviva controller, but does not mention any personal data collected
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Table 7. Case studies: apps’ privacy policies and APIs for data access/sharing.

Case 1 Privacy policy “Your Fitness will disclose all or part of your personal information in accordance with your
personal wishes or legal provisions in the following circumstances: To provide the products
and services you require, you must share your personal information with third parties”

APIs com.yc.pedometer.MainActivity, com.yc.pedometer.SplashActivity, com.yc.

pedometer.service.MessageAccessibilityService, com.yc.pedometer.wxapi.

WXEntryActivity, com.yc.pedometer.service.StatusbarMsgNotificationListener

Case 2 Privacy policy “When you use our services, the personal data that is collected includes - your email
address, name, gender, age, height, and weight. Depending on your use of application we
may collect data like calorie intake, weight loss goal, lifestyle, and body measurements.”,
“Personal information about you, such as your gender, birthday, zip code, country, height,
weight, lifestyle and exercise frequency”

APIs com.ecgview.EcgReportActivity, com.ecgview.EcgReportView, com.gpstracker.

GPSTrackerSummeryActivity

Case 3 Privacy policy “Data which you make available to Hager: When you register, you provide us with certain
data, to be specific your name and email address.”, “Data which is automatically collected
and saved in the system: Every time you log in, you use and we collect your IP source
address to allow the Coviva controller to communicate with your mobile device.”, “Data
which is collected during installation: Further information on the installer, product-related
information (serial number and MAC address), and the status of the installation (‘system
consigned/not consigned to customer’) is recorded”

APIs com.hager.koala.android.activitys.motiondetector.

ImageViewerForHistoryMotionDetectorScreen, com.hager.koala.android.activitys.

motiondetector.ImageViewerMotionDetectorS, com.hager.koala.android.activitys.

motiondetector.LastIntrusionsMotionDetector, com.hager.koala.android.

activitys.motiondetector.UpdateInovaMotionDetectorS

Case 4 Privacy policy “Specifically, the App and the related Product(s) have collected the following categories of
Personal Information (“PI”) from its consumers, as defined by the California Privacy Laws:
Genetic, physiological, behavioral, and biological characteristics, or activity patterns used
to extract a template or other identifier or identifying information, such as fingerprints,
faceprints, and voiceprints, iris or retina scans, keystroke, gait, or other physical patterns,
and sleep, health, or exercise data.”

APIs de.niklasmerz.cordova.biometric.BiometricActivity

Case 5 Privacy policy “The information and materials about you collected by this application will be stored on
the server of this application and/or its affiliates.”

APIs wl.smartled.service.AudioRecorderService

by its sensors. In fact, IoTPrivComp identified 4 APIs that collected the motion
sensor data, which is considered private. IoTPrivComp reported several omitted
disclosures of the app. Meanwhile, from the app descriptions, we did not notice
any functionality associated with user tracking. However, from the data flows,
the app appears to trace the users using its own APIs, which could be a serious
privacy violation that warrants further investigation.

Case 4: My Leviton (com.leviton.home) manages Leviton’s Decora smart
Wi-Fi devices, such as dimmers, switches, and smart plugs. Its privacy pol-
icy mentions the collection of biometric data by the first party, while IoT-
PrivComp reported that this app also shared the collected biometric data
with a third-party niklasmerz using the de.niklasmerz.cordova.biometric.
BiometricActivity API. We researched the third party and found the cordova
plugin that works with the biometric sensor data. This case is an example of the
omitted disclosure of sensitive personal information.

Case 5: Ahome Light (wl.smartled.rgb.ahomelight) allows users to control
smart LED lights. IoTPrivComp found that the app collects audio data (through
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the microphone) using the wl.smartled.service.AudioRecorderService API.
However, this practice is not disclosed in its privacy policy. Instead, it makes very
broad references to the collected data as the “information and materials about
you”, which vaguely covers the voice data. This was reported by IoTPrivComp as
a vague disclosure. In fact, collecting or sharing the audio data without properly
disclosing it in the privacy policy is quite concerning.

6 Discussions and Future Work

With IoTPrivComp, we conducted a measurement study over 1,489 IoT applica-
tions and discovered several types of compliance issues in a significant number
of IoT apps, whose privacy practices (such as collecting and sharing of private
data) are not properly disclosed in their privacy policies. Our results help to
answer the research questions raised in Sect. 1.

1. What does the landscape of IoT app privacy compliance look like?
Answer: Our literature review shows that little effort has been devoted to
IoT privacy compliance issues in the research community. Our results show
that even with the privacy regulations in place, a significant gap still exists
between the apps’ privacy practices and their disclosures of such practices to
the users.
2.Which privacy compliance gaps exist in IoT apps?
Answer: The compliance gaps include policies that are unavailable or diffi-
cult to comprehend and inconsistent disclosures. For instance, 12% of 1,951
apps do not have any privacy policies, while 8.2% of them have English app
descriptions but non-English privacy policies. 75.6% (402/532) of the ana-
lyzed apps have omitted disclosures for sensitive data flows, while none of the
third-party sensitive data flows is clearly disclosed.
3. Does there exist any patterns in privacy compliance gaps?
Answer: Some patterns could be observed from the identified compliance
gaps. For instance, the vast majority (574 out of 581) of inconsistent disclo-
sures are omitted disclosures, while incorrect and contradictory disclosures are
very rare. Certain types of data are more frequently involved in undisclosed
data collection/sharing than others. While one may expect the developers to
be more cautious in properly disclosing the practice with more sensitive data,
we do not observe such a pattern. In statistics, 237 (40.8%) of all the 581
inconsistent flows are related to personal data such as audio, email address,
health and wellness, video, voice, and social media information, while 63.4%
of the 101 health and wellness data flows are inconsistent with disclosure.

Our findings call for stricter control from regulations regarding the viola-
tions of sensitive data leaks. In particular, there should be regulations enforc-
ing controls to address the leak of Protected Health Information (PHI) and
Personally Identifiable Information (PII) data from the IoT apps. Therefore,
IoTPrivComp can be used as a policy compliance verification tool to automati-
cally check if an IoT application’s data practice follows its privacy policy. It can
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help app users, app markets, and regulators efficiently detect privacy violations.
Meanwhile, app developers could leverage it to identify unintended data use or
inappropriate privacy policies.

For future work, we recognize that different types of privacy information
pose different levels of risk. For instance, sharing weather data is significantly
less risky than sharing heath-related sensor data. Therefore, we will consider the
risk levels and generate comprehensive compliance and risk profiles for IoT apps.

7 Related Work

Our work is related to three research directions in the literature, i.e., IoT app
security, app code analysis, and privacy policy analysis.

IoT App Security and Privacy. Most of the existing work focuses on iden-
tifying security vulnerabilities in IoT applications. For example, Celik et al.
discovered privacy leaks in IoT apps [10] and proposed mechanisms to verify or
enforce security policies [11,12]. Another research direction is to discover side-
channel privacy leaks [41,44]. [9] identified privacy leakage in SmartThings apps
and [6] proposed to alert the user when the privacy preferences are violated.
Finally, some recent work proposed to capture IoT traffic to validate compliance
of data disclosure to the privacy policy [40] or check IoT app descriptions against
the data practices described in privacy policies [26]. While they are related to our
work, they either took manual analysis approaches or focused on one aspect of
private information (e.g., 11 apps in [40] and [26] studied voice assistants only).

App Code Analysis. Code analysis has been widely used to study Android app
permissions, such as mapping API calls to permissions to analyze the access con-
trol models [7,50] and identify the overprivileged apps [1,18], locating potential
data leaks by analyzing the APIs, permissions, and protected resources [19,52],
etc. SuSi [34] proposed a machine learning approach to identify the sources
of sensitive data and sinks. Code analysis tools (e.g., AndroShield [2]) con-
structed tainted paths from the identified sources to sinks. Recently, AppCen-
sus [16] and Han [21] proposed to identify sensitive data flows based on sensitive
resources protected by permissions. These app code analysis approaches adopt
static [32,51,52], dynamic [30], and hybrid analysis [16].

Privacy Policy Analysis. Existing works on privacy policy analysis such as
MAPS [51], PolicyLint [3] and PoliCheck [4] focused mainly on mobile applica-
tions. IoTPrivComp is among the first to study privacy compliance gaps in IoT
applications. As reported in [3], prior approaches using bigrams [51] or regu-
lar expressions [31] for policy analysis struggled with the accurate detection of
negative statements. Similar to PolicyLint [3], IoTPrivComp uses sentence-level
NLP and ontologies to detect negations in complex sentences. Finally, previous
works mostly rely on hand-annotated corpora datasets and rules [22,42,51,52],
which have limited coverage and scalability. IoTPrivComp leverages state-of-the-
art machine learning methods to automatically annotate data and entity objects
in a large corpus of 2,050 privacy policies.
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8 Conclusion

In this paper, we present a large-scale measurement study on the privacy com-
pliance of IoT apps. To conduct this measurement study, we first develop IoT-
PrivComp, which analyzes the code and privacy policies of IoT apps to find
compliance gaps between the actual and declared data practices. The IoTPriv-
Comp framework consists of a new ontology for IoT app privacy policies, a new
sink identification module SuSi-MNB-IoT, a data flow analysis module, and a
new consistency analysis module PoliCheck-BERT-IoT for detecting inconsistent
privacy disclosures.

Using IoTPrivComp, we found that a vast majority of the analyzed apps had
data practices that were inconsistent with their privacy disclosures. The most
common inconsistencies are the omitted disclosures where the privacy policy
does not mention the privacy practice. Despite the privacy regulations in place,
we still found significant compliance gaps. Our results show that there is a strong
need for strict regulations that are thoroughly enforced in the app stores.
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1565570, DGE-1922649, and the Ripple University Blockchain Research Initiative. The
authors would like to thank the anonymous reviewers for their valuable comments and
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A Ontologies

We have 121 entity ontology pairs, 52 data ontology pairs, and 7,592 synonyms in
the IoT-specific ontology. Table 8 shows parts of the data and entity ontologies.

Table 8. Examples from the Data and Entity Ontologies.

Data ontology

(‘information’, ‘personal’), (‘information’, ‘non-personal’), (‘personal’, ‘email address’),

(‘personal’, ‘account user info’), (‘personal’, ‘phone’), (‘personal’, ‘address’)

(‘personal’, ‘voice’), (‘personal’, ‘photo’), (‘personal’, ‘social media information’),

(‘personal’, ‘audio’), (‘personal’, ‘video’), (‘personal’, ‘account details’),

(‘personal’, ‘health and wellness’), (‘non-personal’, ‘music’), (‘non-personal’, ‘router’),

(‘non-personal’, ‘sound’), (‘non-personal’, ‘payment’), (‘non-personal’, ‘motion’),

(‘non-personal’, ‘geographical location’), (‘non-personal’, ‘user patterns and usage’),

(‘non-personal’, ‘weather’), (‘non-personal’, ‘calendar’), (‘non-personal’, ‘camera’),

(‘non-personal’, ‘organization info’), (‘non-personal’, ‘sim serial number’)

(‘non-personal’, ‘device info’), (‘non-personal’, ‘nfc’), (‘non-personal’, ‘text message’)

Entity ontology

(‘entity’, ‘third-party’), (‘entity’, ‘we’), (‘third-party’, ‘social-media’)

(‘third-party’, ‘service-providers’), (‘third-party’, ‘payment-providers’),

(‘social-media’, ‘LinkedIn’), (‘social-media’, ‘Twitter’), (‘social-media’, ‘Facebook’),

(‘third-party’, ‘analytic-service’), (‘service-providers’, ‘Microsoft’),

(‘payment-providers’, ‘PayPal’), (‘analytic-service’, ‘google’)
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