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Abstract—Local Transformer-based classification models have
recently achieved promising results with relatively low com-
putational costs. However, the effect of aggregating spatial
global information of local Transformer-based architecture is not
clear. This work investigates the outcome of applying a global
attention-based module named multi-resolution overlapped at-
tention (MOA) in the local window-based transformer after each
stage. The proposed MOA employs slightly larger and overlapped
patches in the key to enable neighborhood pixel information
transmission, which leads to significant performance gain. In
addition, we thoroughly investigate the effect of the dimension
of essential architecture components through extensive experi-
ments and discover an optimum architecture design. Extensive
experimental results CIFAR-10, CIFAR-100, and ImageNet-1K
datasets demonstrate that the proposed approach outperforms
previous vision Transformers with a comparatively fewer number
of parameters. The source code and models are publicly available
at: https://github.com/krushi1992/MOA-transformer

I. INTRODUCTION

Transformer-based architecture has achieved tremendous
success in the field of natural language processing (NLP)
[37] [7]. Inspired by the great success of transformer in the
language domain, vision transformer [8] has been proposed
and achieved superior performance on the ImageNet dataset.
The vision transformer splits the image into patches and feeds
into the transformer, the same way as words token in NLP,
and passes through several multi-head self-attention layers of
the transformer to establish the long-range dependencies.

Unlike the word token, a high-resolution image contains
more pixels compared to words in the passage. This leads
to an increase in the computation cost as self-attention in
the transformer has quadratic complexity. To alleviate this
problem, various local attention-based transformers [24] [36]
[48] have been proposed with a linear computation complexity.
However, all the proposed approaches could not establish long-
range dependencies and some of them are very complicated.

To overcome these issues in the local transformers, we
develop a very simple module, named multi-resolution over-
lapped attention(MOA), to generate global features. The pro-
posed module only consists of multiplication and addition
operations and is embedded after each stage in the transformer
before the downsampling operation. As the module is added
only after each stage instead of each transformer layer, it does
not add much computation cost and the number of parameters.
Our experiments show that aggregating the resultant features

Fig. 1. Graph of accuracy vs. number of parameters for various local
transformer-based models. It shows that our all versions of the model: MOA-T,
MOA-S, and MOA-B have higher accuracy and comparatively fewer number
of parameters.

of this module to the local transformer establish the long-range
dependencies and hence significantly increases the accuracy in
contrast to the total number of parameters as shown in Figure 1

Our proposed MOA module takes the output generated by
the group of local window-based attention as an input. It first
converts it to a 2D feature map, and projects it to a new
low-dimension feature map. Similar to ViT [8], the projected
feature map is divided into a fixed number of patches except
for a few modifications. In contrast to ViT [8], the patch sizes
of query and key-value are different. The resolution of the
patches in the query is the same as the window size used
in the local transformer layer. In contrast, the resolution of
patches in key-value is slightly larger than the query patch
and overlapped. The hidden dimension of the MOA global
attention module is kept the same as the previous transformer
layer. Therefore, the resultant features are directly aggregated
to the output of the previous transformer layer.

Extensive experiments show that keeping the key-value
patches slightly larger with overlap to each other leads to
significant performance gain due to small information ex-
change between two neighborhood windows. In short, our
method exploits the neighborhood information along with
global information exchange between all non-local windows
by embedding the proposed MOA mechanism in the local
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Fig. 2. The architecture of the MOA-T is composed of three stages. Each stage consists of a patch embedding/merging layer and local transformer block
along with a global multi-resolution overlapped attention module after each stage except the last stage. In the beginning patch, a partition layer is included
to divide the image into a fixed number of patches.

transformer.
The contributions of the proposed approach are summarized

as below:
1) We propose a multi-resolution overlapped attention

(MOA) module that can be plugged in after each stage
in the local Transformer to promote information com-
munication along with nearby windows and all non-local
windows.

2) We thoroughly study the impact of global information
in local transformer using the proposed MOA module.

3) We investigate the effect of the dimension of essential
architecture components through extensive experiments
and discover the optimum architecture for image classi-
fication.

4) We train the proposed model from scratch on CIFAR-
10/CIFAR-100 [19] and ImageNet-1K [6] datasets and
achieve state-of-the-art accuracy using a local trans-
former.

II. RELATED WORK

A. Convolutional Neural Networks

After the revolutionary invention of AlexNet [20], convolu-
tional neural network (CNN) has become a standard network
for all computer vision tasks, such as image classification
[25] [29], object detection [22], tracking [47], segmentation
[13] [28], counting [31], and image generation [41]. Various
versions of CNNs have been proposed to improve the per-
formance by making it deeper and/or broader, such as VGG
network [33], ResNet [12], Wide-ResNet [45], DenseNet [17],
etc. There are also several works proposed to make it more
efficient by modifying the individual convolutional layer, such
as dilated convolution [42], depth-wise separable convolution
[4], group convolution [20], etc. In our work, we employ the
convolutional layer along with the transformer layer to reduce
the overall dimension of the feature map. Our experiments
show that the combination of convolutions and multi-head
attention increases the performance.

B. Self Attention in CNN

Self-attention mechanisms have become ubiquitous in the
field of computer vision tasks. Various works [10] [39] [2]
[40] [32] [9] [49] [26] have been proposed that utilize either

channel-based or position based self-attention layers to aug-
ment the convolution network. Non-local network [39] and
PSANet [49] model the spatial relationship between all the
pixels in the feature map and are embedded the attention
module after each block in CNN, whereas SENet [16] es-
tablishes a channel relationship in the convolution network by
squeezing the features using global average pooling. CBAM
[40], BAM [27] and dual attention network [9] employ both
channel and position based attention mechanisms separately,
then combine the resultant features from both attention mod-
ules using either element-wise addition or concatenation and
uses the resultant features into convolution output after each
stage, whereas GCNet [2] combines SENet [16] and non-
local network [39] together and propose the hybrid attention
mechanism that aggregates the information of both channel
and spatial relationships in the same attention module.

C. Vision Transformers

Similar to AlexNet, vision Transformer (ViT) [8] has
changed the perspective of researchers towards solving com-
puter vision problems. Since then, many vision transformer-
based networks have been proposed to improve accuracy or
efficiency. The ViT needs to be pre-trained on large datasets
such as JFT300M [34] to achieve high performance. DeiT
[35] solves this problem by student-teacher setup, substan-
tial augmentation, and regularization techniques. To train the
transformer on the mid-sized dataset like ImageNet-1K from
scratch, the token-to-token vision transformer [43] recursively
aggregate neighboring tokens (patches) into one token (patch)
to reduce the number of tokens. A Cross-ViT [3] comes up
with a dual branch approach with multi-scale patch size to
produce robust image features and pyramid vision Transformer
(PVT) [38] introduces a multi-scale-based spatial dimension
design similar to FPN [23] in CNN and demonstrated good
performance. Furthermore, PVT introduced a spatial reduction
in key to reduce the computation cost in multi-head attention.

Various local attention-based transformers have been intro-
duced to alleviate the quadratic complexity issues [36] [24]
[48]. The HaloNet [36] introduces the idea of a slightly larger
window of key than the query in a local attention mechanism
and proves its effectiveness through various experiments. In
our model, the key is also calculated using a slightly larger
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Fig. 3. Patch creation for query embedding is shown in the blue, and key/value
is shown in the red for feature map size 9× 9 and window size 3× 3. Blue
patches have the same size as the window and are non-overlapped to each
other. In contrast, red patches are larger and slightly overlapped with each
other. Appropriate padding is applied while creating the key-value patches.

patch, but in the context of global attention, the idea of a larger
key is different from the HaloNet. A swin Transformer [24]
proposes a non-overlapping window-based local self-attention
mechanism to avoid quadratic complexity and achieve com-
parable performance and aggregated nested Transformer [48]
come with the multi-scale approach with block-aggregation
mechanism after each stage.

Some Transformer-based works have been proposed to
utilize both local and global features [11] [5]. A Transformer
in Transformer (TNT) [11] further divides the local patches
(visual sentences) into smaller patches (visual words). The
MHA on visual words embedding is calculated and aggregated
to the sentence embedding to establish the global relationship.
The twin Transformer [5] is quite the same as ours. However,
global attention is applied after each local Transformer layer,
increasing the computation cost significantly. In contrast, we
apply it after each stage, and we have slightly larger and
overlapped patches in key in multi-head attention. The pro-
posed network efficiently utilizes global information in the
local transformer and achieves higher accuracy than the above-
mentioned transformer-based models.

III. PROPOSED METHOD

We aim to provide global information exchange across all
windows in the local transformer by increasing the minimal
computation cost and a number of parameters. An overview of
our proposed model is shown in Figure 2, which shows MOA
module after each stage. All stages have a similar architecture
design, including patch merging layer and local transformer
block except the first stage. The first stage consists of patch
partition, linear embedding layer, and local transformer block.

Our global MOA module is applied between each stage before
the patch merging layer.

Specifically, the model takes an RGB image as an input
and splits it into fix number of patches. Here each patch is
treated as a token. In our experiment on the ImageNet dataset,
we set the patch size to 4 × 4, which leads to 4 × 4 × 3 =
48 feature dimensions for each patch. These row features are
projected to a specific dimension C using the patch embedding
layer in the first stage. The resultant features are then passed
through consecutive stages consisting of patch merging layer,
local transformer block, and MOA module in-between each
stage. Unlike swin Transformer [24], our Transformer block
employs the same self-attention mechanism as ViT [8] without
any shifted window approach. Similar to swin Transformer,
the number of tokens is reduced, and the output dimension
is doubled in the patch merging layer after each stage. For
example, the resolution after the first, second and third stage
is H

2 × W
2 , H

4 × W
4 , and H

8 × W
8 , respectively. The average

pooling layer is inserted at the end of the last stage, followed
by a linear layer to generate a classification score. The detailed
explanation of each element of architecture are as follows:

A. Patch embedding layer

It is a basic linear embedding layer applied to the row
features of patches to project it to a specific dimension C.

B. Patch merging layer

Patch merging layer reduces the number of tokens by
concatenating the features of 2 × 2 neighboring patches and
doubles the number of hidden dimensions by applying a linear
layer on the concatenated 4C - dimensional features.

C. Local Transformer Block

The local transformer block consists of a local window-
based standard multi-head attention module, followed by a
two-layer MLP with GELU non-linearity. A layer norm is used
before each multi-head attention module and each MLP with
residual connection after each module.

D. Multi-resolution Overlapped Attention Block

To utilize the advantage of global information in local
transformer, we apply a global attention module named multi-
resolution overlapped attention (MOA) in-between each stage.
The architecture of the MOA mechanism is the same as the
standard multi-head attention except for a few modifications.
Similar to standard MHA, it first divides the feature map into
the fixed size of patches. However, unlike the standard MHA,
patches for generating key and value embeddings are slightly
larger and overlapped, while the patches for query embedding
are non-overlapped as shown in Figure 3.

As shown in the Figure 3, the input to MOA block is
of size W × H× hidden dim, Where W = W

2 , W
4 or W

8 ,
H = H

2 , H
4 or H

8 , and hidden dim = 96, 192, or 384.
Calculating query, key, and value embeddings directly from
the input is quite expensive in computation. For example, in
context to the ImageNet dataset, the feature map size of the
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input to MOA block after the first stage is 56 × 56 × 96.
Deriving query embedding directly from the input feature with
a patch size 14 will lead to the resultant feature of dimension
14× 14× 96 = 18816. Therefore, we first reduce the hidden
dimension with factor R by applying 1×1 convolution, which
reduces the computation cost. The resultant feature dimension
after applying the convolution is H × W × hiddendim

R . This
leads to feature size in one query patch is 14×14× hiddendim

R ,
which is projected to the one-dimensional vector of size:
1×1×hiddendim. The total number of the query is H

14 ×
W
14 .

Similarly, the key and value vector are projected, but the patch
size is slightly larger than the query as shown in Figure 3. In
our model, we set the key-value patch size to 16. Therefore,
the number of key-value will be according to the equation:
(H−16+(2×padding)

stride + 1, W−16+(2×padding)
stride + 1). Multi-head

attention is applied to this query, key, and value embedding,
followed by two-layer MLP with GELU non-linearity in be-
tween. Similar to the Transformer block, layer norm is applied
along with residual connection after each MOA module. At
last, on the resultant features, 1 × 1 convolution is applied,
followed by broadcast addition of resultant features with the
output of the previous transformer block, which contains the
local information.

E. Relative Position Index

We use relative position bias B ∈ RM2×N2

, as used by [1]
[15] [14] [30] , in the heads of both local and global attentions
during similarity computation:

Attention(Q,K, V ) = Softmax(
QKT

√
d

+B)V (1)

where Q ∈ RM2×d is a query matrix, K,V ∈ RN2×d are
the key and value matrices; d is the hidden dimension, M2 is
the total number of patches in the queue and N2 is total the
number of patches in the key.

F. Architecture Detail

By following the previous works [24] [5], we build three
versions of the model: MOA-T, MOA-S, and MOA-B for the
ImageNet dataset and only two versions of the model: MOA-
T and MOA-B for the CIFAR -10/100 dataset as it is quite
smaller. Table I shows the architecture configurations for
the CIFAR and the ImageNet datasets. In the CIFAR based
models, both MOA-T and MOA-B contain the same number
of Transformer layers: 12, but have a different number of
hidden dimensions. In context to the ImageNet based models,
the total number of layers for MOA-T and MOA-S is 12
and 24 respectively, but the hidden dimension is kept the
same, whereas MOA-S and MOA-B have the same number
of Transformer layers: 24, with contrast hidden dimensions
96 and 124 respectively.

IV. EXPERIMENTAL EVALUATIONS

We verify our model through extensive experiments on
CIFAR-10/CIFAR-100 and ImageNet-1K for image classifica-

tion. We design three architecture versions: MOA-T, MOA-S,
and MOA-B, for the classification tasks.

A. CIFAR-10/100 Results

CIFAR-10 and CIFAR-100 datasets consist of 50,000 train-
ing and 10,000 test images of resolution 32 × 32 with the
total number of classes 10 and 100, respectively. We train the
network for 300 epochs using AdamW [18] optimizer with an
initial learning rate of 0.009 and weight decay of 0.05. We
utilize a cosine decay learning rate schedular along with 20
warm-up epochs. We implemented two models: MOA-T and
MOA-B for the CIFAR dataset with total batch-size 128 and
stochastic drop-rate 0.2 [21].

Table II shows the performance of our model on the
CIFAR-10 and CIFAR-100 datasets. We presented only two
models with the same number of layers but with different
hidden dimensions for this dataset. As shown in the table,
it can be seen that both models outperform all the previous
Transformer-based models by a significant amount. It im-
proves the performance by 0.59% and 0.98% on CIFAR-10
and 0.56% and 0.23% on CIFAR-100 for the Tiny and Base
models, respectively, compared to Swin Transformer. For the
Base model, our model achieves state-of-the-art accuracy on
local vision Transformer with a comparatively fewer number
of parameters and GFLOPs. The accuracy of other models is
reported by training the models from scratch with the same
training setting reported in the papers [24] [35] [38].

B. ImageNet Results

ImageNet-1K dataset consists of around 1.28M training
images and 50K validation images with 1000 classes. We
resize all the images to the resolution 224 × 224 during
training. We follow the same training technique, like Swin and
Twin, and train the network for 300 epochs using AdamW [18]
optimizer with a cosine learning rate schedular and 20 warmup
epochs. We keep the batch-size 128 for MOA-T and 64 for
MOA-S and MOA-B models per GPU. We employ a total of
four GPUs together during training leads to a total batch-size
512 for MOA-T and 256 for MOA-S and MOA-B models. We
utilize the same augmentation technique used by [24] such as
a mixture of cutmix [44] and mixup [46] and regularization
technique stochastic drop rate. We set the drop rate [21] of 0.2,
0.3, and 0.5 respectively for MOA-T, MOA-S, and MOA-B.

Table III shows our model’s result and a similar
Transformer-based model on the ImageNet-1K classification
task. Our proposed models: MOA-T, MOA-S, and MOA-
B, achieve higher accuracy than most of the Transformer-
based models with significant parameter reduction. MOA-T
outperforms Twin-S and Swin-T by 0.34% with around 22%
fewer parameters. Our MOA-S improves the performance by
0.5% and 0.3% compared to Swin-S and Twin-M respectively,
even with the lower batch size during training. Our MOA-B
achieves the state-of-the-art accuracy of 83.7% on ImageNet-
1K with comparatively fewer parameters with a smaller batch
size than the remaining vision transformers. Our model in-
creases the computation cost by a negligible amount, but the
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TABLE I
MODEL CONFIGURATION FOR CIFAR/IMAGENET DATASET

Model Dataset Input-Size Window-Size No. of Layers No. of Heads Hidden Dim Patch -Size
MOA-T CIFAR 32× 32 4× 4 [2, 2, 6, 2] [3, 6, 12, 24] [96, 192, 384, 768] 1
MOA-B CIFAR 32× 32 4× 4 [2, 2, 6, 2] [4, 8, 16, 32] [128, 256, 512, 1024] 1
MOA-T ImageNet 224× 224 14× 14 [2, 2, 8] [3, 6, 12] [96, 192, 384] 4
MOA-S ImageNet 224× 224 14× 14 [2, 2, 20] [3, 6, 12] [96, 192, 384] 4
MOA-B ImageNet 224× 224 14× 14 [2, 2, 20] [4, 8, 16] [128, 256, 512] 4

TABLE II
RESULTS ON CIFAR - 10/100

Model CIFAR-100(%) CIFAR-10(%) Parameters
Deit-T 70.33 89.2 5M
PVT-T 72.80 91 13M
Swin-T 78.07 94.41 27.5M
MOA-T 78.63 95 30M
DeiT-B 71.54 93 85M
PVT-B 70.1 89.87 61M
Swin-B 78.45 94.47 86.7M
MOA-B 78.68 95.05 53M

TABLE III
RESULTS ON IMAGENET-1K

Model Accuracy(%) Parameters GFLOPs
Deit-Small/16 79.9 22.1M 4.6

CrossViT-S 81.0 26.7M 5.6
T2T-ViT-14 81.5 22M 5.2
PVT-Small 79.8 24.5M 3.8

TNT-T 73.9 6.1M 1.4
Twins-PCPVT-S 81.2 24.1M 3.8

Swin-T 81.3 29M 4.5
Twins-SVT-S 81.7 24M 2.9

MOA-T 82.05 17M 4.8
T2T-ViT-19 81.9 39.2M 8.9

PVT-Medium 81.2 44.2M 6.7
TNT-S 81.5 23.8M 5.2

Twins-PCPVT-B 82.7 43.8 6.7
Swin-S 83.0 50M 8.7

Twins-SVT-B 83.2 56M 8.6
MOA-S 83.5 39M 9.4

ViT-Base/16 77.9 86.6M 17.6
Deit-Base/16 81.8 86.6M 17.6
T2T-ViT-24 82.3 64.1M 14.1
CrossViT-B 82.2 104.7M 21.2
PVT-Large 81.7 61.4M 9.8

TNT-B 82.9 65.6M 14.1
Swin-B 83.3 15.4M 15.4

Twins-SVT-L 83.7 99.2M 15.1
MOA-B 83.7 68M 16.2

performance improvement and parameter reduction are highly
rewardable.

V. ABLATION STUDY

In this section, we conduct ablation experiments to under-
stand the effect of the dimension of each component, such
as window size, the overlapped area between the key-value
patches, and the reduction factor in global attention, in our
model. We employ the Tiny model to perform all ablation

TABLE IV
RESULTS WITH DIFFERENT WINDOW-SIZE ON IMAGENET

Window-Size Dataset No. of Stage Accuracy Parameters
2× 2 CIFAR -100 4 76.04 29.7M
4× 4 CIFAR-100 4 78.61 30M
8× 8 CIFAR-100 3 76.02 16M
7× 7 ImageNet 4 81.4 31M

14× 14 ImageNet 3 82.07 17M
28× 28 ImageNet 2 78.2 6M

experiments, and all the experiments are performed either on
CIFAR-100 or ImageNet dataset. The training configurations
remain the same as reported in the experiment section.

A. Window-size

The sequence length of the local-Transformer is one of
the essential factors on which computation cost relies. As
the sequence length increases, computation cost in the self-
attention mechanism increases as well. In a local vision Trans-
former, sequence length depends on the window size. There is
always a trade-off between the accuracy and computation cost
based on the sequence length. We perform experiments with
various window sizes in our model and find that 4 × 4 and
14×14 window size works well on CIFAR-100 and ImageNet
datasets, respectively, as shown in Table IV. Furthermore,
we remove the stages where the window size is greater than
the feature map size to significantly reduce the number of
parameters.

B. Overlapped Portion

To initiate the neighborhood information transmission, we
propose to use slightly larger and overlapped keys. To inves-
tigate the effect of the portion of the overlapped area, we
perform experiments with different percentages of overlapped
portions in keys as shown in Table V. It can be seen from the
results that the performance is increased in terms of accuracy
as the percentage decreases, which means only slight informa-
tion exchange between the neighborhood windows are required
to improve the performance. Furthermore, fewer overlapped
portions decrease the sequence length, which reduces the
number of parameters and GFLOPs.

C. Reduction

Before the MOA global attention, the hidden dimension is
reduced to decrease the number of parameters and computation
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TABLE V
RESULTS ON CIFAR-100 WITH DIFFERENT PERCENTAGE OF THE

OVERLAPPED PORTION

% Overlap Accuracy Parameters
17% 78.63 30.05M
33% 78.52 30.06M
50% 78.38 30.08M
66% 78.38 30.59M

TABLE VI
RESULTS WITH DIFFERENT WINDOW-SIZE ON CIFAR-100

Reduction Accuracy Parameters
8 78.38 31.67M

16 78.34 30.59M
32 78.63 30.06M
64 78.51 29.78M

num-heads 78.41 31.43M

TABLE VII
SIGNIFICANCE OF GLOBAL ATTENTION AND OVERLAPPED PATCHES

Model Accuracy Parameters
Without Global 75.56 27M

With Global (ViT) 78.34 30.59M
With Global (Ours) 78.63 30.06M

cost. Table VI shows the performance of our model with
various values of R. From the result, it is evident that R =
32 achieves the best result with comparatively less number of
parameters and computation cost than a smaller value of R.

D. Effect of Overlapped Key-Value

To verify the effect of overlapped and larger key-value
patches, we train the model without overlapping patches
and compare the results. Furthermore, we also conduct an
experiment without applying global attention in-between each
stage to verify the significance of global information exchange.
From the result in Table VII, it can be seen that including
global attention and overlapped key-value patches achieve the
best performance.

VI. CONCLUSION

The paper has investigated the effect of aggregating global
information in local Transformer after each stage and neigh-
borhood pixel information transmission. We have also pro-
posed a multi-resolution overlapped attention (MOA) module
that can be plugged in after each stage in the local transformer
to promote information communication along with nearby
windows. Our results show that both types of features: global
and local, are crucial for image classification. As a result,
exploiting both features leads to significant performance gain
on the standard classification datasets such as CIFAR10/100
and the ImageNet with comparatively fewer parameters.
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