
 

 

 

 

THE EFFECTS OF MAC LAYER PARAMETERS ON QUALITY 

OF SERVICE PROVIDED BY 802.11E 

 

A THESIS IN 
Computer Science 

 

Presented to the Faculty of the University 
 of Missouri-Kansas City in partial fulfillment of  

the requirements for the degree 
 

MASTER OF SCIENCE 

by 
DANIEL TANGYI FOKUM 

 

B.A., Park University, 2000 

 

Kansas City, Missouri 
2005 





THE EFFECTS OF MAC LAYER PARAMETERS ON 

QUALITY OF SERVICE PROVIDED BY 802.11E 

 
Daniel Tangyi Fokum, Candidate for the Master of Science Degree 

University of Missouri-Kansas City, 2005 
 
 

ABSTRACT 
 
 
 

       The IEEE 802.11e standard was written to provide quality of service over 

802.11a and 802.11b networks.  In this thesis we evaluate the performance of the 

802.11e protocol over an 802.11g network.  We investigate the effects of the 

MAC parameters on the quality of service provided by the network particularly in 

saturated conditions.  Based on our research we conclude that the arbitration 

interframe space and the minimum and maximum contention window sizes have 

the greatest effect on quality of service.  Therefore, stations ought to be able to 

adjust these parameters, particularly the contention window sizes, in saturated 

conditions.  In this thesis we present a mechanism called AEDCF-CW/PF to 

make these adjustments. 

This abstract of 109 words is approved as to form and content. 

_________________________________________ 

Cory Beard, Ph.D. 
Associate Professor 

Department of Computer Science and Electrical Engineering 

ii 



The undersigned, appointed by the Dean of the School of Computing and 

Engineering have examined a thesis titled “The Effects of MAC Layer 

Parameters on Quality of Service Provided by 802.11e,” presented by Daniel T. 

Fokum, candidate for the Master of Science degree, and hereby certify that in 

their opinion it is worthy of acceptance. 

 
___________________________________                        ________________ 
Cory Beard, Ph.D.  Date 
Department of Computer Science and 
 Electrical Engineering 
 

___________________________________                        ________________ 
Ken Mitchell, Ph.D.  Date 
Department of Computer Science and  
 Electrical Engineering 
 

___________________________________                        ________________ 
Vijay Kumar, Ph.D.  Date 
Department of Computer Science and 
 Electrical Engineering 
 

 



CONTENTS 

ABSTRACT ......................................................................................................................... ii 

ILLUSTRATIONS...........................................................................................................vii 

TABLES .............................................................................................................................. ix 

TABLES .............................................................................................................................. ix 

ACKNOWLEDGMENTS .............................................................................................. x 

Chapter 

1. INTRODUCTION ....................................................................................................... 1 

2. OVERVIEW OF THE CONTENTION PERIOD ACCESS FUNCTIONS 

................................................................................................................................................ 4 

DCF................................................................................................................................ 5 

DCF Operation ....................................................................................................... 5 

EDCF............................................................................................................................. 8 

EDCF Operation ..................................................................................................12 

3. REVIEW OF PREVIOUS RESEARCH ...............................................................14 

4. RESEARCH MOTIVATION ..................................................................................30 

5. RESEARCH RESULTS .............................................................................................33 

Research Goals ...........................................................................................................33 

DCF Simulation Approach ......................................................................................34 

Results of Basic DCF Simulation.......................................................................36 

 iv



Results of Frame Dropping DCF Simulation..................................................38 

EDCF Simulation Approach ...................................................................................40 

Results of Basic EDCF Simulation....................................................................44 

Results of EDCF Simulation with Random Frame Dropping.....................49 

Results of EDCF Simulation with Varying Retry Limits...............................50 

AEDCF Simulation Approach................................................................................51 

Results of Adaptive EDCF Simulation.............................................................53 

Results of Adaptive EDCF Simulation with Varying Persistence Factor ..55 

Results of Adaptive EDCF Simulation with Varying Persistence Factor and 

CWmax.......................................................................................................................57 

Impact of Changes ................................................................................................64 

6. CONCLUSION............................................................................................................66 

Appendix 

A. DCF CODE LISTING..............................................................................................71 

B. DCF WITH RANDOM FRAME DROPPING CODE LISTING................80 

C. EDCF CODE LISTING...........................................................................................91 

D. EDCF WITH RANDOM FRAME DROPPING CODE LISTING..........105 

E. EDCF WITH DIFFERENT FRAME RETRY LIMITS CODE LISTING

............................................................................................................................................121 

F. ADAPTIVE EDCF CODE LISTING.................................................................135 

v 



G. ADAPTIVE EDCF WITH VARYING PERSISTENCE FACTOR CODE 

LISTING..........................................................................................................................151 

H. ADAPTIVE EDCF WITH VARYING PERSISTENCE FACTOR CODE 

AND CWMAX CODE LISTING..................................................................................168 

REFERENCES...............................................................................................................185 

VITA .................................................................................................................................189 

 

vi 



ILLUSTRATIONS 

Figure Page 
1. Relationships between Interframe Spaces [1]............................................................ 8 

2. Relationships between Interframe Spaces [17]........................................................12 

3. System Response Times for Basic DCF...................................................................37 

4. Queue fill for Three Sources using DCF .................................................................37 

5. Frame Drop Probability for DCF .............................................................................38 

6. Basic DCF versus DCF with Frame Dropping ......................................................39 

7. System Response Time for Basic EDCF .................................................................45 

8. Response Time Comparison for EDCF at Low Loads ........................................46 

9. Comparison of EDCF and DCF...............................................................................47 

10. Frame Drop Probability for EDCF .......................................................................48 

11. Comparison of System Response Times for Basic EDCF and EDCF with 

Random Frame Dropping...............................................................................................50 

12. System Response Time basic EDCF versus EDCF with Different Frame 

Retry Limits ........................................................................................................................51 

13. System Response Time Basic EDCF versus Adaptive EDCF ..........................54 

14. Frame Drop Probabilities for Adaptive EDCF....................................................55 

15. AEDCF with Varying Persistence Factor versus Basic AEDCF......................56 

16. Frame Drop Probability for AEDCF with Varying PF ......................................57 

17. System Response Time Basic EDCF versus AEDCF-CW/PF ........................59 

18. System Response Time AEDCF versus AEDCF-CW/PF................................59 

vii 



19. Response Time Comparison for Traffic Classes Under AEDCF-CW/PF ....60 

20. Comparison of AEDCF-CW/PF and EDCF at Low Loads ............................61 

21. Frame Drop Probabilities for AEDCF-CW/PF..................................................62 

22. System Response Time Variance for AEDCF-CW/PF and EDCF................63 

23. System Response Time Variance AEDCF and AEDCF-CW/PF ...................64 

24. System Response Time for EDCF, AEDCF and Their Variants .....................65 

25. Collision Probability for DCF, EDCF and AEDCF...........................................67 

viii 



TABLES 

Table Page 
1. MAC Parameters used for DCF Simulations ..........................................................35 

2. MAC Parameters used for EDCF Simulations .......................................................42 

 

ix 



ACKNOWLEDGMENTS 

 

 

The author wishes to thank Dr. Cory Beard for his comments and supervision of 

the thesis.  The author would also like to thank the members of the committee 

for their time in reviewing this thesis.  Finally, the author would also like to thank 

his family and friends for encouraging him and praying for him as he undertook 

this work. 

 

x 



 

CHAPTER 1 

INTRODUCTION 
 

 

       In the last few years wireless networks based on the Institute of Electrical 

and Electronics Engineers (IEEE) 802.11 standard have become more prevalent 

due to their low cost of implementation, and the IEEE 802.11 standard’s 

interoperability with the existing Ethernet standard. 

       The 802.11 standard was developed by the IEEE to allow transfer of data 

over wireless networks.  In addition to the original 802.11 standard several 

extensions of 802.11 exist.  These extensions include 802.11a, 802.11b, and 

802.11g.  Each of these standards provides different data rates over different 

physical layers, but they all use the same medium access control (MAC) functions.  

In chapter 2 we will discuss some of these MAC functions in greater detail. 

       The 802.11 standard was originally proposed in 1997.  It was designed to 

provide data rates of one or two megabits per second (Mbps) over the 2.4 GHz 

frequency band using either frequency hopping spread spectrum or direct 

sequence spread spectrum.  Since each of these modulation methods has 

different physical layer characteristics each modulation method also has different 

MAC layer parameters.   

       The 802.11a standard is an extension to the 802.11 standard.  It is supposed 

to provide data rates of up to 54 Mbps in the 5 GHz band.  Unlike basic 802.11, 

1  



this standard uses orthogonal frequency division multiplexing for modulating 

data. 

       The 802.11b standard is another extension to basic 802.11 that is sometimes 

known as Wi-Fi.  Since 802.11b operates in the 2.4 GHz band, it is backward 

compatible with 802.11; however, it provides speeds of up to 11Mbps.  Unlike 

basic 802.11, 802.11b uses a modulation method called complementary code 

keying (CCK). 

       In 2003 the IEEE approved yet another extension to the 802.11 standard 

called 802.11g.  This extension provides speeds of up to 54Mbps in the 2.4GHz 

band.  As a result, this standard is backward compatible with 802.11b, and 

consequently 802.11. 

       In spite of their ease of set-up, 802.11 networks have the following flaws: 

o One of the 802.11 MAC functions, the Point Coordination Function 

(PCF), is inefficient. 

o The MAC functions are unable to provide different levels of service to 

different traffic classes. 

o The 802.11 MAC functions use the wireless medium inefficiently. 

As a result of these flaws, the IEEE’s 802.11 working group commissioned a task 

group, called Task Group E (TgE), to develop a new 802.11 standard called 

802.11e that will provide quality of service over 802.11a and 802.11b networks. 

      Quality of Service (QoS) is a term used to define the different characteristics 

of a traffic flow.  Some of these characteristics include frame delay, jitter (the 

2 



amount of variation in frame delay), frame dropping probability, priority etc.  In 

this document we will evaluate the effects of the different 802.11g parameters on 

the quality of service that is enjoyed by a traffic class. 

        Our work is motivated by a gap that we see in today’s research literature --

most of the 802.11 products currently sold are 802.11 b/g compatible; however, 

there is little or no literature on 802.11e running over an 802.11g network.  In our 

review of the literature we did not find any papers on the performance of 802.11e 

over an 802.11g network.  This document will fill part of that gap. 

       Extending the 802.11 MAC for traffic classes to receive different levels of 

service will open up the opportunities for 802.11 WLANs.  For example these 

LANs may now be used within homes to deliver video or music to a remote 

device.  Outside of the home QoS-capable 802.11 LANs may be used to provide 

prioritization of emergency traffic, or to prioritize the delivery of video or audio 

data in a wireless hotspot. 

       The rest of this document is laid out as follows.  In chapter 2 we discuss the 

contention period access functions of 802.11 and 802.11e.  In chapter 3 we will 

review research that has already been done in the area of QoS over 802.11 

networks.  In chapter 4 we present our motivation for carrying out our research, 

and provide arguments for using simulation.  In chapter 5 we present our 

research methodology and results.  Finally we provide concluding remarks in 

chapter 6. 

3 



CHAPTER 2 

OVERVIEW OF THE CONTENTION PERIOD ACCESS FUNCTIONS 
 

 

       In this chapter we provide an overview of the different functions used by the 

802.11 Medium Access Control (MAC) for access to the medium during the 

contention period. 

       The 802.11 standard [1] defines the basic service set (BSS) as the building 

block of an 802.11 LAN.  If the service set contains two stations with no access 

point, that service set is called an independent basic service set (IBSS).  If the 

service set contains at least two stations with an access point, that service set is 

called a basic service set (BSS). 

       In an 802.11 network that contains an access point time is split into two 

types of periods -- a contention-free period (CFP) and a contention period (CP) -

- that alternate at regular intervals.  Together both of these periods constitute a 

superframe.  The 802.11 MAC defines two functions for access to the medium.  

The Point Coordination Function (PCF) is used by the access point (AP) during 

the contention-free period to poll stations that associated with the AP.  On the 

other hand the Distributed Coordination Function (DCF) is used by stations to 

gain access to the medium during the contention period. 

       The DCF is defined as the fundamental method of access to the medium, 

and must be implemented by all stations in a basic service set.  The PCF on the 

other hand has not been widely implemented in many of the 802.11 products that 

4 



are currently available [21].  Since this thesis focuses on medium access during the 

contention period we will not discuss the PCF further. 

 

 

DCF 

       DCF is a Carrier Sense Multiple Access/Collision Avoidance (CSMA/CA) 

method of access to the medium. 

 

 

DCF Operation 

       In its basic form, DCF operates as described in the following paragraphs.  

When a station has a frame to transmit it senses the medium until the medium 

has been found idle for a period of time known as the DCF Interframe Space 

(DIFS).  Once the medium has been found to be idle for a DIFS time, the station 

that wishes to transmit will pick a random number, w, between 0 and the current 

size of the contention window, CW.   After one slot time (the slot time is a time 

value that depends on the physical layer being used) the medium is sensed again.  

If the medium is found to be idle the backoff counter, w, is decremented.  If the 

medium is found to be busy, the backoff counter is “frozen” until the medium is 

found to be idle for a DIFS time.  At this time the backoff counter is restarted.  

Once the backoff counter reaches zero, the frame is transmitted.  When the 

receiving station receives the transmitted frame, it verifies that the frame was 

received correctly, and that no other stations were transmitting at the same time 

5 



the frame was received.  If both of these conditions are true, the destination 

station (Under 802.11 all stations correspond with the access point.  Stations 

cannot communicate directly.) sends an acknowledgement (ACK) frame to the 

sender after a period of time called a Short Interframe Space (SIFS). 

       If the sending station does not receive an ACK frame within an 

ACKTimeout time, the sending station assumes that a collision took place on the 

medium.  Following a collision, the sending station increases its contention 

window as follows: CWnew= ((CWold +1)*2) – 1, as long as CWnew is less than or 

equal to the maximum contention window, CWmax, defined for this PHY.  In 

addition to the contention window doubling procedure, the station also 

increments its retry counter by one to indicate the number of transmission 

attempts for this frame.  After this, the medium sensing and backoff processes 

described above are repeated.  This process continues until either an ACK is 

received, or the number of transmission attempts for this frame reaches the 

frame retry limit defined for this class of frames, or the frame exceeds its lifetime 

limit.  This time value is called the dot11MaxTransmitMsduLifetime in the 

802.11 standard [1].  This parameter refers to the amount of time from the 

initial transmission attempt of a frame, after which all transmission attempts for 

this MAC Service Delivery Unit (MSDU) shall cease.  In other words, the frame 

shall be dropped after this period [1]. 

       The second form of DCF is the RTS/CTS method.  When a station wishes 

to transmit a frame under this method, it senses the medium until the medium 

6 



has been found idle for a DIFS time.  Next the station broadcasts a Request to 

Send (RTS) frame to the station that it would like to communicate with.  If the 

Network Allocation Vector (NAV) at that station indicates that the medium is 

currently idle, that station will respond with a Clear to Send (CTS) frame after a 

SIFS time.  If the station that sent the RTS frame does not receive a response it 

assumes that a collision has occurred, and it invokes the backoff procedure that 

was described above.  The backoff will continue until either a CTS frame is 

received, or the number of transmission attempts for the RTS frame exceeds 

dot11ShortRetryLimit. 

       When the CTS frame is received, the station that sent the RTS frame will 

begin transmission of the data one SIFS time after the CTS frame is received.  

After the successful transmission of the data the receiving station shall respond 

with an ACK frame. 

       It is worth noting that the RTS/CTS procedure was developed to combat 

the hidden node problem1 in a wireless network.  In addition, all the control 

frames exchanged in the RTS/CTS method of access contain enough data such 

that the stations within the range of the corresponding stations know when the 

medium will be busy, and the duration of the transmission.  As a result all the 

stations that are within range of the corresponding stations set their NAV to 

                                                 
1 The hidden node problem occurs when a mobile station can “hear” 

transmissions from one station, but not another station in the same WLAN. 

7 



indicate that the medium is busy once a CTS frame is transmitted.  This is done 

so that the neighboring stations do not interrupt the transmission. 

       Figure 1 is presented in the 802.11 standard [1] to illustrate the relationships 

that exist between the IFS times. 

 

 

 

 

Figure 1: Relationships between 
Interframe Spaces [1] 

 

 

EDCF 

       As of October 24, 2005 the final 802.11e standard was not available on the 

IEEE’s 802.11 web site.  The 802.11e draft is currently with the Revisions 

Committee of the IEEE awaiting final approval and publication.  In the absence 

of the standard, the information that we have about the upcoming standard was 

8 



gleaned from several papers on 802.11e, as well as a document from the 802.11 

Task Group E website [17]. 

       The 802.11e MAC replaces the notion of a basic service set (BSS) with one 

of a QoS Basic Service Set (QBSS).  The presence of a QoS-capable access point 

(now called the hybrid coordinator (HC)) allows for the use of the hybrid 

coordination function during the contention-free periods of a superframe. 

       In [8] the 802.11e MAC is said to provide an Enhanced Distributed 

Coordination Function (EDCF) for access during the contention period, and a 

Hybrid Coordination Function (HCF) to support station polling.  HCF operates 

in both the contention-free and contention periods, hence it is said to be hybrid.  

HCF is analogous to the PCF in 802.11, while EDCF is analogous to DCF in 

802.11.  Unlike DCF, EDCF provides prioritization by allowing for different 

traffic classes called access categories (AC).  Each AC has a separate queue within 

each station along with different contention window parameters.  In addition, 

each access category has to sense the medium for a different interframe space 

time prior to beginning a transmission.  This time value is defined as an 

Arbitration Interframe Space (AIFS).  Each AIFS is equal to a DIFS time + 

k*aSlotTime, where k can potentially be zero.  It should be observed that the 

lower the value of k, the higher the AC’s priority, because the AC would have to 

sense the medium for a shorter time interval.  In addition to the new access 

functions described above, 802.11e replaces the 

dot11MaxTransmitMsduLifetime parameter with a new variable called 

9 



dot11MSDULifetime.  This variable is defined per access category, and it refers 

to the amount of time that a frame from a given access category can remain 

queued up.  Finally, [8] states that frame losses in 802.11e occur if the number of 

transmission attempts for a given frame exceeds either the short/long retry limit, 

or if the queuing delay for the frame exceeds the dot11MSDULifetime limit for 

this traffic class. 

       From [10] it is seen that the 802.11e MAC also has a new variable called 

TXOPlimit that defines the amount of time that an access category has access to 

the medium.  Once an access category wins access to the medium, it may 

continue to transmit frames separated by SIFS without sensing the medium for 

AIFS[AC], as long as the station does not use the medium for a period that 

exceeds TXOPlimit[AC].  In addition it is seen that the eight priorities defined by 

the 802.1D standard are mapped to four access categories in 802.11e.  Another 

enhancement of the 802.11e MAC is the fact that stations are now able to 

communicate directly with each other without necessarily involving the access 

point.  This feature is known as the Direct Link Protocol of 802.11e. 

       From [17] it is seen that if multiple queues within a station count down to 

zero simultaneously, a virtual collision occurs.  If a virtual collision occurs the 

transmission opportunity is handed to the AC with the highest priority, while the 

other AC execute the backoff algorithm.  When a virtual collision occurs the 

transmission attempt counter for each frame in the lower priority queues is not 

incremented to indicate that a collision occurred. 

10 



       The new 802.11e standard also implements one new feature that should help 

it use the medium more effectively [21].  This feature is called the group 

acknowledgement mechanism.  When this mechanism is used, a station may send 

several frames without waiting for individual acknowledgement of the frames.  

After the station has sent a burst of frames it will send out a group 

acknowledgement request (GroupAckReq).   The receiver will respond by 

sending a GroupAck frame that will list information on all the frames that were 

correctly received.  As with the basic ACK mechanism, both the GroupAckReq 

and GroupAck frames are separated by an SIFS interval.  If the GroupAck frame 

shows that any frames were not received correctly, the sender will try to resend 

those frames as long as it can do so (Recall that frames are dropped if the frame 

retry limit for those frames is exceeded, or if the frames have been in the queue 

for more than dot11MSDULifetime[i].) 

       In implementing the features listed above, TgE has solved the flaws of 

802.11 listed in chapter 1.  For example the EDCF function provides 

prioritization of traffic streams, while the direct link protocol and group ACK 

mechanism allow for more efficient use of the medium. 

       Figure 2 shows the relationships that exist between the interframe spaces 

under EDCF.  Observe the close similarities between this figure and figure 1. 

 

 

11 



 AIFS[j] 

AIFS[i] 

DIFS/AIFS
Contention Window 

Slot time 

Busy Medium 

Defer Access 

Next Frame

Select Slot and Decrement Backoff as long  

SIFS

PIFSDIFS/AIFS 

Immediate access when  

Medium is free >= DIFS/AIFS[i] 

as medium is idle 

Backoff-Window

 

Figure 2: Relationships between 
Interframe Spaces [17] 

 

 

EDCF Operation 

       In the basic access mode a QoS station (QSTA) will have at least four access 

category queues that contend for the medium independently.  Each AC queue 

will independently sense that that the medium is idle for the AIFS[i] time that is 

defined for that queue.  Next, the AC queue will randomly pick a backoff interval, 

and count down to zero.  As stated above, if multiple AC queues count down to 

zero simultaneously, the transmission opportunity is granted to the AC with the 

highest priority, while the other colliding queues double their contention 

windows and attempt to sense the medium again.  In earlier versions of the 

802.11e draft, the contention window was increased by a factor called the 

persistence factor, PF.  The persistence factor was to range between 1 and 2, and 

12 



increasing in steps of 1/16ths [17]; however, in [16] this factor is said to have 

been stricken from the draft. 

         DCF and EDCF operate similarly.  Apart from the presence of multiple 

queues within a station, and the fact that when an internal collision occurs the 

transmission opportunity is granted to the queue with the highest priority, the 

functions are essentially identical.  In light of this similarity [16] and [23] view 

each AC as a virtual station (essentially separate stations operating DCF) with its 

backoff instance and contention window parameters.  The reader is referred to 

the section on DCF operation to review how DCF operates. 

13 



CHAPTER 3 

REVIEW OF PREVIOUS RESEARCH 
 

 

       In this section we present an overview of the research that has already been 

done on quality of service in 802.11 wireless LANs.  Since this area is a rapidly 

evolving area of research most of the papers we reviewed were limited to the 

period from 2003 and forward. 

       In reference [3] the authors argue that 802.11 MAC is not as unfair as some 

researchers have stated.  Reference [3] defines the notions of long-term2 and 

short-term3 fairness, and then develops equations to show that in the short-term 

802.11 is actually fairer than slotted ALOHA, which is considered to have good 

fairness properties. 

       Bianchi’s paper on the performance analysis of DCF [4] was one of the most 

widely referenced papers that we found in our review of previous research.  In 

this paper Bianchi analyzes the saturation4 throughput of an ideal 802.11 channel.  

By using a Markov chain Bianchi evaluates the probability, τ, that a station 

transmits in a given slot time.  τ  is then used to compute the throughput of an 

                                                 
2 According to [3] a MAC layer is said to be long-term fair if the probability of 

successful accesses to the medium converges to 1/N for N competing hosts 
over an extended period of time. 

3 According to [3] a MAC layer is said to be short-term fair if the stations are able 
to get access to the medium relatively fairly over short periods of time. 

4 A station is said to be saturated when it always has a frame to send. 

14 



802.11 network under the basic and RTS/CTS channel access methods.  Using 

these results, Bianchi shows that DCF achieves much better throughput using the 

RTS/CTS channel access method.  In addition, this paper shows that 802.11 

throughput -- regardless of the channel access method -- depends on the number 

of back-off stages, m, and the initial contention window size, W.  This article 

concludes by saying that the RTS/CTS channel access scheme should be used in 

most practical cases since network performance does not appear to depend as 

much on the system parameters under this scheme. 

        Since the performance of 802.11 DCF is dependent on the number of 

competing wireless stations [4], Bianchi and Tinnirello provide a mechanism for 

estimating the number of competing stations in an 802.11 network [5].  The 

authors state that information on the number of competing stations can be used 

to help stations decide when to switch from the basic medium access method to 

the RTS/CTS medium access method.  It is also worth noting that the results 

presented in this paper [5] are an extension of the work presented in [4], and that 

the results presented in [5] are derived with the assumption that all the stations 

experience ideal channels.  Using the result for τ derived in [4], an expression is 

obtained for n, the number of competing stations.  The authors then state that 

since each station can obtain information on p, the conditional collision 

probability, each station can determine the value for n.  The authors contend that 

p, may be estimated by each station counting the number of experienced 

collisions, Ccoll, and the number of busy slots, Cbusy, and dividing the sum of these 

15 



two numbers by B, the total number of slots that the station has observed.  The 

authors conclude this paper by stating that a Kalman filter estimation of the 

number of stations in a network is better than one based on an auto-regressive 

moving average (ARMA) filter, since the Kalman filter provides better estimates 

of the number of competing stations. 

       In [6] Ferré et al. extend Bianchi's original work to demonstrate the 

throughput of the 802.11e MAC.  The authors present graphs to show that 

802.11a throughput is dependent on the length of the frames used by the 802.11a 

transmission mode, with throughput being greatly affected by frame length 

especially for the higher PHY modes.  The authors state that the frame length 

affects throughput because MAC overheads tend to be much higher than data 

transmission delays for shorter frames.  Unlike Bianchi [4], these authors argue 

that the RTS/CTS mode decreases network efficiency because two additional 

frames and two additional SIFS periods elapse for one MSDU under this scheme.  

However, this assumption only holds true when the number of competing 

stations is small i.e. less than or equal to three.  The authors then argue that it is 

not efficient to use the RTS/CTS scheme when there is a small number of 

competing stations, as the scheme is wasteful under those circumstances.  

However, once the number of users increases it is better to use the RTS/CTS 

scheme, as in the event of a collision only the RTS frame is lost.  Under the basic 

scheme on the other hand the entire frame is lost in the event of a collision.  

Next, Ferré et al. present graphs to show the performance of 802.11e, and show 

16 



that a given AC can still achieve good throughput even when AIFS[AC] is greater 

than DIFS, provided that the CWmin[AC] is small enough to allow rapid access to 

the medium.  Finally, the authors conclude by stating that EDCF alone cannot 

provide QoS guarantees.  QoS guarantees can be provided only if a polling 

scheme such as HCF is used. 

       In a bid to determine whether the new MAC protocols for 802.11e provide 

better QoS, Garg et al. study EDCF and HCF in [7].  At the end of their paper 

they conclude that the new protocols are highly dependent on the protocol 

parameters, and that the process of choosing these parameters needs to be 

studied better.  The other facts gleaned from this paper include the following: 

HCF provides better channel utilization than EDCF, and that EDCF and DCF 

return very similar values for medium utilization.  The authors add that EDCF is 

better than DCF because it provides differentiation to different flows.  When 

considering the performance of EDCF, the following observations can be made: 

an increase in either AIFS or CWmin for the low priority access category (AC) 

results in a decrease in the latency for higher priority ACs.  The authors conclude 

that AIFS has a greater effect on reducing bandwidth variance and jitter.  For 

example in their simulations, increasing AIFS resulted in reducing the jitter for 

the video stream.  On the other hand CWmin did not appear to have an effect in 

improving the jitter for the video stream.  The authors conclude their paper by 

stating that EDCF is an attractive channel access method because it is 

decentralized, and simple.  They add that HCF provides better medium 

17 



utilization, but it is a centralized channel access method, and therefore, it is less 

robust. 

       Other researchers [8] have focused on providing QoS via the Hybrid 

Coordination Function (HCF).  In [8] the authors argue that using a two-state 

Markov model for a wireless channel is not good enough sometimes since a 

channel may still be able to transmit data under poor network conditions by 

lowering the physical bit rate.  In order to provide better QoS under 802.11e, the 

authors suggested the use of Scheduling based on Estimated Transmission Times 

– Earliest Due Date (SETT-EDD).  Under this algorithm the hybrid coordinator 

polls stations in the order of non-decreasing deadlines.  This approach is very 

efficient since it has a time complexity of O(n).  Our work did not cover 

contention-free access to the medium, so this paper was mainly used to get an 

overview of the 802.11e MAC. 

       In reference [9], Lindgren et al. study PCF, 802.11e, distributed fair 

scheduling (DFS) and a channel access method called Blackburst5 to determine 

which scheme provides better QoS.  Based on their simulations, they conclude 

that EDCF and Blackburst give better performance to higher priority traffic at 

high loads -- with Blackburst giving the best performance.  PCF and DFS on the 

other hand give better performance to lower priority traffic.  In addition 

Blackburst and DFS provide very low jitter, while at high loads PCF and EDCF 

                                                 
5 According to [9] Blackburst requires all high-priority stations to try to access the 

medium after constant intervals tsch.  Low priority stations get access to the 
medium using DCF. 

18 



do not.  The authors conclude this paper by stating that while Blackburst 

provides the best medium utilization, it may be necessary to use EDCF if it is 

impossible for high priority stations to get access to the medium at regular 

intervals.  On the other hand DFS provides better service to the high priority 

traffic, but it also allows the low priority traffic to get a fair share of medium 

access. 

       Mangold et al. [10] showed that under EDCF, the throughput is dramatically 

reduced once the number of stations becomes large.  These authors argue that 

this is a result of the higher collision probabilities especially where CWmin and 

CWmax are small numbers.  In [10] it is argued that the hybrid coordinator (HC) 

should set new values for the EDCF parameters when there are high collision 

rates.  This paper also contributed to our understanding of the 802.11e MAC, as 

shown in the EDCF section in chapter 2. 

       Medepalli and Tobagi [11] present a paper in which they argue that stations 

using the 802.11 protocol all have a cycle, and that on average stations broadcast 

a frame in each cycle.  This paper reiterates the claim made in [14], that the 

presence of a low rate link affects the throughput for all other stations.  The 

paper then develops equations to compute the cycle time for an 802.11 network, 

as well as the average throughput per user.  The paper concludes by displaying 

graphs to show the numerical results of their equations plotted against 

simulations.  From the graphs it is seen that 802.11 throughput increases very 

slightly as the number of users increases.  Once the maximum throughput is 

19 



attained, adding more users to the network results in a decline in throughput.  

From this paper it is seen that while the average packet service time is not a useful 

metric under high loads, it is of great importance under finite loads and can aid in 

analyzing queuing delays in the system. 

       Another approach to providing QoS under DCF is the Distributed Deficit 

Round Robin (DDRR) algorithm [12].  With this algorithm, traffic is separated 

into different classes at each mobile station, and each class is assigned a service 

quantum rate to match its throughput requirement.  In addition each traffic class 

has a deficit counter of accumulated quanta, and the class is only allowed to send 

data if its deficit counter is positive.  Following the transmission of the frame, the 

deficit counter is reduced by the size of the frame.  Due to the Binary 

Exponential Backoff (BEB) algorithm causing fluctuations in the throughput of 

DCF the authors of this paper reject the use of a backoff algorithm.  Instead their 

algorithm picks a random number between 1 and β > 1 and multiplies this 

number by the interframe space (IFS) for this traffic class to reduce the 

probability of collisions.  Based on this paper, DDRR has much higher 

throughput and much lower MAC delay than either distributed weighted fair 

queuing (DWFQ) or distributed fair scheduling (DFS).  The authors conclude the 

discussion of their algorithm by observing that the combination of the IFS and 

backoff interval can provide QoS. 

       In the strictest sense EDCF only allows for prioritization of different AC; it 

does not allow for true QoS.  True QoS can only be guaranteed if an admission 

20 



control mechanism is deployed for use during the contention period.  In 

reference [13] Moors and Pong introduce such a mechanism.  These authors state 

that if there are no restrictions on the volume of traffic introduced from different 

traffic classes, medium access delays may become higher due to the increasing 

lengths of the backoff times.  In addition, failing to restrict the amount of traffic 

admitted from one class might result in affecting the performance of traffic from 

other classes.  Using Bianchi's results for the probability that a station transmits in 

a given slot [4], an expression is derived for the achievable throughput of each 

class.  The flow admission algorithm then uses this expression to admit new flows 

only if it determines that there is sufficient bandwidth to support the new stream.  

The flow admission algorithm will also select the appropriate initial contention 

window size and transmission opportunity duration for each flow.  With the 

algorithm presented in this reference, prior to a flow beginning a transmission, it 

has to request its desired bandwidth from the access point.  If the access point 

determines that admitting the new flow will cause other flows to exceed their 

achievable throughput limit, the admission request is rejected.  Using simulations, 

the authors show that their scheme is indeed effective.  The authors conclude this 

paper by stating that if the direct link protocol proposed in the 802.11e draft is 

used, then the flow admission control algorithm will have to be moved from the 

AP to each mobile station. 

       Reference [14] discusses the impact of frame size on 802.11e throughput.  

This paper states that the values of CWmin[AC], CWmax[AC] and AIFS[AC] are 

21 



announced by the AP (the hybrid coordinator) via beacon frames.  Using 

simulations of 802.11e, the authors show that basic EDCF displays higher 

throughput than DCF for the highest priority traffic.  EDCF throughput is even 

higher if the EDCF is used with a no ACK policy.  In another simulation, the 

throughput for each AC is plotted against the number of stations in the network.  

From the simulation results it is seen that except for HCF and the higher priority 

AC, throughput decreases as the number of competing stations increases.  The 

decrease in throughput is most marked for the low priority AC.  Next, the 

authors present graphs to show the effect of one bad link on the other links 

within a network.  These graphs show that one bad link penalizes all the good 

links in a network.  The authors conclude by stating that the presence of TXOP 

in 802.11e networks reduces the effect of a bad link on all other links, since all 

stations get "their share" of the bandwidth. 

       In reference [15] Robinson and Randhawa extend Bianchi's original model to 

account for the 802.11e MAC.  The authors argue that all other models to predict 

saturation throughput in 802.11 networks fail to account for the post-collision 

period.  In an 802.11 network stations can infer that a collision has occurred by 

examining the frame check sequence (FCS) of a frame.  If an incorrect FCS is 

found, the station assumes that a collision occurred, and so it defers access for an 

additional period known as the Extended Interframe space (EIFS).  According to 

this paper all stations defer access during this period, so retransmissions have 

much higher probabilities of success.  This paper extends Bianchi's model and 

22 



then validates the accuracy of the newly developed model by comparing its 

analytical results to simulation results.  Robinson and Randhawa claim that their 

model is validated by simulation.  In concluding the paper, the authors state that 

two flows that are differentiated solely by contention window sizes are efficient 

just under low loads.  As loads increase, low priority flows may be starved of 

bandwidth particularly in cases where the low priority flows have maximum 

contention windows that are much larger than the maximum contention windows 

for the high priority flows.  On the other hand, AIFS differentiation does not 

affect the service provided to higher priority AC, in the presence of heavy low 

priority traffic.  In the case of AIFS differentiation, low priority AC may be 

starved in the presence of heavy high priority traffic, since the low priority AC 

may rarely see idle slots.  It is worth noting that the model presented in this paper 

does not provide a closed form solution for throughput, and that this model is 

limited just to saturated cases.  Nonetheless, it remains a useful model. 

       Work has already been done on adapting 802.11e parameters based on 

network conditions.  In [16] Romdhani et al. discuss a channel access method 

called Adaptive EDCF (AEDCF), that adjusts the size of the contention window 

based on the number of collisions that a station experiences.  Standard EDCF 

resets the contention window to CWmin following a successful transmission; 

however, Romdhani et al. argue that this may not always be efficient.  Reference 

[16] states that if a station has just experienced a collision, there is a very high 

probability that it would experience another collision.  In addition the authors 

23 



state that a static method6 of decreasing the CW following a successful 

transmission may not be very efficient.  In light of this, the authors propose that 

the CW be reduced using a station’s history of collisions.  According to the 

authors of [16], AEDCF is able to keep the delay low even under high loads, 

provide much better medium utilization, and maintain a lower collision rate than 

EDCF.  The authors suggest that additional research needs to be done on 

adapting other EDCF parameters.  Some of the parameters that can be adapted 

to network conditions include CWmax, the maximum number of retransmissions 

and the packet burst length. 

       In their letter [18] Xiao and Rosdahl demonstrate that a throughput upper 

limit, and a lower limit on the frame delay exist in 802.11 networks.  Based on 

their findings, the authors state that any attempts to increase the throughput of 

802.11 networks must also reduce the MAC overhead of 802.11. 

       In [19] Xiao stated that the model presented in Bianchi's paper [4] failed to 

meet the 802.11 standard in two respects; viz. the backoff counter continued to 

count down even if the current slot was busy, and the paper also assumed that a 

frame could be retransmitted infinitely.  As a result Xiao derived a new model 

that rectified these two errors and also developed expressions to compute the 

frame dropping probability, frame dropping time, number of retransmissions and 

saturation delay.  The paper concludes by displaying graphs of the numerical 

                                                 
6 One example of a static method that is presented in [16] is an algorithm that 

resets CW to half of its last value as long as this value is higher than CWmin. 

24 



results to the equations above.  From the graphs it is seen that as the number of 

stations increases the frame dropping probability, frame dropping time, and the 

average number of retransmissions per frame increase.  The graphs also show 

that as the retry limit increases the frame dropping probability and 

retransmissions per frame decrease, while the frame dropping time increases.  

Finally, the graphs show that as CWmin increases, the throughput increases up to a 

certain maximum, and then throughput starts decreasing.  The graphs also show 

that as CWmin increases, the average frame delay decreases up to a given 

minimum, and then frame delay starts increasing.  It is interesting to observe that 

throughput and average frame delay decrease and increase respectively at 

different values of CWmin. 

       Reference [20] extends Xiao's work from [19] to the 802.11e MAC.  In this 

paper it is assumed that either each station only has traffic from one class, or if 

multiple AC queues count down to zero simultaneously, the virtual collision 

handler will not decide which AC queue gets the TXOP.  Rather, a collision will 

take place on the medium.  Xiao then presents graphs to validate the numerical 

results of his model.  From the graphs it is seen that increasing CWmin for one of 

the flows results in that flow getting less and less of the bandwidth, while the 

higher priority flow gets more bandwidth.  In addition increasing CWmin results in 

the low priority flow getting higher frame delays.  Increasing the backoff window-

25 



increasing factor7 had the effect of giving more priority to the flow whose 

persistence factor was set to 2, once the other flow's factor exceeded 2.  Xiao 

points out that the persistence factor may be used to minimize collisions while 

granting priorities.  The last set of graphs indicate that differentiating the retry 

limits for the traffic classes has no effect on the total throughput of the system.  

However, class 1 traffic will have better throughput and delay than class 0 as long 

as L1,retry < L0,retry.  As expected, the frame dropping probability for a traffic class 

decreases as the retry limit for that flow increases. 

       Xiao et al. [22] state that IEEE 802.11 networks have problems with 

fairness8.  As a result they propose a backoff algorithm based on game theory 

instead of the normal Binary Exponential Backoff (BEB) algorithm used by 

standard DCF.  They call their backoff algorithm the Nash Equilibrium Backoff 

(NEB) algorithm.  Under the NEB algorithm, nodes that wish to communicate 

with each other are called a coalition.  The members of a coalition broadcast their 

noise-to-signal ratio (NSR) so that members of other coalitions can compare the 

broadcast NSR with that from their coalition.  The results of the comparison are 

then used to adjust the contention window (CW) as shown below: 

If NSRlocal ≤ NSRneighbor, then CW = ⎣CW × Random[3, 4] ⎦; 

                                                 
7 This was known as the persistence factor in early version of the 802.11e draft.  

It was later stricken from the draft 
8 The fairness problem arises because the binary exponential backoff algorithm 

for IEEE 802.11 tends to give an advantage to nodes that have just had a 
successful transmission. 

26 



Else CW = ⎣CW × Random[0, 3] ⎦  

According to [21] the NEB improves the fairness of TCP flows greatly in a 

network. 

       Xu et al. provide a method for analyzing the performance of IEEE 802.11 

using a Markov model in [23].  The results in this paper are based on the 

assumption of having a fully connected network with ideal channels where the 

only packet losses are due to collisions.  Using a multidimensional Markov chain 

this paper derives an expression for the total throughput of an 802.11e network.  

Once this expression is derived the authors make the following remarks: 

o The smaller the CWs the greater the impact of the arbitration interframe 

space (AIFS). 

o The combination of differentiated AIFSs and differentiated CWs 

introduce a more significant effect on the degree of differentiation. 

o It is the difference in AIFS values rather than the absolute AIFS values 

that determine the degree of QoS differentiation. 

It is interesting to note that while the authors of this article state that collisions 

are relatively infrequent in a wireless network, they state that the ratio of collisions 

to useful data transmissions ranges between 0.094 and 0.139 for a persistence 

factor of 1. 

       Reference [24] provides an overview of the QoS that will be provided by 

802.11e.  Most of the points from this paper have already been covered in the 

other references that were reviewed.  However, Xu points out that the contention 

27 



free burst feature of EDCF has not fully been investigated; therefore, some 

concerns exist about its unfairness.  This paper also discusses the group ACK 

feature of 802.11e, which allows several frames to be sent prior to receiving an 

ACK from the recipient.  This feature, he indicates, will make the 802.11e 

protocol much more efficient.  Finally, the paper points out that admission 

control for contention-based channel access is a non-trivial task, and adds that 

the 802.11e draft calls for distributed admission control (DAC).  Under this 

method stations would self-regulate themselves to protect the traffic that is 

already present in the QBSS.  The paper concludes by stating that the QoS 

enhancement for the legacy 802.11 standard will be a great benefit. 

       In [25] Zhu et al. indicate that existing “QoS mechanisms for 802.11 can be 

classified into three categories: service differentiation, admission control and 

bandwidth reservation, and link adaptation.”   Service differentiation mechanisms 

such as EDCF and distributed fair scheduling do not provide any QoS 

guarantees; they just provide better than best effort services.  The authors 

observe that while fair scheduling algorithms will share the bandwidth fairly 

between stations, they would also require a substantial rewrite of the 802.11 

protocol.  As a result EDCF is the only service differentiation mechanism that 

currently garners a lot of interest.  Admission control and bandwidth reservation 

schemes for 802.11 include token-bucket based algorithms that may be used by a 

station to help determine when it is approaching heavy loads.  This information 

may then be used to adjust the contention window parameters.  Link adaptation 

28 



algorithms in 802.11 networks include those that allow stations to maximize their 

throughput based on the current physical conditions.  The authors conclude that 

future work on QoS in wireless networks should focus on integrating DiffServ 

and IntServ with 802.11e. 

       From our review of research, we have seen that the DCF function is a fair 

channel access method, but more research needs to be conducted on how to 

adjust EDCF parameters to maximize throughput.  In addition, any attempt to 

increase the throughput of the EDCF or DCF functions will have to concentrate 

on reducing the MAC overhead of these functions. 

29 



CHAPTER 4 

RESEARCH MOTIVATION 
 

 

       In the preceding chapter we provided an overview of the research that has 

been conducted in the area of QoS in 802.11 networks.  As a result we set out to 

study different methods of handling the contention window, the persistence 

factor and the retry limit while minimizing the average frame delay.  Our goal was 

to develop a mechanism that would allow stations to determine the values for 

these parameters independently. 

       Another goal for our research was to use knowledge of past experience i.e. 

collision history in determining the values for contention window parameters.  It 

should be recalled that Romdhani et al. [16] had already developed an algorithm 

to use collision history, so in our work we extend their algorithm. 

       There were two reasons for setting out with these goals.  First, we argued 

that since EDCF is a distributed function, stations ought to be able to determine 

some of their MAC layer parameters independently without waiting for 

broadcasts from the HC.  Secondly, in a previous class the author was a member 

of a group that studied 802.11e.  This group discovered that at high loads the 

high priority access category had several transmission attempts per frame.  This 

group concluded that the high number of transmission attempts per frame was a 

result of the high priority AC choosing its backoff interval from a smaller range.  

The author concluded that if the backoff interval was chosen from a larger range, 

30 



the number of collisions per station might be reduced.  In this thesis we develop 

a mechanism for adapting the maximum contention window – and thus the 

backoff interval – for an access category based on collision history. 

       Once the goals above were identified, a choice had to be made between 

building an analytical model, or a simulation model.  Analytical models are 

flexible, and would allow investigation of more relationships between MAC 

parameters.  Ultimately the choice was made in favor of simulation for the 

following reasons: 

o Analytical models for 802.11 are currently either too complex, or 

inaccurate. 

o Analytical models may not necessarily yield a closed form solution to the 

problem.  Recall that reference [15] did not have a closed form solution.  

This point makes a strong case for using simulation i.e. simulation 

models are used because we cannot completely solve a problem using an 

analytical model. 

o Analytical models may not completely capture all the times within a 

model.  For example, an analytical model cannot model the different 

amounts of time used to process the frame. 

       Having chosen to use simulation, our next goal was to write a series of CSIM 

programs to simulate the 802.11 functions.  CSIM was chosen because of its ease 

of use, and also so that the author could build and validate an accurate simulation 

model.  Most of the simulation currently done on 802.11 is based on models built 

31 



in ns-2 (network simulator-2).  There are few colloquial reports about these 

models not being accurate; therefore, we set out to build a valid model for 

ourselves.  In the next chapter we will discuss the results of our simulations. 

32 



CHAPTER 5 

RESEARCH RESULTS 
 

 

       In the preceding chapter we advanced reasons for choosing a simulation 

model over an analytical model for this thesis.  Having chosen the simulation 

model we set out with the research goals below. 

 

 

Research Goals 

       Our goals included the following: 

o Investigating the effects of random frame dropping from queues on the 

average frame delay 

o Studying the effects of starting a frame transmission with a contention 

window other than CWmin 

o Studying the effects of varying the persistence factor based on collision 

rates 

o Studying the effects of varying the retry limit for each class. 

With the exception of random frame dropping, and varying the persistence 

factor, all these ideas had been tried in [16] and [20]. 

       In choosing these goals we wanted to propose changes that would not 

require significant modification of the 802.11 MAC.  The 802.11 standard is very 

successful; therefore, any changes that are suggested to the MAC should be able 

to interoperate with existing hardware very easily.  In addition, any changes that 

33 



are proposed ought to have an easy implementation, and not require a significant 

modification of the 802.11 standard. 

 

 

DCF Simulation Approach 

       Our simulations consisted of several CSIM programs that matched the DCF 

and EDCF standards very closely. During our simulations we held the number of 

competing stations at 3, 5, 10, 15, 20, 25 and 30, while varying the mean frame 

interarrival time from 100 msec to 10 msec in descending steps of 2 msec9.  All 

the stations were assumed to be within range of each other; therefore, we did not 

have to account for the hidden terminal problem.  Each simulation was run for 

300,000 frame arrivals, following a warm-up period in which 12,500 frames were 

processed.  Our frame sizes were uniformly distributed between 1 and 4095 

octets, with no fragmentation allowed.  In addition the frames were entered into 

queues of infinite lengths.  The simulations used the 802.11g MAC, and it was 

assumed that all control and data frames were sent over ideal channels at the 

maximum link rate of 54 Mbps.  Please refer to the appendices for more detailed 

descriptions of our code.  The MAC parameters shown in table 1 were used in all 

of our DCF simulations.  These parameters were all drawn from the 802.11g 

standard. 

                                                 
9 The more frequently frames arrived, the heavier the traffic load on the network. 

34 



Table 1: MAC Parameters used for 
DCF Simulations 

802.11 Parameter Name Value 

CWmin 31 

CWmax 1023 

aSlotTime 20 µs 

aSIFSTime 10 µs 

aDIFSTime 50 µs 

aMPDUMaxLength 4095 octets 

dot11LongRetryLimit 7 

dot11MaxTransmitMSDULifetime 512 µs 

MAC Header Length 34 octets 

PHY Header Length 24 octets 

ACK Length 14 octets 

 

35 



Results of Basic DCF Simulation 

       The goal of our first simulation exercise was to validate our DCF model by 

studying the queue fill for the model, as well as validating that system response 

times increased exponentially as the network became saturated.  It is worth noting 

that in early versions of our simulations, the frame response times tended to 

approach infinity (over 25 seconds) under heavy loads when frames did not have 

a lifetime limit.  Once the dot11MaxTransmitMSDULifetime parameter was 

introduced, frame delays were limited to about 0.005 seconds.  In our simulations 

frames could only be dropped if the number of transmission attempts for that 

frame exceeded the frame retry limit, or if the frame in question had been in the 

queue for longer than dot11MaxTransmitMSDULifetime.  Figures 3 and 4  

display the results of our DCF simulations. 

36 



System Response Time vs Interarrival time for 
basic DCF

0

0.001

0.002

0.003

0.004

0.005

0.006

0.1 0.09 0.08 0.07 0.06 0.05 0.04 0.03 0.02 0.01

Interarrival time/s

R
es

po
ns

e 
tim

e/
s 3 stations

5 stations
10 stations
15 stations
20 stations
25 stations
30 stations

Figure 3: System Response Times for 
Basic DCF 

 

Queue Fill versus time
interarrival time = 0.0080 s

0

1

2

3

3.36 6.67 10 13.4 16.9 20.4 23.4 26.7 30 33.1 36.4 39.7 42.8 42.9

Time/s

Q
ue

ue
 F

ill Source 0
Source 1
Source 2

Figure 4: Queue fill for Three Sources 
using DCF 

37 



       Since DCF does not provide any differentiation between traffic classes, one 

would expect that frames should be dropped with equally likely probability from 

all classes.  As figure 5 indicates, this assumption is indeed correct.  Recall that 

frames are dropped in our model only when the frame exceeds its maximum 

transmit lifetime or when the transmission attempts for that frame exceed seven. 

 

 

Frame dropping probability vs Interarrival time for 
basic DCF, 30 stations

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0.05 0.04 0.03 0.02 0.01

Interarrival time/s

Fr
am

e 
dr

op
 p

ro
ba

bi
lit

y

Class 0
Class 1
Class 2

Figure 5: Frame Drop Probability for 
DCF 

 

 

Results of Frame Dropping DCF Simulation 

       The goal of our next simulation exercise was to determine if random 

dropping of frames from each source’s queue would help minimize the frame 

delay for each source.  Our simulation program was written to drop 1 in 100 

38 



frames when the source’s queue contained less than 5, 3, or 10 frames for sources 

with class 0, 1 or 2 traffic respectively.  If the queue contained more than 5, 3 or 

10 frames respectively the frame dropping probability was raised to 1 in 10.  It 

was our opinion that a random number generator for frame dropping could be 

easily incorporated in each station since 802.11 stations already implemented a 

random number generator for computing the backoff interval.  Based on our 

findings frame dropping appears to have little effect in lowering the frame delay 

for each source under heavy loading, as shown in figure 6. 

 

 

System Response Time vs Interarrival time for basic DCF and 
Frame Dropping DCF

0

0.001

0.002

0.003

0.004

0.005

0.006

0.05 0.04 0.03 0.02 0.01

Interarrival time/s

R
es

po
ns

e 
tim

e/
s

20 STA

25 STA

30 STA

20 STA w/ Frame
Dropping

25 STA w/ Frame
Dropping

30 STA w/ Frame
Dropping

Figure 6: Basic DCF versus DCF with 
Frame Dropping 

 

39 



 

EDCF Simulation Approach 

       Our next simulation exercise was to simulate the EDCF function.  As in the 

case of the DCF simulations, we held the number of competing stations at 3, 5, 

10, 15, 20, 25 and 30, while varying the mean frame interarrival time from 100 

msec to 10 msec in descending steps of 2 msec.  In each of our simulation 

exercises, at least 25% of the competing stations were marked as having high 

priority traffic i.e. having traffic from class 0, at least 50% of the stations were 

marked as having medium priority traffic, and the rest of the stations were 

marked as having low priority traffic.  All the stations were assumed to be within 

range of each other; therefore, we did not have to account for the hidden 

terminal problem.  Each simulation was run for 300,000 frame arrivals, following 

a warm-up period in which 12,500 frames were processed.  Our frame sizes were 

uniformly distributed between 1 and 4095 octets, with no fragmentation allowed.  

In addition the frames were entered into queues of infinite lengths at each station.  

The simulations used the 802.11g MAC, and it was assumed that all control and 

data frames were sent over ideal channels at the maximum link rate of 54 Mbps.  

Please refer to the appendices for more detailed descriptions of our code. 

       The MAC parameters shown in table 2 were used in all of our simulations.  

All the parameters marked with an asterisk (*) were drawn from the 802.11 

standard [1]; those with two asterisks came from [1] and the HCF group’s 

recommendation [17].  Except for the contention window sizes, the rest of the 

40 



variables came from [8].  The contention window sizes were chosen such that the 

highest priority access category had priority over DCF.  In addition the 

contention window sizes were chosen such that each access category had at least 

two opportunities to back-off prior to attaining its maximum contention window 

size. 

41 



Table 2: MAC Parameters used for 
EDCF Simulations 

802.11 Parameter Name Value 

CWmin[0] 15 

CWmax[0] 63 

CWmin[1] 31 

CWmax[1] 127 

CWmin[2] 63 

CWmax[2] 1023 

aSlotTime* 20 µs 

aSIFSTime* 10 µs 

aDIFSTime* 50 µs 

aAIFSTime[0]** 50 µs 

aAIFSTime[1]** 70 µs 

aAIFSTime[2]** 90 µs 

aMPDUMaxLength* 4095 octets 

dot11LongRetryLimit* 7 

dot11MSDULifeTime[0] 60 ms 

dot11MSDULifeTime[1] 100 ms 

dot11MSDULifeTime[2] 200 ms 

 
 

42 



Table 2. -- Continued 
802.11 Parameter Name Value 

MAC Header Length* 34 octets 

PHY Header Length* 24 octets 

ACK Length* 14 octets 

 

43 



Results of Basic EDCF Simulation 

       The goal of our next simulation exercise was to validate our EDCF model by 

verifying that system response times increased dramatically as the network 

became saturated.  It is worth noting that in early versions of our simulations, the 

frame response times tended to approach infinity (over 25 seconds) when frames 

did not have a lifetime limit.  Once this parameter was introduced, frame delays 

were limited.  In our simulations frames could only be dropped if the number of 

transmission attempts for that frame exceeded the frame retry limit, or if the 

frame in question had been in the queue for longer than dot11MSDULifetime 

defined for that source.  Figures 7, 8 and 9 display the results of our EDCF 

simulations. 

 

 

 

44 



System Response Time vs Interarrival time for 
basic EDCF

0

0.02

0.04

0.06

0.08

0.1

0.12

0.1 0.09 0.08 0.07 0.06 0.05 0.04 0.03 0.02 0.01

Interarrival time/s

R
es

po
ns

e 
tim

e/
s 3 stations

5 stations
10 stations
15 stations
20 stations
25 stations
30 stations

Figure 7: System Response Time for 
Basic EDCF 

 

 

       Figure 8 shows how EDCF provides different service to different traffic 

classes.  The response times under EDCF are in stark contrast to the response 

times under DCF where the class response times were identical across classes. 

45 



Response Time comparison for EDCF vs DCF, 30 stations at low 
loads

0

0.0005

0.001

0.0015

0.002

0.0025

0.003

0.1 0.09 0.08 0.07 0.06 0.05 0.04
Interarrival time/s

R
es

po
ns

e 
tim

e/
s

EDCF Sys.
Resp. Time

DCF Sys.
Resp Time

Class 0 Resp.
Time, EDCF

Class 1 Resp.
Time, EDCF

Class 2 Resp.
Time, EDCF

Figure 8: Response Time Comparison 
for EDCF at Low Loads 

 

 

       It should be observed that EDCF actually has worse system response time 

than DCF.  This is because EDCF defines separate AIFS times for each AC, and 

since each AIFS is at least DIFS + k*aSlotTime; each frame is expected to wait 

for the medium to be idle for a longer interval under EDCF.  The smaller values 

of CWmin may appear to offset this difference; however, under heavy loads high 

priority stations will tend to collide a lot more since these stations have a much 

smaller interval from which to select the backoff counter. 

       Figure 9 displays EDCF’s poor performance under heavy loads.  When 

studying this figure, one ought to recall that the maximum frame lifetime under 

DCF was 512 µs, while under EDCF the frames had much longer lifetimes.  This 

46 



difference partly explains the variation in the graphs, but the figure still shows 

that EDCF performs poorly under heavy loads. 

 

Response Time comparison for EDCF vs DCF, 30 stations at high 
loads

0

0.005

0.01

0.015

0.02

0.025

0.04 0.03 0.02 0.01
Interarrival time/s

R
es

po
ns

e 
tim

e/
s

EDCF Sys.
Resp. Time

DCF Sys.
Resp Time

Class 0 Resp.
Time, EDCF

Class 1 Resp.
Time, EDCF

Class 2 Resp.
Time, EDCF

 

Figure 9: Comparison of EDCF and 
DCF 

 

 

       Our simulations also showed that the frame drop probabilities were highest 

for our lowest priority access category.  This was in spite of the fact that this AC 

had the longest MSDU lifetime, and the largest values of CWmin and CWmax.  

From figure 10, we can conclude that the frame dropping probability is affected 

47 



by the probability that a frame can receive access to the medium.  Since the 

higher priority AC has a much higher probability of getting access to the medium, 

there is also a lower probability that its frames will be dropped, even though the 

higher priority AC also has a much higher probability of collision at high loads. 

 

 

Frame dropping probability vs Interarrival time for 
basic EDCF, 30 stations

0

0.2

0.4

0.6

0.8

1

1.2

0.05 0.04 0.03 0.02 0.01

Interarrival time/s

Fr
am

e 
dr

op
 p

ro
ba

bi
lit

y

Class 0
Class 1
Class 2

Figure 10: Frame Drop Probability for 
EDCF  

 

 

 

48 



Results of EDCF Simulation with Random Frame Dropping 

       In our next set of simulations we studied the effect of random frame 

dropping on EDCF performance.  As was done for DCF, our frame dropping 

function had different frame dropping probabilities based on the number of 

frames in the queue.  Our simulation program was written to drop 1 in 100 

frames when the source’s queue contained less than 5, 3, or 10 frames for sources 

with class 0, 1 or 2 traffic respectively.  If the queue contained more than 5, 3 or 

10 frames respectively the frame dropping probability was raised to 1 in 10.  

Figure 11 shows that, as was the case for DCF, random frame dropping does not 

appear to have any noticeable effect in reducing the delay for frames at low loads.  

However, at high loads with more than 30 competing stations random frame 

dropping reduces the system response time. 

 

 

 

49 



System Response Time vs Interarrival time for basic EDCF and 
Frame Dropping EDCF

0

0.02

0.04

0.06

0.08

0.1

0.12

0.05 0.04 0.03 0.02 0.01

Interarrival time/s

R
es

po
ns

e 
tim

e/
s

20 STA

25 STA

30 STA

20 STA w/ Frame
Dropping

25 STA w/ Frame
Dropping

30 STA w/ Frame
Dropping

Figure 11: Comparison of System 
Response Times for Basic EDCF and 
EDCF with Random Frame Dropping 

 

 

Results of EDCF Simulation with Varying Retry Limits 

       In our next set of simulations we studied the effect of different frame retry 

limits for the different sources on overall EDCF performance.  All class 0 frames 

had a frame retry limit of three, all class 1 frames had a frame retry limit of five, 

while all class 2 frames had a frame retry limit of seven.  Based on figure 12, we 

conclude that changing the frame retry limits for the different sources has no 

significant effect on the overall system response time for EDCF under saturation. 

 

 

50 



 

System Response Time vs Interarrival time for basic EDCF and 
EDCF with diff. Retry limits

0

0.02

0.04

0.06

0.08

0.1

0.12

0.05 0.04 0.03 0.02 0.01

Interarrival time/s

R
es

po
ns

e 
tim

e/
s

20 STA

25 STA

30 STA

20 STA diff. retry
limits

25 STA diff. retry
limits

30 STA diff. retry
limits

Figure 12: System Response Time 
basic EDCF versus EDCF with 
Different Frame Retry Limits 

 

 

AEDCF Simulation Approach 

       In reference [16] Romdhani et al. stated that it was inefficient to reset the 

contention window to CWmin following the successful transmission of a frame.  

They argued that it was inefficient to reset the contention window as such 

because if a collision occurred, then there was a very high probability of another 

collision occurring soon afterwards.  As a result, they proposed a scheme called 

Adaptive EDCF (AEDCF) that resets the contention window based on network 

51 



conditions.  In their scheme the CW is reduced using a station’s history of 

collisions, denoted here as favg.  In order to guard against transient changes in the 

collision probability, the authors propose using an exponentially weighted moving 

average (EWMA) to compute favg.  favg is updated at regular intervals, Tupdate, as 

follows: 

favg(j) = (1-α) * fcurr(j) + α * favg(j-1) 

α is defined as the smoothing factor, and it determines the memory of the 

averaging process.  Following the successful transmission of a frame under 

AEDCF, the new contention window, CWnew, is given by 

MF[i] = min ((1 + (i*2))* favg , 0.8) 
CWnew[i] = max (CWmin[i], CWold[i] *MF[i]) 
 

MF[i], above, refers to the multiplicative factor used to reduce the size of the 

contention window, while 0.8 is a factor that was derived through simulation. 

       The authors of [16] state that their scheme requires four additional registers 

to store the values for α, MF[i], favg(j-1) and Tupdate, the period that must elapse 

before the collision probability is computed. 

       In the next few sections we will present the research that was done on 

AEDCF, concluding with our extensions to AEDCF.  Unlike Romdhani et al. 

our initial MAC parameters were as shown as defined in table 2.  On the other 

hand our model was similar to theirs in that we updated the exponentially 

weighted collision probabilities at one-second intervals as in reference [16]. 

 

52 



 

 

 

Results of Adaptive EDCF Simulation 

       In this set of simulations we studied the performance of adaptive EDCF 

(AEDCF) [16] compared with basic EDCF.  Since the concept of the Persistence 

Factor was stricken from the EDCF draft, we also eliminated that factor from 

this set of simulations.  Our simulation model also differed from reference [16] in 

that all our frame sources generated frames with roughly equal frame sizes and 

frame interarrival times.  From figure 13 it is seen that adaptive EDCF does 

indeed outperform basic EDCF at heavy loads.  This gain in performance shows 

that at heavy loads, the frame delay is actually dominated by the starting value of 

CW.  Another way of reinterpreting this data might be to say that at heavy loads 

stations ought to have the right to pick a higher value for CWmin[i], or perhaps the 

AP ought to broadcast new values of CWmin[i]to all stations once the collision 

probability exceeds a certain threshold. 

 

 

 

53 



System Response Time vs Interarrival time for basic EDCF and 
Adaptive EDCF

0

0.02

0.04

0.06

0.08

0.1

0.12

0.05 0.04 0.03 0.02 0.01
Interarrival time/s

R
es

po
ns

e 
tim

e/
s

20 STA

25 STA

30 STA

20 STA
AEDCF

25 STA
AEDCF

30 STA
AEDCF

Figure 13: System Response Time 
Basic EDCF versus Adaptive EDCF 

 

 

 

       In addition to reducing the frame delay under saturated conditions.  Adaptive 

EDCF has the added benefit of reducing the frame drop probabilities throughout 

the system.  Figure 14 shows how the frame drop probabilities were affected by 

AEDCF. 

54 



Frame dropping probability vs Interarrival time for 
AEDCF, 30 stations

0

0.2

0.4

0.6

0.8

1

1.2

0.05 0.04 0.03 0.02 0.01

Interarrival time/s

Fr
am

e 
dr

op
 p

ro
ba

bi
lit

y

Class 0
Class 1
Class 2

Figure 14: Frame Drop Probabilities 
for Adaptive EDCF 

 

 

 

Results of Adaptive EDCF Simulation with Varying Persistence Factor 

       In our next set of simulations we studied the performance of adaptive EDCF 

(AEDCF) [16] while varying the persistence factor.  We called this scheme 

AEDCF-PF.  Recall that the EDCF draft specification document [17] indicated 

that the persistence factor was stricken from the 802.11e EDCF specification.  

However, in our simulations we reintroduced this parameter and allowed it to be 

either two or four, depending on the station’s collision probability.  The 

persistence factor, PF[i], was reset as follows: 

favg (j) = (1-α) * fcurr(j) + α * favg(j-1) 

55 



If (favg >β) then PF[i] = 4 
Else PF[i]= 2 
 

  In these simulations, if any station experienced more than one collision in 

sixteen transmission attempts i.e. β was 0.0625, that station’s persistence factor 

was set to 4.  From figure 15, we see that this change does not result in a 

noticeable change in throughput, when the scheme was compared with AEDCF.  

Our research also indicates that this change did not affect the frame drop 

probabilities in a significant manner.  This finding is reflected in figure 16. 

 

 

 

System Response Time vs Interarrival time for Adaptive EDCF 
and AEDCF with varying persistence factor

0

0.02

0.04

0.06

0.08

0.1

0.12

0.05 0.04 0.03 0.02 0.01
Interarrival time/s

R
es

po
ns

e 
tim

e/
s

20 STA
AEDCF

25 STA
AEDCF

30 STA
AEDCF

20 STA

25 STA

30 STA

Figure 15: AEDCF with Varying 
Persistence Factor versus Basic 

AEDCF 

 

56 



 

Frame dropping probability vs Interarrival time for 
AEDCF with varying PF, 30 stations

0

0.2

0.4

0.6

0.8

1

1.2

0.05 0.04 0.03 0.02 0.01

Interarrival time/s

Fr
am

e 
dr

op
 p

ro
ba

bi
lit

y

Class 0
Class 1
Class 2

Figure 16: Frame Drop Probability for 
AEDCF with Varying PF 

 

 

Results of Adaptive EDCF Simulation with Varying Persistence Factor and 

CWmax

       In this section we present our AEDCF-CW/PF scheme that varies both the 

maximum contention window and the persistence factor.  In simulating this 

scheme, each station was to check its average collision probability, favg(j), prior to 

executing the exponential backoff algorithm.  If favg(j) was greater than some 

threshold value, γ, the station was allowed to increase CWmax[i] temporarily, while 

57 



the persistence factor was also increased as described for the AEDCF-PF 

scheme.  Our algorithm operated as shown below: 

favg(j) = (1-α) * fcurr(j) + α * favg(j-1) 
MF[i] = min ((1 + (i*2))* favg , 0.8) 
CWnew[i] = max (CWmin[i], CWold[i] *MF[i]) 
If (favg >β) then PF[i] = 4 
Else PF[i]= 2 
If ((a collision occurred) AND ((favg > γ)) then 

If ((CW[i]+1) * PF [i]) <= (2 * (CWmax[i] + 1)) then 
CWnew[i] = (CW[i]+1) * PF [i] 

Endif 
Else if ((a collision occurred) AND ((favg < γ)) then 

If ((CW[i]+1) * PF [i]) <= CWmax[i]) then 
CWnew[i] = (CW[i]+1) * PF [i] 

Endif 
 

       In our simulations if a station experienced more than one collision in 32 

transmission attempts i.e. γ was 0.03125 the maximum contention window was 

doubled.  β, on the other hand, was set to 2* γ.  After implementing these 

changes we found that our new scheme outperformed both basic EDCF and 

adaptive EDCF at high loads.  Figures 17, 18 and 19 display these findings. 

 

 

 

 

 

 

 

 

58 



System Response Time vs Interarrival time for basic EDCF and 
AEDCF with varying PF and CWmax

0

0.02

0.04

0.06

0.08

0.1

0.12

0.05 0.04 0.03 0.02 0.01
Interarrival time/s

R
es

po
ns

e 
tim

e/
s

20 STA
EDCF

25 STA
EDCF

30 STA
EDCF

20 STA

25 STA

30 STA

Figure 17: System Response Time 
Basic EDCF versus AEDCF-CW/PF 

System Response Time vs Interarrival time for AEDCF and 
AEDCF with varying PF and CWmax

0

0.02

0.04

0.06

0.08

0.1

0.12

0.05 0.04 0.03 0.02 0.01
Interarrival time/s

R
es

po
ns

e 
tim

e/
s

20 STA
AEDCF

25 STA
AEDCF

30 STA
AEDCF

20 STA

25 STA

30 STA

Figure 18: System Response Time 
AEDCF versus AEDCF-CW/PF 

 

59 



Response Time comparison for AEDCF-CW/PF vs EDCF, 30 stations at 
high loads

0

0.005

0.01

0.015

0.02

0.025

0.04 0.03 0.02 0.01
Interarrival time/s

R
es

po
ns

e 
tim

e/
s

AEDCF-CW/PF Sys.
Resp. Time

EDCF Sys. Resp Time

Class 0 Resp. Time,
AEDCF-CW/PF

Class 1 Resp. Time,
AEDCF-CW/PF

Class 2 Resp. Time,
AEDCF-CW/PF

Class 0 Resp. Time,
EDCF

Class 1 Resp. Time,
EDCF

Class 2 Resp. Time,
EDCF

 

Figure 19: Response Time 
Comparison for Traffic Classes Under 

AEDCF-CW/PF 

 

 

       From figure 19 we conclude that AEDCF-CW/PF provides excellent 

response time to all traffic classes.  This figure also shows that class 0 and class 1 

traffic have a response time that is lower than the system response time for basic 

EDCF.  This gain in performance is due to the combination of slowly reducing 

the contention windows, as well as the temporary increases in CWmax[i]. 

       At low loads AEDCF-CW/PF performs very similarly to EDCF, as shown 

in figure 20. 

60 



Response Time comparison for AEDCF-CW/PF vs EDCF, 30 stations at 
low loads

0

0.0005

0.001

0.0015

0.002

0.0025

0.003

0.1 0.09 0.08 0.07 0.06 0.05 0.04

Interarrival time/s

R
es

po
ns

e 
tim

e/
s

AEDCF-CW /PF Sys.
Resp. Time

EDCF Sys. Resp Time

Class 0 Resp. Time,
AEDCF-CW /PF

Class 1 Resp. Time,
AEDCF-CW /PF

Class 2 Resp. Time,
AEDCF-CW /PF

Class 0 Resp. Time,
EDCF

Class 1 Resp. Time,
EDCF

Class 2 Resp. Time,
EDCF

Figure 20: Comparison of AEDCF-
CW/PF and EDCF at Low Loads 

 

 

      In addition to the new scheme’s excellent response time performance under 

heavy loads, AEDCF-CW/PF also drops frames at a lower rate than both EDCF 

and AEDCF, as illustrated in figure 21.  From this figure we see that at the 

highest load (0.01 ms between frame arrivals) 83% of the class 0 frames are 

dropped.  This value was 99.6% for basic EDCF and 91.5% for AEDCF.  Based 

on this, we can conclude that the highest priority traffic actually gains the most 

from the new scheme.  It is worth noting, though, that the other traffic classes 

also gain from lower frame drop probabilities at the very high loads. 

 

 

61 



 

 

Frame dropping probability vs Interarrival time for 
AEDCF with varying PF and CWmax, 30 stations

0

0.2

0.4

0.6

0.8

1

1.2

0.05 0.04 0.03 0.02 0.01

Interarrival time/s

Fr
am

e 
dr

op
 p

ro
ba

bi
lit

y

Class 0
Class 1
Class 2

Figure 21: Frame Drop Probabilities 
for AEDCF-CW/PF 

 

 

       AEDCF-CW/PF does have one flaw – it introduces higher jitter values for 

the traffic under heavy loads, as illustrated in figures 22 and 23.  In our 

simulations, we measured jitter by collecting the variance of the system response 

time.  Our data indicates that AEDCF-CW/PF starts out having comparable, or 

lower jitter values than both EDCF and AEDCF.  Once each of these medium 

access functions attains its maximum throughput, AEDCF-CW/PF begins to 

display poor jitter performance.  This degradation in performance is a result of 

the lower tendency of AEDCF-CW/PF to drop frames.  Since more frames get 

62 



transmitted, these frames then adversely affect the variance of the system 

response time.  In spite of this flaw, we are of the opinion that AEDCF-CW/PF 

is superior to both EDCF and AEDCF since it has much better response times, 

and lower frame dropping probabilities. 

 

 

System  Response Tim e variance vs Interarrival tim e for basic 
EDCF and AEDCF w ith varying PF and CW m ax

0

0.001

0.002

0.003

0.004

0.005

0.006

0.05 0.04 0.03 0.02 0.01

Interarrival tim e/s

R
es

po
ns

e 
tim

e 
va

ria
nc

e/
s2

20 STA
EDCF

25 STA
EDCF

30 STA
EDCF

20 STA

25 STA

30 STA

Figure 22: System Response Time 
Variance for AEDCF-CW/PF and 

EDCF 

 

 

 

 

 

63 



System  Response Tim e variance vs Interarrival tim e for AEDCF 
and AEDCF w ith varying PF and CW m ax

0

0.001

0.002

0.003

0.004

0.005

0.006

0.05 0.04 0.03 0.02 0.01

Interarrival tim e/s

R
es

po
ns

e 
tim

e 
va

ria
nc

e/
s2

20 STA
AEDCF

25 STA
AEDCF

30 STA
AEDCF

20 STA

25 STA

30 STA

Figure 23: System Response Time 
Variance AEDCF and AEDCF-

CW/PF 

 

 

Impact of Changes 

       Adaptive EDCF with varying CW and PF can be implemented at each 

station with minimal impact.  In addition to the four additional registers 

mentioned in [16] to store the values for α, PF[i], fj-1
avg and Tupdate, our scheme will 

require two additional registers to store the values of β and γ.  Computing the 

new persistence factor will take one comparison operation.  In the event of a 

collision, determining whether or not to double CWmax will take two comparisons.  

Choosing to double CWmax will take one addition and one multiplication 

operation.  The other multiplication and addition operations are a normal part of 

64 



the standard EDCF procedure, and therefore do not add to the complexity of the 

function. 

       In this chapter we studied DCF and EDCF culminating in the introduction 

of a scheme called AEDCF-CW/PF that is a marked improvement over EDCF 

under heavy loads.  Figure 24 shows the improvement in system response time 

provided by AEDCF-CW/PF. 

 

 

System Response Time vs Interarrival time for basic EDCF, Frame 
Dropping EDCF, AEDCF, AEDCF-PF, and AEDCF-CW/PF, 30 stations at 

high loads

0

0.02

0.04

0.06

0.08

0.1

0.12

0.04 0.03 0.02 0.01

Interarrival time/s

R
es

po
ns

e 
tim

e/
s

EDCF

EDCF w/ frame
dropping

EDCF w/ diff retry
limits

AEDCF

AEDCF-PF

AEDCF-CW/PF

Figure 24: System Response Time for 
EDCF, AEDCF and Their Variants 

65 



CHAPTER 6 

CONCLUSION 
 

 

       In the last chapter we presented a variety of techniques to provide quality of 

service in 802.11e LANs.  Based on our findings random frame dropping from 

DCF queues does not appear to affect the frame delay for different traffic classes 

significantly. As a result we concluded that random frame dropping from DCF 

queues would have no effect on quality of service. 

       Next, we investigated the EDCF function and many of its variants.  In our 

research we discovered that while EDCF provided prioritization for traffic 

classes, this came at the cost of a higher collision probability for stations as figure 

25 shows. 

 

 

66 



Exponentially Weighted Collision Probability vs 
Interarrival Time

25 competing stations

0

0.005

0.01

0.015

0.02

0.025

0.0
5

0.0
46

0.0
42

0.0
38

0.0
34 0.0

3
0.0

26
0.0

22
0.0

18
0.0

14 0.0
1

Interarrival time/s

C
ol

lis
io

n 
pr

ob
ab

ili
ty DCF

EDCF

AEDCF-PF

AEDCF

AEDCF-
CW/PF

Figure 25: Collision Probability for 
DCF, EDCF and AEDCF 

 

 

       From figure 25 we conclude that the collision probability in an 802.11 

WLAN is independent of the frame interarrival time as long as the WLAN is 

unsaturated.  As the network approaches the saturation point, the probability of 

collision increases.  This is because as we approach the saturation point more 

stations always have a frame to transmit; therefore, the network has a higher 

number of competing stations at any given instant. 

       It should be observed from figure 25 that EDCF has a much higher collision 

probability than both DCF and all the AEDCF variants.  The difference in the 

curves can be attributed to the following factors.  First, under DCF all the 

67 



stations have the same starting values for CWmin and DIFS, therefore the stations 

all have a roughly equal chance of colliding with each other.  EDCF on the other 

hand has at least four values of CWmin each with an associated AIFS[i] time.  

Since the AIFS times are longer for the lower priority AC, there is a much higher 

probability that these AC will collide with a higher priority AC that has a shorter 

AIFS time and smaller value for its contention window.  Please note the drop in 

the collision probability for EDCF when the frame interarrival time is 0.01 s.  

This drop is a result of the much higher frame dropping probability at that rate.  

At that interarrival time several frames are being dropped from the queues 

because the frames have exceeded their MSDU lifetime limits.  As a result the 

stations are no longer operating in saturated conditions.  Finally we observe that 

AEDCF has a much lower collision probability than EDCF.  This is a result of 

AEDCF’s tendency to reset the contention window to CWmin at a lower rate than 

EDCF.  In [16] Romdhani et al. stated that whenever a collision occurred in a 

network, another collision was very likely to occur in the near future.  By resetting 

the CW slowly, one reduces the probability of two successive collisions. 

       As was the case for DCF our research indicated that random frame dropping 

from EDCF queues did not make a significant contribution to minimizing the 

frame delay, particularly when the number of stations is less than 30.  As a result, 

random frame dropping from EDCF queues is not an attractive option for 

providing quality of service. 

68 



       We also saw that setting up different frame retry limits for the different AC 

sometimes resulted in lowering the system response time.  However, 

differentiating between frame retry limits for the different AC is not a viable 

method for providing quality of service, especially under saturated conditions. 

       The best method of providing quality of service in an 802.11e LAN would 

be to implement Adaptive EDCF (AEDCF), or one of its variants i.e. AEDCF 

with a varying persistence factor (AEDCF-PF) or AEDCF with a varying 

persistence factor and CWmax (AEDCF-PF/CW).  Any of these algorithms can 

help a station deal with temporary instability in the WLAN caused by saturation, 

plus they have the benefit of being fully distributed.  As a result QSTAs can 

compute values for CWmin[i] and AIFS[i] without having to rely on a HC to 

broadcast these values. 

       In light of the advantages offered by AEDCF and its variants, it is our 

recommendation that any attempts to offer quality of service in 802.11e LANs 

focus on CWmin, and CWmax.  From chapter 3, we found that 802.11e had a well-

documented method of setting the arbitration interframe space i.e. aDIFSTime + 

k*aSlotTime, k ≥ 0; therefore, we cannot modify these values at each station. 

Based on our simulations it is our recommendation that the persistence factor be 

reinstated in the 802.11e standard.  This factor can aid in providing differentiation 

under heavy loads. 

       Our work in this thesis may be extended to investigate the effects of starting 

the AEDCF algorithm with different values for CWmin and CWmax.  In addition, 

69 



AEDCF’s performance needs to be investigated when the group ACK 

mechanism is used.  The AEDCF algorithm may be extended to adapt the packet 

burst length based on the number of acknowledgements that are received [16].  

Finally, some research needs to be done in making the 802.11e MAC fairer.  By 

incorporating the use of different sizes for CWmin, CWmax and AIFS the 802.11e 

MAC has become less fair than DCF.  One approach to alleviating the unfairness 

of the 802.11e MAC might be to allow stations to use a given TXOP to transmit 

data from the queue that won access to the medium as well as another queue 

other than the queue that originally won access to the medium.  The second 

frame that is transmitted may be chosen by choosing a frame from a queue that 

has the largest queue length to AIFS length ratio. 

 

70 



 

 

 

 

 

 

APPENDIX A 

DCF CODE LISTING 
 

  



 

/* Code to simulate DCF function */ 
/* All times below are in seconds */ 
 
#include "csim.h" 
#include <stdio.h> 
 
#define aCWmin      31         //Number of slots 
#define aCWmax    1023         //Number of slots 
#define aSlotTime   0.00002    //time in seconds. 20 microsecs 
#define aSIFSTime   0.00001    //time in seconds. 10 microsecs 
#define aPIFSTime   0.00004    //time in seconds. 40 microsecs 
#define aDIFSTime   0.00005    /*time in seconds. DIFS = SIFS 
+ (2*aSlotTime) */ 
#define aMPDUMaxLength 4095    /*MPDU in octets.  According to 
the standard 1 <= x <= 4095 */ 
#define dot11RetryLimit 7      /*Number of times a frame may 
be retransmitted */ 
#define dot11MaxTransmitMsduLifetime 0.000512 /*Time after 
initial tx when frame is dropped */ 
#define MACHdr        272.0      //MAC Header Length 
#define PHYHdr        192.0      //PHY Header Length 
#define ACKLgth       112.0      //Length of ACK frame 
 
#define LinkSpeed    54000000.0  // 54 Mbps 
#define NARS  100000           //Number of arrivals 
#define STNS    20 
 
FACILITY s;   //Medium 
FACILITY queues[STNS]; 
 
TABLE tbl;   //To hold frame response times for source 0 
TABLE tbl1;   //To hold frame response times for source 1 
TABLE tbl2;   //To hold frame response times for source 2 
TABLE tbl3;   //To hold frame response times for all sources 
TABLE rtxtbl;  //Table showing number of retransmissions 
TABLE cwtbl;  //Table with contention window sizes 
TABLE drptbl;  //Table with number of dropped frames 
TABLE rtxtbl1;  //Table showing number of retransmissions 
TABLE cwtbl1;  //Table with contention window sizes 
TABLE drptbl1;  //Table with number of dropped frames 
TABLE rtxtbl2;  //Table showing number of retransmissions 
TABLE cwtbl2;  //Table with contention window sizes 
TABLE drptbl2;  //Table with number of dropped frames 
TABLE frmtbl;  //Table with frame sizes 
 
QTABLE qtbl; 
QTABLE qtbl1; 
QTABLE qtbl2; 
 
EVENT done;   //Event that the simulation is complete 
EVENT ACK;    //Event that an ACK has been received. 

 72  



EVENT idle;   //Event that the medium is idle after aDIFSTime 
EVENT busy;   //Event that the medium is currently busy 
EVENT finxmission;  /*Event that a station has finished a 
transmission */ 
EVENT go;     //Event that a function can continue execution 
 
int cnt; 
int xmitting; //Nbr of stations transmitting simultaneously 
int j; 
double IATM;  //Frame inter-arrival times 
 
void init(); 
float GenerateFrame();    //Generates frames 
int ExpBackoff(int CW, int PF); /*Exponential Backoff 
algorithm */ 
void BackOffCtr(int w);   //Counts down idle slots 
void ProcessFrame(FACILITY q[], double svc, TABLE tbl, TABLE 
cwtbl, TABLE rtxtbl, TABLE drptbl, int k); //Processes frames 
void cust(int i);  /*Generates and processes the frame */ 
void source(int i);  //Simulates a frame source 
void MediumSensing(); //Medium Sensing function 
void ACKgenerator(); /*Generates ACK iff only one station is 
transmitting */ 
 
void sim()                       //1st process - named sim 
{ 
 int stdone; 
 FILE *out; 
 char filename[16]; 
 
 sprintf(filename, "outdcf%d.txt", STNS); 
 set_model_name("Simulation of DCF"); 
 out = fopen(filename, "wt"); 
 for (IATM = 0.1000; IATM > 0.0095; IATM = IATM - 0.0020) 
 { 
  create("sim");                  //required create statement 
 
  max_processes(100000000); 
  max_events(1000000); 
  init(); 
 
  reset_prob(clock); 
  cnt = NARS/8; 
  MediumSensing(); 
  ACKgenerator(); 
  for (j=0; j<STNS; j++) 
   source(j); 
  wait(done); 
  clear(done); 
  clear(ACK); 
  clear(idle); 

73 



  clear(busy); 
  clear(finxmission); 
  clear(go); 
  xmitting = 0; 
  reset(); 
 
  cnt = 3*NARS; 
  MediumSensing(); 
  ACKgenerator(); 
  for (j=0; j<STNS; j++) 
   source(j); 
  wait(done);                            //wait until all done 
  fprintf(out ,"%i\t%f\t%f\t%f\t%f\t%f\t%f\t%f\t%f\t%f\t%f\t 
                %f\t%f\t%f\t%f\t%f\t%f\t%f\t%f\t%f\t%f\t\n" 
              ,STNS,table_mean(frmtbl),IATM ,table_mean(tbl) 
              ,table_var(tbl),table_mean(rtxtbl) 
              ,table_mean(cwtbl),table_mean(drptbl) 
              ,table_mean(tbl1),table_var(tbl1) 
              ,table_mean(rtxtbl1),table_mean(cwtbl1) 
              ,table_mean(drptbl1),table_mean(tbl2) 
              ,table_var(tbl2),table_mean(rtxtbl2) 
              ,table_mean(cwtbl2),table_mean(drptbl2) 
              ,table_mean(tbl3),table_var(tbl3),util(s)); 
  fflush(out); 
  rerun(); 
 } 
 fclose(out); 
    report();                               //print report 
    mdlstat(); 
} 
 
void init() 
{ 
    s = facility("medium");            //initialize facility 
 facility_set(queues,"src_qs",STNS); 
 
 done = event("done");                 //initialize event 
 ACK = event("ACK"); 
 idle = event("idle"); 
 busy = event("busy"); 
 finxmission = event("finxmission"); 
 go = event("go"); 
 
 tbl = table("Frame response tms");    //initialize table 
 rtxtbl = table("Nbr of retransmissions"); 
 cwtbl = table("Size of contention window"); 
 drptbl= table("Nbr of dropped frames"); 
 tbl1 = table("Frame response tms - class 1"); 
 rtxtbl1 = table("Nbr of retransmissions - class 1"); 
 cwtbl1 = table("Size of contention window - class 1"); 
 drptbl1= table("Nbr of dropped frames - class 1"); 

74 



 tbl2 = table("Frame response tms - class 2"); 
 rtxtbl2 = table("Nbr of retransmissions - class 2"); 
 cwtbl2 = table("Size of contention window - class 2"); 
 drptbl2= table("Nbr of dropped frames - class 2"); 
 tbl3 = table("System resp tms for all classes"); 
 frmtbl = table("Sizes of frames for all classes"); 
 
 qtbl = qhistogram("num from source0", 10l);   /*initialize 
qhistogram */ 
 qtbl1 = qhistogram("num from source1", 10l); 
 qtbl2 = qhistogram("num from source2", 10l); 
 xmitting = 0; 
} 
 
float GenerateFrame()    //Generates frames 
{ 
 int tmpframe = random(1,4095); /*Returns a random # between 1 
and 4095 */ 
 return((tmpframe*8.0) + MACHdr + PHYHdr); 
} 
 
int ExpBackoff(int CW, int PF) /*Exponential Back-off 
algorithm */ 
{ 
 int tempCW= (PF*(CW+1)) - 1; 
 if (tempCW <= aCWmax) 
  return(tempCW); 
 else 
  return (CW); 
} 
 
void BackOffCtr(int w) 
{ 
 int st; 
 int i; 
 for (i=w; i>0; i--) 
 { 
  hold(aSlotTime); 
  st = state(busy); //Sense medium 
  if (st==1)   //If the medium is busy 
   wait(idle); 
 } 
} 
 
void ProcessFrame(FACILITY q[], double svc, TABLE tbl, TABLE 
cwtbl, TABLE rtxtbl, TABLE drptbl, int k)    /*Processes 
frames */ 
{ 
    double t1; 
    int    st; 

75 



 int    retx=0;     /*keeps track of how many times a 
retransmission occurs */ 
 int    w;          //used to keep track of number of slots 
 int    CW;         /*used to keep track of the size of the 
contention window*/ 
 
 CW = aCWmin; 
 t1 = clock;        //time of request 
 reserve(q[k]);     /*Enter this frame in the queue for the 
source being processed */ 
  if ((clock-t1)<dot11MaxTransmitMsduLifetime) 
  { 
   wait(idle);    //Wait until the medium is idle for 
aDIFSTime */ 
   w = rand()%CW; 
   BackOffCtr(w); 
   xmitting++;     /*Increment the number of stations 
transmitting */ 
   set(busy); 
   use(s,svc);     //reserve medium 
   clear(busy); 
   record(clock-t1, tbl);      /*record response time for this 
source */ 
   record(clock-t1, tbl3);     /*record response time for all 
sources */ 
   set(finxmission);   /*Indicate that the transmission is 
done */ 
   wait(go);     /*Wait for the ACKgenerator function to check 
xmitting */ 
   xmitting--;     /*Decrement the number of stations 
transmitting */ 
   clear(go);      /*Once go has been received continue 
execution */ 
   clear(finxmission); 
   st = state(ACK); 
   //If an ACK has not been received 
   while (st!=1 && retx<dot11RetryLimit && (clock-
t1)<dot11MaxTransmitMsduLifetime) 
   { 
    CW = ExpBackoff(CW, 2); 
    wait(idle); 
    w = rand()%CW; 
    BackOffCtr(w); 
    retx++; 
    xmitting++;    /*Increment the number of stations 
transmitting */ 
    set(busy); 
    use(s,svc);    //reserve medium 
    clear(busy); 
    record(clock-t1, tbl);  /*record response time for this 
source */ 

76 



    record(clock-t1, tbl3); //record system response time 
    set(finxmission);  /*Indicate that the transmission is 
done */ 
    wait(go);    /*Wait for the ACKgenerator function to check 
xmitting */ 
    xmitting--;    /*Decrement the number of stations 
transmitting */ 
    clear(go);    /*Once go has been received continue 
execution */ 
    clear(finxmission); 
    st = state(ACK); 
   } 
   record(retx, rtxtbl);  //record number of retransmissions 
   record(w, cwtbl);   //Record size of contention window 
   if (st !=1 && (retx == dot11RetryLimit || (clock-
t1)>=dot11MaxTransmitMsduLifetime)) 
    record(1.0, drptbl); //Record that this frame was dropped 
   else 
   { 
    clear(ACK); 
    record(0.0, drptbl); //Record that frame wasn't dropped 
   } 
  } 
  else 
   record(1.0, drptbl); //Record that this frame was dropped 
 release(q[k]); 
} 
 
void cust(int i)     //process customer 
{ 
 char procname[32]; 
 sprintf(procname, "cust %d", i); 
 create(procname);               //required create statement 
 float frameSize = GenerateFrame(); 
 record(frameSize, frmtbl); 
 double svc = frameSize/LinkSpeed; 
 if (i%4 == 0) 
 { 
  note_entry(qtbl);           //note arrival 
  ProcessFrame(queues, svc, tbl, cwtbl, rtxtbl, drptbl, i);
 //Processes frames 
  note_exit(qtbl); 
 } 
 else if (i%2 == 1) 
 { 
  note_entry(qtbl1); 
  ProcessFrame(queues, svc, tbl1, cwtbl1, rtxtbl1, drptbl1, 
i); //Processes frames 
  note_exit(qtbl1); 
 } 
 else 

77 



 { 
  note_entry(qtbl2); 
  ProcessFrame(queues, svc, tbl2, cwtbl2, rtxtbl2, drptbl2, 
i); //Processes frames 
        note_exit(qtbl2);   //note departure 
 } 
    cnt--; 
    if(cnt == 0) 
        set(done);     //if last arrival, signal 
} 
 
void source(int i) 
{ 
 char procname[32]; 
 sprintf(procname, "source %d", i); 
 create(procname); 
 int stdone; 
 do 
 { 
  hold(expntl(IATM));  /*Generate packets according to an 
exponential distribution */ 
        cust(i);    //initiate process cust 
  stdone = state(done); 
 } 
 while (stdone == 2); 
} 
void MediumSensing()    //Check state of medium 
{ 
  create("MediumSensing"); 
 int st;       //State of medium 
 int stdone; 
 do 
 { 
  st = state(busy); 
  if (st == 2) 
  { 
            hold(aDIFSTime);  //Wait for a DIFS interval 
   st = state(busy); 
   if (st==2) 
    set(idle);   /*If the medium is free for a DIFS interval 
make it idle */ 
   else 
    hold(aSlotTime); 
  } 
  else 
   hold(aSlotTime); 
  stdone = state(done); 
 } 
 while (stdone == 2); 
} 
 

78 



void ACKgenerator()     /*Determines whether or not an ACK can 
be sent */ 
{ 
 create("ACKgenerator"); 
 set_priority(2); 
 int stdone; 
 double ACKsize = ACKLgth+ PHYHdr; 
 double svc = ACKsize/LinkSpeed; 
 record(ACKsize,frmtbl); 
 do 
 { 
  wait(finxmission); 
  if (xmitting==1 || xmitting==0)  /*Generate an ACK iff one 
station is transmitting */ 
  { 
   hold(aSIFSTime); 
   set(busy); 
   use(s, svc);   //Transmit the ACK frame 
   clear(busy); 
   set(ACK); 
   set(go); 
  } 
  else 
  { 
   clear(ACK); 
   hold(aSIFSTime); 
   set(go); 
  } 
  stdone = state(done); 
 } 
 while (stdone == 2); 
} 

79 



 

 

 

 

 

 

 

APPENDIX B 

DCF WITH RANDOM FRAME DROPPING 

 CODE LISTING 
 

   



 

/* Code to simulate DCF with random frame dropping function */ 
/* All times below are in seconds */ 
 
#include "csim.h" 
#include <stdio.h> 
 
#define aCWmin      31         //Number of slots 
#define aCWmax    1023         //Number of slots 
#define aSlotTime   0.00002    //time in seconds. 20 microsecs 
#define aSIFSTime   0.00001    //time in seconds. 10 microsecs 
#define aPIFSTime   0.00004    //time in seconds. 40 microsecs 
#define aDIFSTime   0.00005    /*time in seconds. DIFS = SIFS 
+ (2*aSlotTime) */ 
#define aMPDUMaxLength 4095    /*MPDU in octets.  According to 
the standard 1 <= x <= 4095 */ 
#define dot11RetryLimit 7      /*Number of times a frame may 
be retransmitted */ 
#define dot11MaxTransmitMsduLifetime 0.000512 /*Time after 
initial tx when frame is dropped */ 
#define MACHdr        272.0      //MAC Header Length 
#define PHYHdr        192.0      //PHY Header Length 
#define ACKLgth       112.0      //Length of ACK frame 
 
#define LinkSpeed    54000000.0  // 54 Mbps 
#define NARS  100000           //Number of arrivals 
#define STNS    20 
 
FACILITY s;   //Medium 
FACILITY queues[STNS]; 
 
TABLE tbl;   //To hold frame response times for source 0 
TABLE tbl1;   //To hold frame response times for source 1 
TABLE tbl2;   //To hold frame response times for source 2 
TABLE tbl3;   //To hold frame response times for all sources 
TABLE rtxtbl;  //Table showing number of retransmissions 
TABLE cwtbl;  //Table with contention window sizes 
TABLE drptbl;  //Table with number of dropped frames 
TABLE rtxtbl1;  //Table showing number of retransmissions 
TABLE cwtbl1;  //Table with contention window sizes 
TABLE drptbl1;  //Table with number of dropped frames 
TABLE rtxtbl2;  //Table showing number of retransmissions 
TABLE cwtbl2;  //Table with contention window sizes 
TABLE drptbl2;  //Table with number of dropped frames 
TABLE frmtbl;  //Table with frame sizes 
 
QTABLE qtbl; 
QTABLE qtbl1; 
QTABLE qtbl2; 
 
EVENT done;   //Event that the simulation is complete 
EVENT ACK;    //Event that an ACK has been received. 

 81   



EVENT idle;    //Event that the medium is idle after aDIFSTime 
EVENT busy;    //Event that the medium is currently busy 
EVENT finxmission;  /*Event that a station has finished a 
transmission */ 
EVENT go;      //Event that a function can continue execution 
 
int cnt; 
int xmitting;  /*Nbr of stations transmitting simultaneously 
int j; 
double IATM;   //Frame inter-arrival times 
 
void init(); 
float GenerateFrame();    //Generates frames 
int ExpBackoff(int CW, int PF); /*Exponential Back-off 
algorithm */ 
void BackOffCtr(int w);   //Counts down idle slots 
void DropFrame(FACILITY q[], TABLE drptbl, MBOX mb, int i); 
 //Drops frames 
void ProcessFrame(FACILITY q[], double svc, TABLE tbl, TABLE 
cwtbl, TABLE rtxtbl, TABLE drptbl, int i); //Processes frames 
void cust(int i);  /*Generates and processes the frame */ 
void source(int i);  //Simulates a frame source 
void MediumSensing(); //Medium Sensing function 
void ACKgenerator(); /*Generates ACK iff only one station is 
transmitting*/ 
 
void sim()                //1st process - named sim 
{ 
 int stdone; 
 FILE *out; 
 char filename[16]; 
 
 sprintf(filename, "outdcfdrp%d.txt", STNS); 
 set_model_name("Simulation of DCF w/ random frame dropping"); 
 out = fopen(filename, "wt"); 
 for (IATM = 0.1000; IATM > 0.0095; IATM = IATM - 0.0020) 
 { 
  create("sim");              //required create statement 
 
  max_processes(100000000); 
  max_events(1000000); 
  max_mailboxes(1000000); 
  init(); 
 
  reset_prob(clock); 
  cnt = NARS/8; 
  MediumSensing(); 
  ACKgenerator(); 
  for (j=0; j<STNS; j++) 
   source(j); 
  wait(done); 

82 



  clear(done); 
  clear(ACK); 
  clear(idle); 
  clear(busy); 
  clear(finxmission); 
  clear(go); 
  xmitting = 0; 
  reset(); 
 
  cnt = 3*NARS; 
  MediumSensing(); 
  ACKgenerator(); 
  for (j=0; j<STNS; j++) 
   source(j); 
  wait(done);                      //wait until all done 
  fprintf(out ,"%i\t%f\t%f\t%f\t%f\t%f\t%f\t%f\t%f\t%f\t%f\t 
                %f\t%f\t%f\t%f\t%f\t%f\t%f\t%f\t%f\t%f\t\n" 
              ,STNS,table_mean(frmtbl),IATM ,table_mean(tbl) 
              ,table_var(tbl),table_mean(rtxtbl) 
              ,table_mean(cwtbl),table_mean(drptbl) 
              ,table_mean(tbl1),table_var(tbl1) 
              ,table_mean(rtxtbl1),table_mean(cwtbl1) 
              ,table_mean(drptbl1),table_mean(tbl2) 
              ,table_var(tbl2),table_mean(rtxtbl2) 
              ,table_mean(cwtbl2),table_mean(drptbl2) 
              ,table_mean(tbl3),table_var(tbl3),util(s)); 
  fflush(out); 
  rerun(); 
 } 
 fclose(out); 
 report();                               //print report 
 mdlstat(); 
} 
 
void init() 
{ 
 s = facility("medium");             //initialize facility 
 facility_set(queues,"src_qs",STNS); 
 
 done = event("done");                 //initialize event 
 ACK = event("ACK"); 
 idle = event("idle"); 
 busy = event("busy"); 
 finxmission = event("finxmission"); 
 go = event("go"); 
 
 tbl = table("Frame response tms");    //initialize table 
 rtxtbl = table("Nbr of retransmissions"); 
 cwtbl = table("Size of contention window"); 
 drptbl= table("Nbr of dropped frames"); 
 tbl1 = table("Frame response tms - class 1"); 

83 



 rtxtbl1 = table("Nbr of retransmissions - class 1"); 
 cwtbl1 = table("Size of contention window - class 1"); 
 drptbl1= table("Nbr of dropped frames - class 1"); 
 tbl2 = table("Frame response tms - class 2"); 
 rtxtbl2 = table("Nbr of retransmissions - class 2"); 
 cwtbl2 = table("Size of contention window - class 2"); 
 drptbl2= table("Nbr of dropped frames - class 2"); 
 tbl3 = table("System resp tms for all classes"); 
 frmtbl = table("Sizes of frames for all classes"); 
 
 qtbl = qhistogram("num from source0", 10l);   /*initialize 
qhistogram */ 
 qtbl1 = qhistogram("num from source1", 10l); 
 qtbl2 = qhistogram("num from source2", 10l); 
 xmitting = 0; 
} 
 
float GenerateFrame()    //Generates frames 
{ 
 int tmpframe = random(1,4095); /*Returns a random # between 1 
and 4095 */ 
 return((tmpframe*8.0) + MACHdr + PHYHdr); 
} 
 
int ExpBackoff(int CW, int PF) /*Exponential Back-off 
algorithm*/ 
{ 
 int tempCW= (PF*(CW+1)) - 1; 
 if (tempCW <= aCWmax) 
  return(tempCW); 
 else 
  return (CW); 
} 
 
void BackOffCtr(int w) 
{ 
 int st; 
 int i; 
 for (i=w; i>0; i--) 
 { 
  hold(aSlotTime); 
  st = state(busy); //Sense medium 
  if (st==1)   //If the medium is busy 
   wait(idle); 
 } 
} 
 
void DropFrame(FACILITY q[], TABLE drptbl, MBOX mb, int i) 
 //Drops frames 
{ 
 MBOX recv; 

84 



 MBOX temp; 
 long buffer=0; 
 long* msg; 
 
 recv = mailbox("rcv"); 
 temp = mailbox("tmp"); 
 reserve(q[i]);     /*Enter this frame in the queue for the 
source being processed */ 
  record(1.0, drptbl); //Record that this frame was dropped 
  send(mb, buffer);   /*Indicate to the source the message was 
dropped */ 
  receive(mb, (long *) &msg); 
 release(q[i]); 
 delete_mailbox(temp); 
 delete_mailbox(recv); 
} 
 
void ProcessFrame(FACILITY q[], double svc, TABLE tbl, TABLE 
cwtbl, TABLE rtxtbl, TABLE drptbl, int k)   //Processes frames 
{ 
   double t1; 
   int    st; 
   int    retx=0;     /*keeps track of how many times a 
retransmission occurs */ 
   int    w;          //used to keep track of number of slots 
   int    CW;      /*used to keep track of the size of the 
contention window */ 
 
    CW = aCWmin; 
    t1 = clock;           //time of request 
    reserve(q[k]);     /*Enter this frame in the queue for the 
source being processed */ 
  if ((clock-t1)<dot11MaxTransmitMsduLifetime) 
  { 
   wait(idle);     /*Wait until the medium is idle for 
aDIFSTime */ 
   w = rand()%CW; 
   BackOffCtr(w); 
   xmitting++; 
   set(busy); 
   use(s,svc);     //reserve medium 
   clear(busy); 
   record(clock-t1, tbl);      /*record response time for this 
source */ 
   record(clock-t1, tbl3);     /*record response time for all 
sources */ 
   set(finxmission);   /*Indicate that the transmission is 
done */ 
   wait(go);     /*Wait for the ACKgenerator function to check 
xmitting */ 
   xmitting--; 

85 



   clear(go);     /*Once go has been received continue 
execution */ 
   clear(finxmission); 
   st = state(ACK); 
   //If an ACK has not been received 
   while (st!=1 && retx<dot11RetryLimit && (clock-
t1)<dot11MaxTransmitMsduLifetime) 
   { 
    CW = ExpBackoff(CW, 2); 
    wait(idle); 
    w = rand()%CW; 
    BackOffCtr(w); 
    retx++; 
    xmitting++; 
    set(busy); 
    use(s,svc);    //reserve medium 
    clear(busy); 
    record(clock-t1, tbl);  /*record response time for this 
source */ 
    record(clock-t1, tbl3); /*record response time for all 
sources */ 
    set(finxmission);  /*Indicate that the transmission is 
done */ 
    wait(go);    /*Wait for the ACKgenerator function to check 
xmitting */ 
    xmitting--; 
    clear(go);    /*Once go has been received continue 
execution */ 
    clear(finxmission); 
    st = state(ACK); 
   } 
   record(retx, rtxtbl);  //record number of retransmissions 
   record(w, cwtbl);   //Record size of contention window 
   if (st !=1 && (retx == dot11RetryLimit || (clock-
t1)>=dot11MaxTransmitMsduLifetime)) 
    record(1.0, drptbl); //Record that this frame was dropped 
   else 
   { 
    clear(ACK); 
    record(0.0, drptbl); /*Record that this frame wasn't 
dropped */ 
   } 
  } 
  else 
   record(1.0, drptbl); //Record that this frame was dropped 
 release(q[k]); 
} 
 
void cust(int i)     //process customer 
{ 
 char procname[32]; 

86 



 MBOX mb; 
 sprintf(procname, "cust %d", i); 
 create(procname);    //required create statement 
 mb = mailbox("mb");    /*Mailbox to receive messages on 
dropped frames */ 
 float frameSize = GenerateFrame(); 
 record(frameSize, frmtbl); 
 double svc = frameSize/LinkSpeed; 
 if (i%4 == 0) 
 { 
  note_entry(qtbl);           //note arrival 
  if (qlength(queues[i]) < 5) 
  { 
   if (random(0,999)%501 != 0) 
   { 
    double svc = frameSize/LinkSpeed; 
    ProcessFrame(queues, svc, tbl, cwtbl, rtxtbl, drptbl, i);
 //Processes frames 
    cnt--; 
   } 
   else 
    DropFrame(queues, drptbl, mb, i); 
  } 
  else 
  { 
   if (random(0,99)%51 != 0) 
   { 
    double svc = frameSize/LinkSpeed; 
    ProcessFrame(queues, svc, tbl, cwtbl, rtxtbl, drptbl, i);
 //Processes frames 
    cnt--; 
   } 
   else 
    DropFrame(queues, drptbl, mb, i); 
  } 
  note_exit(qtbl); 
 } 
 else if (i%2 == 1) 
 { 
  note_entry(qtbl1); 
  if (qlength(queues[i]) < 3) 
  { 
   if (random(0,999)%502 != 0) 
   { 
    double svc = frameSize/LinkSpeed; 
    ProcessFrame(queues, svc, tbl1, cwtbl1, rtxtbl1, drptbl1, 
i);    //Processes frames 
    cnt--; 
   } 
   else 
    DropFrame(queues, drptbl, mb, i); 

87 



  } 
  else 
  { 
   if (random(0,99)%52 != 0) 
   { 
    double svc = frameSize/LinkSpeed; 
    ProcessFrame(queues, svc, tbl1, cwtbl1, rtxtbl1, drptbl1, 
i);    //Processes frames 
    cnt--; 
   } 
   else 
    DropFrame(queues, drptbl, mb, i); 
  } 
  note_exit(qtbl1); 
 } 
 else 
 { 
  note_entry(qtbl2); 
  if (qlength(queues[i]) < 10) 
  { 
   if (random(0,999)%503 != 0) 
   { 
    double svc = frameSize/LinkSpeed; 
    ProcessFrame(queues, svc, tbl2, cwtbl2, rtxtbl2, drptbl2, 
i); //Processes frames 
    cnt--; 
   } 
   else 
    DropFrame(queues, drptbl, mb, i); 
  } 
  else 
  { 
   if (random(0,99)%53 != 0) 
   { 
    double svc = frameSize/LinkSpeed; 
    ProcessFrame(queues, svc, tbl2, cwtbl2, rtxtbl2, drptbl2, 
i); //Processes frames 
    cnt--; 
   } 
   else 
    DropFrame(queues, drptbl, mb, i); 
  } 
        note_exit(qtbl2);   //note departure 
 } 
 delete_mailbox(mb); 
    if(cnt == 0) 
        set(done);     //if last arrival, signal 
} 
 
void source(int i) 
{ 

88 



 char procname[32]; 
 sprintf(procname, "source %d", i); 
 create(procname); 
 int stdone; 
 do 
 { 
  hold(expntl(IATM));  /*Generate packets according to an 
exponential distribution */ 
        cust(i);    //initiate process cust 
  stdone = state(done); 
 } 
 while (stdone == 2); 
} 
void MediumSensing()    //Check state of medium 
{ 
  create("MediumSensing"); 
 int st;       //State of medium 
 int stdone; 
 do 
 { 
  st = state(busy); 
  if (st == 2) 
  { 
   hold(aDIFSTime);  //Wait for a DIFS interval 
   st = state(busy); 
   if (st==2) 
    set(idle);   /*If the medium is free for a DIFS interval 
make it idle */ 
   else 
    hold(aSlotTime); 
  } 
  else 
   hold(aSlotTime); 
  stdone = state(done); 
 } 
 while (stdone == 2); 
} 
 
void ACKgenerator()     /*Determines whether or not an ACK can 
be sent */ 
{ 
 create("ACKgenerator"); 
 set_priority(2); 
 int stdone; 
 double ACKsize = ACKLgth+ PHYHdr; 
 double svc = ACKsize/LinkSpeed; 
 record(ACKsize,frmtbl); 
 do 
 { 
  wait(finxmission); 

89 



  if (xmitting==1 || xmitting==0)   /*Generate an ACK iff one 
station is transmitting */ 
  { 
   hold(aSIFSTime); 
   set(busy); 
   use(s, svc);   //Transmit the ACK frame 
   clear(busy); 
   set(ACK); 
   set(go); 
  } 
  else 
  { 
   clear(ACK); 
   hold(aSIFSTime); 
   set(go); 
  } 
  stdone = state(done); 
 } 
 while (stdone == 2); 
} 

90 



 

 
 

 

 

 

 

APPENDIX C 

EDCF CODE LISTING 
 

    



 

 

/* Code to simulate EDCF function */ 
/* All times below are in seconds */ 
 
#include "csim.h" 
#include <stdio.h> 
 
#define aCWmin       15      //Number of slots 
#define aCWmax       63      //Number of slots 
#define aCWmin1      31      //Number of slots 
#define aCWmax1     127      //Number of slots 
#define aCWmin2      63      //Number of slots 
#define aCWmax2    1023      //Number of slots 
#define aSlotTime   0.00002  //time in seconds. 20 microsecs 
#define aSIFSTime   0.00001  //time in seconds. 10 microsecs 
#define aPIFSTime   0.00004  //time in seconds. 40 microsecs 
#define aDIFSTime   0.00005  /*time in seconds. DIFS = SIFS + 
(2*aSlotTime) */ 
#define aAIFSTime   0.00005  //time in seconds. 50 microsecs 
#define aAIFSTime1  0.00007  //time in seconds. 70 microsecs 
#define aAIFSTime2  0.00009  //time in seconds. 90 microsecs 
#define aMPDUMaxLength 4095  /*MPDU in bits.  According to the 
standard 1 <= x <= 4095 */ 
#define dot11RetryLimit 7    /*Number of times a frame may be 
retransmitted */ 
#define dot11MSDULifeTime 0.06  /*Amount of time that a source 
0 frame can be alive */ 
#define dot11MSDULifeTime1 0.1  /*Amount of time that a source 
1 frame can be alive */ 
#define dot11MSDULifeTime2 0.2  /*Amount of time that a source 
2 frame can be alive */ 
#define MACHdr        272.0      //MAC Header Length 
#define PHYHdr        192.0      //PHY Header Length 
#define ACKLgth       112.0      //Length of ACK frame 
 
#define LinkSpeed    54000000.0   // 54 Mbps 
#define NARS  100000            //Number of arrivals 
#define STNS    20 
 
FACILITY s;   //Medium 
FACILITY queues[STNS]; 
 
TABLE tbl;   //To hold frame response times for source 0 
TABLE tbl1;   //To hold frame response times for source 1 
TABLE tbl2;   //To hold frame response times for source 2 
TABLE tbl3;   //To hold frame response times for all sources 
TABLE rtxtbl;  //Table showing number of retransmissions 
TABLE cwtbl;  //Table with contention window sizes 
TABLE drptbl;  //Table with number of dropped frames 
TABLE rtxtbl1;  //Table showing number of retransmissions 

 92    



TABLE cwtbl1;  //Table with contention window sizes 
TABLE drptbl1;  //Table with number of dropped frames 
TABLE rtxtbl2;  //Table showing number of retransmissions 
TABLE cwtbl2;  //Table with contention window sizes 
TABLE drptbl2;  //Table with number of dropped frames 
TABLE frmtbl;  //Table with frame sizes 
 
QTABLE qtbl; 
QTABLE qtbl1; 
QTABLE qtbl2; 
 
EVENT done;   //Event that the simulation is complete 
EVENT ACK;    //Event that an ACK has been received. 
EVENT idle;   //Event that the medium is idle after aAIFSTime 
EVENT idle1;  //Event that the medium is idle after aAIFSTime1 
EVENT idle2;  //Event that the medium is idle after aAIFSTime2 
EVENT busy;   //Event that the medium is currently busy 
EVENT finxmission;  /*Event that a station has finished a 
transmission */ 
EVENT go;     //Event that a function can continue execution 
 
int cnt; 
int xmitting;  //Nbr of stations transmitting simultaneously 
int j; 
double IATM;   //Frame inter-arrival times 
 
void init();   //Initializes structures used in the simulation 
float GenerateFrame();  //Generates frames 
int ExpBackoff(int CW, int PF, int amaxCW); /*Exponential 
Back-off algorithm */ 
void BackOffCtr(int w);  /*Counts down the number of slots in 
the backoff interval */ 
void BackOffCtr1(int w); /*Counts down the number of slots in 
the backoff interval */ 
void BackOffCtr2(int w); /*Counts down the number of slots in 
the backoff interval */ 
void ProcessFrame(FACILITY q[], double svc, TABLE tbl, TABLE 
cwtbl, TABLE rtxtbl, TABLE drptbl, int i); //Processes frames 
void ProcessFrame1(FACILITY q[], double svc, TABLE tbl, TABLE 
cwtbl, TABLE rtxtbl, TABLE drptbl, int i); //Processes frames 
void ProcessFrame2(FACILITY q[], double svc, TABLE tbl, TABLE 
cwtbl, TABLE rtxtbl, TABLE drptbl, int i); //Processes frames 
void cust(int i);  /*Generates and processes the frame */ 
void source(int i);  //Simulates a frame source 
void MediumSensing(); //Medium Sensing function 
void MediumSensing1(); //Medium Sensing function 
void MediumSensing2(); //Medium Sensing function 
void ACKgenerator(); /*Generates ACK iff only one station is 
transmitting.*/ 
 
void sim()                     //1st process - named sim 

93 



{ 
 int stdone; 
 FILE *out; 
 char filename[16]; 
 
    sprintf(filename, "outedcf%d.txt", STNS); 
    set_model_name("Simulation of EDCF"); 
 out = fopen(filename, "wt"); 
 for (IATM = 0.1000; IATM > 0.0095; IATM = IATM - 0.0020) 
 { 
  create("sim");                //required create statement 
 
  max_processes(100000000); 
  max_events(10000000); 
  init(); 
 
  reset_prob(clock); 
  cnt = NARS/8; 
  MediumSensing(); 
  MediumSensing1(); 
  MediumSensing2(); 
  ACKgenerator(); 
  for (j=0; j<STNS; j++) 
   source(j); 
  wait(done); 
  clear(done); 
        clear(ACK); 
  clear(idle); 
  clear(idle1); 
  clear(idle2); 
  clear(busy); 
  clear(finxmission); 
  clear(go); 
  xmitting = 0; 
  reset(); 
 
  cnt = 3*NARS; 
  MediumSensing(); 
  MediumSensing1(); 
  MediumSensing2(); 
  ACKgenerator(); 
  for (j=0; j<STNS; j++) 
   source(j); 
  wait(done);                       //wait until all done 
  fprintf(out ,"%i\t%f\t%f\t%f\t%f\t%f\t%f\t%f\t%f\t%f\t%f\t 
                %f\t%f\t%f\t%f\t%f\t%f\t%f\t%f\t%f\t%f\t\n" 
              ,STNS,table_mean(frmtbl),IATM ,table_mean(tbl) 
              ,table_var(tbl),table_mean(rtxtbl) 
              ,table_mean(cwtbl),table_mean(drptbl) 
              ,table_mean(tbl1),table_var(tbl1) 
              ,table_mean(rtxtbl1),table_mean(cwtbl1) 

94 



              ,table_mean(drptbl1),table_mean(tbl2) 
              ,table_var(tbl2),table_mean(rtxtbl2) 
              ,table_mean(cwtbl2),table_mean(drptbl2) 
              ,table_mean(tbl3),table_var(tbl3),util(s)); 
  fflush(out); 
  rerun(); 
 } 
 fclose(out); 
    report();                               //print report 
    mdlstat(); 
} 
 
void init() 
{ 
 s = facility("medium");               //initialize facility 
 facility_set(queues,"src_queues",STNS); 
 
 done = event("done");                 //initialize event 
 ACK = event("ACK"); 
 idle = event("idle"); 
 idle1 = event("idle1"); 
 idle2 = event("idle2"); 
 busy = event("busy"); 
 finxmission = event("finxmission"); 
 go = event("go"); 
 
 tbl = table("Frame response tms");    //initialize table 
 rtxtbl = table("Nbr of retransmissions"); 
 cwtbl = table("Size of contention window"); 
 drptbl= table("Nbr of dropped frames"); 
 tbl1 = table("Frame response tms - class 1"); 
 rtxtbl1 = table("Nbr of retransmissions - class 1"); 
 cwtbl1 = table("Size of contention window - class 1"); 
 drptbl1= table("Nbr of dropped frames - class 1"); 
 tbl2 = table("Frame response tms - class 2"); 
 rtxtbl2 = table("Nbr of retransmissions - class 2"); 
 cwtbl2 = table("Size of contention window - class 2"); 
 drptbl2= table("Nbr of dropped frames - class 2"); 
 tbl3 = table("System resp tms for all classes"); 
 frmtbl = table("Sizes of frames for all classes"); 
 
 qtbl = qhistogram("num from source 0", 10l);   /*initialize 
qhistogram */ 
 qtbl1 = qhistogram("num from source 1", 10l); 
 qtbl2 = qhistogram("num from source 2", 10l); 
 xmitting = 0; 
} 
 
float GenerateFrame()    //Generates frames 
{ 

95 



 int tmpframe = random(1,4095); /*Returns a random # between 1 
and 4095 */ 
 return((tmpframe*8.0) + MACHdr + PHYHdr); 
} 
 
int ExpBackoff(int CW, int PF, int amaxCW) /*Exponential Back-
off algorithm */ 
{ 
 int tempCW= (PF*(CW+1)) - 1; 
 if (tempCW <= amaxCW) 
  return(tempCW); 
 else 
  return (CW); 
} 
 
void BackOffCtr(int w) 
{ 
 int st; 
 int i; 
 for (i=w; i>0; i--) 
 { 
  hold(aSlotTime); 
  st = state(busy); //Sense medium 
  if (st==1)   //If the medium is busy 
   wait(idle); 
 } 
} 
 
void BackOffCtr1(int w) 
{ 
 int st; 
 int i; 
 for (i=w; i>0; i--) 
 { 
  hold(aSlotTime); 
  st = state(busy); //Sense medium 
  if (st==1)   //If the medium is busy 
   wait(idle1); 
 } 
} 
 
void BackOffCtr2(int w) 
{ 
 int st; 
 int i; 
 for (i=w; i>0; i--) 
 { 
  hold(aSlotTime); 
  st = state(busy); //Sense medium 
  if (st==1)   //If the medium is busy 
   wait(idle2); 

96 



 } 
} 
 
void ProcessFrame(FACILITY q[], double svc, TABLE tbl, TABLE 
cwtbl, TABLE rtxtbl, TABLE drptbl, int k)     //Processes 
frames 
{ 
    double t1; 
    int    st; 
    int    retx=0;     /*keeps track of how many times a 
retransmission occurs */ 
    int    w;          //used to keep track of number of slots 
    int    CW;         /*used to keep track of the size of the 
contention window */ 
 
    CW = aCWmin; 
    t1 = clock;        //time of request 
    reserve(q[k]);     /*Enter this frame in the queue for the 
source being processed */ 
  if ((clock - t1) < dot11MSDULifeTime) 
  { 
   wait(idle);   //Wait until the medium is idle for aAIFSTime 
   w = rand()%CW; 
   BackOffCtr(w); 
   xmitting++;    /*Increment the number of stations 
transmitting */ 
   set(busy); 
   use(s,svc);    //reserve medium 
   clear(busy); 
   record(clock-t1, tbl);  /*record response time for this 
source */ 
   record(clock-t1, tbl3);  /*record response time for all 
sources */ 
   set(finxmission);  //Indicate that the transmission is done 
   wait(go);    /*Wait for the ACKgenerator function to check 
xmitting */ 
   xmitting--;    /*Decrement the number of stations 
transmitting */ 
   clear(go);    /*Once go has been received continue 
execution */ 
   clear(finxmission); 
   st = state(ACK); 
   //As long as no ACK has been received. 
   while (st!=1 && retx<dot11RetryLimit && (clock - t1) < 
dot11MSDULifeTime) 
   { 
    CW = ExpBackoff(CW, 2, aCWmax); 
    wait(idle); 
    w = rand()%CW; 
    BackOffCtr(w); 
    retx++; 

97 



    xmitting++;    /*Increment the number of stations 
transmitting */ 
    set(busy); 
    use(s,svc);    //reserve medium 
    clear(busy); 
    record(clock-t1, tbl);  /*record response time for this 
source */ 
    record(clock-t1, tbl3); /*record response time for all 
sources */ 
    set(finxmission);  /*Indicate that the transmission is 
done */ 
    wait(go);    /*Wait for the ACKgenerator function to check 
xmitting */ 
    xmitting--;    /*Decrement the number of stations 
transmitting */ 
    clear(go);    /*Once go has been received continue 
execution */ 
    clear(finxmission); 
    st = state(ACK); 
   } 
   record(retx, rtxtbl); //record number of retransmissions 
   record(w, cwtbl);  //Record size of contention window 
   if (retx == dot11RetryLimit || ((clock - t1) >= 
dot11MSDULifeTime && st!=1)) 
    record(1.0, drptbl); //Record that frame was dropped 
   else 
   { 
    clear(ACK); 
    record(0.0, drptbl); //Record that frame wasn't dropped 
   } 
  } 
  else 
   record(1.0, drptbl); //Record that frame was dropped 
 release(q[k]); 
} 
 
void ProcessFrame1(FACILITY q[], double svc, TABLE tbl, TABLE 
cwtbl, TABLE rtxtbl, TABLE drptbl, int k)     //Processes 
frames 
{ 
    double t1; 
    int    st; 
    int    retx=0;     /*keeps track of how many times a 
retransmission occurs */ 
    int    w;          //used to keep track of number of slots 
    int    CW;         /*used to keep track of contention 
window size */ 
 
    CW = aCWmin1; 
    t1 = clock;        //time of request 

98 



    reserve(q[k]);     /*Enter this frame in the queue for the 
source being processed */ 
  if ((clock - t1) < dot11MSDULifeTime1) 
  { 
   wait(idle1);  //Wait until the medium is idle for aAIFSTime 
   w = rand()%CW; 
   BackOffCtr1(w); 
   xmitting++; 
   set(busy); 
   use(s,svc);    //reserve medium 
   clear(busy); 
   record(clock-t1, tbl);  /*record response time for this 
source */ 
   record(clock-t1, tbl3);  /*record system response time 
   set(finxmission);  //Indicate that the transmission is done 
   wait(go);    /*Wait for the ACKgenerator function to check 
xmitting */ 
   xmitting--; 
   clear(go);    /*Once go has been received continue 
execution */ 
   clear(finxmission); 
   st = state(ACK); 
   //As long as no ACK has been received. 
   while (st!=1 && retx<dot11RetryLimit && (clock - t1) < 
dot11MSDULifeTime) 
   { 
    CW = ExpBackoff(CW, 2, aCWmax1); 
    wait(idle1); 
    w = rand()%CW; 
    BackOffCtr1(w); 
    retx++; 
    xmitting++; 
    set(busy); 
    use(s,svc);    //reserve medium 
    clear(busy); 
    record(clock-t1, tbl);  /*record response time for this 
source */ 
    record(clock-t1, tbl3); /*record response time for all 
sources */ 
    set(finxmission);  /*Indicate that the transmission is 
done */ 
    wait(go);    /*Wait for the ACKgenerator function to check 
xmitting */ 
    xmitting--; 
    clear(go);    /*Once go has been received continue 
execution */ 
    clear(finxmission); 
    st = state(ACK); 
   } 
   record(retx, rtxtbl); //record number of retransmissions 
   record(w, cwtbl);  //Record size of contention window 

99 



   if (retx == dot11RetryLimit || ((clock - t1) >= 
dot11MSDULifeTime1 && st!=1)) 
    record(1.0, drptbl); //Record that frame was dropped 
   else 
   { 
    clear(ACK); 
    record(0.0, drptbl); //Record that frame wasn't dropped 
   } 
  } 
  else 
   record(1.0, drptbl); //Record that this frame was dropped 
 release(q[k]); 
} 
 
void ProcessFrame2(FACILITY q[], double svc, TABLE tbl, TABLE 
cwtbl, TABLE rtxtbl, TABLE drptbl, int k)     //Processes 
frames 
{ 
    double t1; 
    int    st; 
    int    retx=0;     /*keeps track of how many times a 
retransmission occurs */ 
    int    w;          //used to keep track of number of slots 
    int    CW;         /*used to keep track of the size of the 
contention window */ 
 
    CW = aCWmin2; 
    t1 = clock;        //time of request 
    reserve(q[k]);     /*Enter this frame in the queue for the 
source being processed */ 
  if ((clock - t1) < dot11MSDULifeTime) 
  { 
   wait(idle2);  //Wait until the medium is idle for aAIFSTime 
   w = rand()%CW; 
   BackOffCtr2(w); 
   xmitting++; 
   set(busy); 
   use(s,svc);    //reserve medium 
   clear(busy); 
   record(clock-t1, tbl);  /*record response time for this 
source */ 
   record(clock-t1, tbl3);  /*record system response time */ 
   set(finxmission);  //Indicate that the transmission is done 
   wait(go);    /*Wait for the ACKgenerator function to check 
xmitting */ 
   xmitting--; 
   clear(go);    /*Once go has been received continue 
execution */ 
   clear(finxmission); 
   st = state(ACK); 
   //As long as no ACK has been received. 

100 



   while (st!=1 && retx<dot11RetryLimit && (clock - t1) < 
dot11MSDULifeTime2) 
   { 
    CW = ExpBackoff(CW, 2, aCWmax2); 
    wait(idle); 
    w = rand()%CW; 
    BackOffCtr2(w); 
    retx++; 
    xmitting++; 
    set(busy); 
    use(s,svc);    //reserve medium 
    clear(busy); 
    record(clock-t1, tbl);  /*record response time for this 
source */ 
    record(clock-t1, tbl3); /*record response time for all 
sources */ 
    set(finxmission);  /*Indicate that the transmission is 
done */ 
    wait(go);    /*Wait for the ACKgenerator function to check 
xmitting */ 
    xmitting--; 
    clear(go);    /*Once go has been received continue 
execution */ 
    clear(finxmission); 
    st = state(ACK); 
   } 
   record(retx, rtxtbl); //record number of retransmissions 
   record(w, cwtbl);  //Record size of contention window 
   if (retx == dot11RetryLimit || ((clock - t1) >= 
dot11MSDULifeTime2 && st!=1)) 
    record(1.0, drptbl); //Record that frame was dropped 
   else 
   { 
    clear(ACK); 
    record(0.0, drptbl); //Record that frame wasn't dropped 
   } 
  } 
  else 
   record(1.0, drptbl); //Record that this frame was dropped 
 release(q[k]); 
} 
 
void cust(int i)     //process customer 
{ 
 char procname[32]; 
 sprintf(procname, "cust %d", i); 
 create(procname);    //required create statement 
 float frameSize = GenerateFrame(); 
 record(frameSize, frmtbl); 
 double svc = frameSize/LinkSpeed; 
 if (i%4 == 0) 

101 



 { 
  note_entry(qtbl);   //note arrival 
  ProcessFrame(queues, svc, tbl, cwtbl, rtxtbl, drptbl, i);
 //Processes frames 
  note_exit(qtbl); 
 } 
 else if (i%2 == 1) 
 { 
  note_entry(qtbl1); 
  ProcessFrame1(queues, svc, tbl1, cwtbl1, rtxtbl1, drptbl1, 
i);    //Processes frames 
  note_exit(qtbl1); 
 } 
 else 
 { 
  note_entry(qtbl2); 
  ProcessFrame2(queues, svc, tbl2, cwtbl2, rtxtbl2, drptbl2, 
i); //Processes frames 
        note_exit(qtbl2);   //note departure 
 } 
    cnt--; 
    if(cnt == 0) 
        set(done);     //if last arrival, signal 
} 
 
void source(int i) 
{ 
 char procname[32]; 
 sprintf(procname, "source %d", i); 
 create(procname); 
 int stdone; 
 do 
 { 
  hold(expntl(IATM));  /*Generate packets according to an 
exponential distribution */ 
        cust(i);    //initiate process cust 
  stdone = state(done); 
 } 
 while (stdone == 2); 
} 
 
void MediumSensing()    //Check state of medium 
{ 
  create("MediumSensing"); 
 int st;       //State of medium 
 int stdone; 
 do 
 { 
  st = state(busy); 
  if (st == 2) 
  { 

102 



            hold(aAIFSTime);  //Wait for an AIFS interval 
   st = state(busy); 
   if (st==2) 
    set(idle);   /*If the medium is free for an AIFS interval 
make it idle */ 
   else 
    hold(aSlotTime); 
  } 
  else 
   hold(aSlotTime); 
  stdone = state(done); 
 } 
 while (stdone == 2); 
} 
 
void MediumSensing1()    //Check state of medium 
{ 
  create("MediumSensing1"); 
 int st;       //State of medium 
 int stdone; 
 do 
 { 
  st = state(busy); 
  if (st == 2) 
  { 
   hold(aAIFSTime1);  //Wait for a AIFS interval 
   st = state(busy); 
   if (st==2) 
    set(idle1);   /*If the medium is free for a AIFS interval 
make it idle */ 
   else 
    hold(aSlotTime); 
  } 
  else 
   hold(aSlotTime); 
  stdone = state(done); 
 } 
 while (stdone == 2); 
} 
 
void MediumSensing2()    //Check state of medium 
{ 
  create("MediumSensing2"); 
 int st;       //State of medium 
 int stdone; 
 do 
 { 
  st = state(busy); 
  if (st == 2) 
  { 
   hold(aAIFSTime2);  //Wait for a AIFS interval 

103 



   st = state(busy); 
   if (st==2) 
    set(idle2);   /*If the medium is free for a AIFS interval 
make it idle */ 
   else 
    hold(aSlotTime); 
  } 
  else 
   hold(aSlotTime); 
  stdone = state(done); 
 } 
 while (stdone == 2); 
} 
 
void ACKgenerator()     /*Determines whether or not an ACK can 
be sent */ 
{ 
 create("ACKgenerator"); 
 set_priority(2); 
 int stdone; 
 double ACKsize = ACKLgth+ PHYHdr; 
 double svc = ACKsize/LinkSpeed; 
 record(ACKsize,frmtbl); 
 do 
 { 
  wait(finxmission); 
  if (xmitting==1 || xmitting==0)  /*Generate an ACK iff one 
station is transmitting */ 
  { 
   hold(aSIFSTime); 
   set(busy); 
   use(s, svc);   //Transmit the ACK frame 
   clear(busy); 
   set(ACK); 
   set(go); 
  } 
  else 
  { 
   clear(ACK); 
   hold(aSIFSTime); 
   set(go); 
  } 
  stdone = state(done); 
 } 
 while (stdone == 2); 
} 

 

104 



 

 

 

 

 

 

APPENDIX D 

EDCF WITH RANDOM FRAME  

DROPPING CODE LISTING 
 

     



 

/* Code to simulate EDCF function */ 
/* All times below are in seconds */ 
 
#include "csim.h" 
#include <stdio.h> 
 
#define aCWmin       15      //Number of slots 
#define aCWmax       63      //Number of slots 
#define aCWmin1      31      //Number of slots 
#define aCWmax1     127      //Number of slots 
#define aCWmin2      63      //Number of slots 
#define aCWmax2    1023      //Number of slots 
#define aSlotTime   0.00002  //time in seconds. 20 microsecs 
#define aSIFSTime   0.00001  //time in seconds. 10 microsecs 
#define aPIFSTime   0.00004  //time in seconds. 40 microsecs 
#define aDIFSTime   0.00005  /*time in seconds. DIFS = SIFS + 
(2*aSlotTime) */ 
#define aAIFSTime   0.00005  //time in seconds. 50 microsecs 
#define aAIFSTime1  0.00007  //time in seconds. 70 microsecs 
#define aAIFSTime2  0.00009  //time in seconds. 90 microsecs 
#define aMPDUMaxLength 4095  /*MPDU in bits.  According to the 
standard 1 <= x <= 4095 */ 
#define dot11RetryLimit 7    /*Number of times a frame may be 
retransmitted */ 
#define dot11MSDULifeTime 0.06  /*Amount of time that a source 
0 frame can be alive */ 
#define dot11MSDULifeTime1 0.1  /*Amount of time that a source 
1 frame can be alive */ 
#define dot11MSDULifeTime2 0.2  /*Amount of time that a source 
2 frame can be alive */ 
#define MACHdr        272.0      //MAC Header Length 
#define PHYHdr        192.0      //PHY Header Length 
#define ACKLgth       112.0      //Length of ACK frame 
 
#define LinkSpeed    54000000.0   // 54 Mbps 
#define NARS  100000            //Number of arrivals 
#define STNS    20 
 
FACILITY s;   //Medium 
FACILITY queues[STNS]; 
 
TABLE tbl;   //To hold frame response times for source 0 
TABLE tbl1;   //To hold frame response times for source 1 
TABLE tbl2;   //To hold frame response times for source 2 
TABLE tbl3;   //To hold frame response times for all sources 
TABLE rtxtbl;  //Table showing number of retransmissions 
TABLE cwtbl;  //Table with contention window sizes 
TABLE drptbl;  //Table with number of dropped frames 
TABLE rtxtbl1;  //Table showing number of retransmissions 
TABLE cwtbl1;  //Table with contention window sizes 
TABLE drptbl1;  //Table with number of dropped frames 

 106     



TABLE rtxtbl2;  //Table showing number of retransmissions 
TABLE cwtbl2;  //Table with contention window sizes 
TABLE drptbl2;  //Table with number of dropped frames 
TABLE frmtbl;  //Table with frame sizes 
 
QTABLE qtbl; 
QTABLE qtbl1; 
QTABLE qtbl2; 
 
EVENT done;   //Event that the simulation is complete 
EVENT ACK;    //Event that an ACK has been received. 
EVENT idle;   //Event that the medium is idle after aAIFSTime 
EVENT idle1;  //Event that the medium is idle after aAIFSTime1 
EVENT idle2;  //Event that the medium is idle after aAIFSTime2 
EVENT busy;   //Event that the medium is currently busy 
EVENT finxmission;  /*Event that a station has finished a 
transmission */ 
EVENT go;     //Event that a function can continue execution 
 
int cnt; 
int xmitting; //Number of stations transmitting simultaneously 
int j; 
double IATM;  //Frame inter-arrival times 
 
void init();   //Initializes structures used in the simulation 
float GenerateFrame();  //Generates frames 
int ExpBackoff(int CW, int PF, int amaxCW); /*Exponential 
Back-off algorithm */ 
void BackOffCtr(int w);  /*Counts down the number of slots in 
the backoff interval */ 
void BackOffCtr1(int w); /*Counts down the number of slots in 
the backoff interval */ 
void BackOffCtr2(int w); /*Counts down the number of slots in 
the backoff interval */ 
void DropFrame(FACILITY q[], TABLE drptbl, MBOX mb, int i); 
 //Drops frames 
void ProcessFrame(FACILITY q[], double svc, TABLE tbl, TABLE 
cwtbl, TABLE rtxtbl, TABLE drptbl, int i); //Processes frames 
void ProcessFrame1(FACILITY q[], double svc, TABLE tbl, TABLE 
cwtbl, TABLE rtxtbl, TABLE drptbl, int i); //Processes frames 
void ProcessFrame2(FACILITY q[], double svc, TABLE tbl, TABLE 
cwtbl, TABLE rtxtbl, TABLE drptbl, int i); //Processes frames 
void cust(int i);  //Generates and processes the frame 
void source(int i);  //Simulates a frame source 
void MediumSensing(); //Medium Sensing function 
void MediumSensing1(); //Medium Sensing function 
void MediumSensing2(); //Medium Sensing function 
void ACKgenerator(); /*Generates ACK iff only one station is 
transmitting.*/ 
 
void sim()                   //1st process - named sim 

107 



{ 
 int stdone; 
 FILE *out; 
 char filename[16]; 
 
 sprintf(filename, "outedcfdrp%d.txt", STNS); 
 set_model_name("Simulation of EDCF w/ random frame 
dropping"); 
 out = fopen(filename, "wt"); 
 for (IATM = 0.1000; IATM > 0.0095; IATM = IATM - 0.0020) 
 { 
  create("sim");        //required create statement 
 
  max_processes(100000000); 
  max_events(10000000); 
  max_mailboxes(1000000); 
  init(); 
 
  reset_prob(clock); 
  cnt = NARS/8; 
  MediumSensing(); 
  MediumSensing1(); 
  MediumSensing2(); 
  ACKgenerator(); 
  for (j=0; j<STNS; j++) 
   source(j); 
  wait(done); 
  clear(done); 
        clear(ACK); 
  clear(idle); 
  clear(idle1); 
  clear(idle2); 
  clear(busy); 
  clear(finxmission); 
  clear(go); 
  xmitting = 0; 
  reset(); 
 
  cnt = 3*NARS; 
  MediumSensing(); 
  MediumSensing1(); 
  MediumSensing2(); 
  ACKgenerator(); 
  for (j=0; j<STNS; j++) 
   source(j); 
  wait(done);                    //wait until all done 
  fprintf(out ,"%i\t%f\t%f\t%f\t%f\t%f\t%f\t%f\t%f\t%f\t%f\t 
                %f\t%f\t%f\t%f\t%f\t%f\t%f\t%f\t%f\t%f\t\n" 
              ,STNS,table_mean(frmtbl),IATM ,table_mean(tbl) 
              ,table_var(tbl),table_mean(rtxtbl) 
              ,table_mean(cwtbl),table_mean(drptbl) 

108 



              ,table_mean(tbl1),table_var(tbl1) 
              ,table_mean(rtxtbl1),table_mean(cwtbl1) 
              ,table_mean(drptbl1),table_mean(tbl2) 
              ,table_var(tbl2),table_mean(rtxtbl2) 
              ,table_mean(cwtbl2),table_mean(drptbl2) 
              ,table_mean(tbl3),table_var(tbl3),util(s)); 
  fflush(out); 
  rerun(); 
 } 
 fclose(out); 
    report();                               //print report 
    mdlstat(); 
} 
 
void init() 
{ 
 s = facility("medium");               //initialize facility 
 facility_set(queues,"src_queues",STNS); 
 
 done = event("done");                 //initialize event 
 ACK = event("ACK"); 
 idle = event("idle"); 
 idle1 = event("idle1"); 
 idle2 = event("idle2"); 
 busy = event("busy"); 
 finxmission = event("finxmission"); 
 go = event("go"); 
 
 tbl = table("Frame response tms");    //initialize table 
 rtxtbl = table("Nbr of retransmissions"); 
 cwtbl = table("Size of contention window"); 
 drptbl= table("Nbr of dropped frames"); 
 tbl1 = table("Frame response tms - class 1"); 
 rtxtbl1 = table("Nbr of retransmissions - class 1"); 
 cwtbl1 = table("Size of contention window - class 1"); 
 drptbl1= table("Nbr of dropped frames - class 1"); 
 tbl2 = table("Frame response tms - class 2"); 
 rtxtbl2 = table("Nbr of retransmissions - class 2"); 
 cwtbl2 = table("Size of contention window - class 2"); 
 drptbl2= table("Nbr of dropped frames - class 2"); 
 tbl3 = table("System resp tms for all classes"); 
 frmtbl = table("Sizes of frames for all classes"); 
 
 qtbl = qhistogram("num from source 0", 10l);   /*initialize 
qhistogram */ 
 qtbl1 = qhistogram("num from source 1", 10l); 
 qtbl2 = qhistogram("num from source 2", 10l); 
 xmitting = 0; 
} 
 
float GenerateFrame()    //Generates frames 

109 



{ 
 int tmpframe = random(1,4095); /*Returns a random # between 1 
and 4095 */ 
 return((tmpframe*8.0) + MACHdr + PHYHdr); 
} 
 
int ExpBackoff(int CW, int PF, int amaxCW) /*Exponential Back-
off algorithm */ 
{ 
 int tempCW= (PF*(CW+1)) - 1; 
 if (tempCW <= amaxCW) 
  return(tempCW); 
 else 
  return (CW); 
} 
 
void BackOffCtr(int w) 
{ 
 int st; 
 int i; 
 for (i=w; i>0; i--) 
 { 
  hold(aSlotTime); 
  st = state(busy); //Sense medium 
  if (st==1)   //If the medium is busy 
   wait(idle); 
 } 
} 
 
void BackOffCtr1(int w) 
{ 
 int st; 
 int i; 
 for (i=w; i>0; i--) 
 { 
  hold(aSlotTime); 
  st = state(busy); //Sense medium 
  if (st==1)   //If the medium is busy 
   wait(idle1); 
 } 
} 
 
void BackOffCtr2(int w) 
{ 
 int st; 
 int i; 
 for (i=w; i>0; i--) 
 { 
  hold(aSlotTime); 
  st = state(busy); //Sense medium 
  if (st==1)   //If the medium is busy 

110 



   wait(idle2); 
 } 
} 
 
void DropFrame(FACILITY q[], TABLE drptbl, MBOX mb, int i) 
 //Drops frames 
{ 
 MBOX recv; 
 MBOX temp; 
 long buffer=0; 
 long* msg; 
 
 recv = mailbox("rcv"); 
 temp = mailbox("tmp"); 
 reserve(q[i]);     //Enter this frame in the queue for the 
source being processed 
  record(1.0, drptbl);  //Record that this frame was dropped 
  send(mb, buffer);   //Indicate to the source the message was 
dropped 
  receive(mb, (long *) &msg); 
 release(q[i]); 
 delete_mailbox(temp); 
 delete_mailbox(recv); 
} 
 
void ProcessFrame(FACILITY q[], double svc, TABLE tbl, TABLE 
cwtbl, TABLE rtxtbl, TABLE drptbl, int k)     //Processes 
frames 
{ 
    double t1; 
    int    st; 
    int    retx=0;     /*keeps track of how many times a 
retransmission occurs */ 
    int    w;          //used to keep track of number of slots 
    int    CW;         /*used to keep track of the size of the 
contention window */ 
 
    CW = aCWmin; 
    t1 = clock;                  //time of request 
    reserve(q[k]);     /*Enter this frame in the queue for the 
source being processed */ 
  if ((clock - t1) < dot11MSDULifeTime) 
  { 
   wait(idle);  //Wait until the medium is idle for aAIFSTime 
   w = rand()%CW; 
   BackOffCtr(w); 
   xmitting++; 
   set(busy); 
   use(s,svc);    //reserve medium 
   clear(busy); 

111 



   record(clock-t1, tbl);  /*record response time for this 
source */ 
   record(clock-t1, tbl3); /*record response time for all 
sources */ 
   set(finxmission);  //Indicate that the transmission is done 
   wait(go);    /*Wait for the ACKgenerator function to check 
xmitting */ 
   xmitting--; 
   clear(go);    /*Once go has been received continue 
execution*/ 
   clear(finxmission); 
   st = state(ACK); 
   //As long as no ACK has been received. 
   while (st!=1 && retx<dot11RetryLimit && (clock - t1) < 
dot11MSDULifeTime) 
   { 
    CW = ExpBackoff(CW, 2, aCWmax); 
    wait(idle); 
    w = rand()%CW; 
    BackOffCtr(w); 
    retx++; 
    xmitting++; 
    set(busy); 
    use(s,svc);    //reserve medium 
    clear(busy); 
    record(clock-t1, tbl);  /*record response time for this 
source */ 
    record(clock-t1, tbl3); //record system response time 
    set(finxmission);  /*Indicate that the transmission is 
done */ 
    wait(go);    /*Wait for the ACKgenerator function to check 
xmitting */ 
    xmitting--; 
    clear(go);    /*Once go has been received continue 
execution */ 
    clear(finxmission); 
    st = state(ACK); 
   } 
   record(retx, rtxtbl); //record number of retransmissions 
   record(w, cwtbl);  //Record size of contention window 
   if (retx == dot11RetryLimit || ((clock - t1) >= 
dot11MSDULifeTime && st!=1)) 
    record(1.0, drptbl); //Record that this frame was dropped 
   else 
   { 
    clear(ACK); 
    record(0.0, drptbl); /*Record that frame wasn't dropped */ 
   } 
  } 
  else 
   record(1.0, drptbl); //Record that frame was dropped 

112 



 release(q[k]); 
} 
 
void ProcessFrame1(FACILITY q[], double svc, TABLE tbl, TABLE 
cwtbl, TABLE rtxtbl, TABLE drptbl, int k)     //Processes 
frames 
{ 
    double t1; 
    int    st; 
    int    retx=0;     /*keeps track of how many times a 
retransmission occurs. */ 
    int    w;          //used to keep track of number of slots 
    int    CW;         /*used to keep track of the size of the 
contention window */ 
 
    CW = aCWmin1; 
    t1 = clock;        //time of request 
 reserve(q[k]);        /*Enter this frame in the queue for the 
source being processed */ 
  if ((clock - t1) < dot11MSDULifeTime1) 
  { 
   wait(idle1);  //Wait until the medium is idle for aAIFSTime 
   w = rand()%CW; 
   BackOffCtr1(w); 
   xmitting++; 
   set(busy); 
   use(s,svc);    //reserve medium 
   clear(busy); 
   record(clock-t1, tbl);  /*record response time for this 
source */ 
   record(clock-t1, tbl3); /*record system response time */ 
   set(finxmission);  //Indicate that the transmission is done 
   wait(go);    /*Wait for the ACKgenerator function to check 
xmitting */ 
   xmitting--; 
   clear(go);    //Once go has been received continue 
execution 
   clear(finxmission); 
   st = state(ACK); 
   //As long as no ACK has been received. 
   while (st!=1 && retx<dot11RetryLimit && (clock - t1) < 
dot11MSDULifeTime1) 
   { 
    CW = ExpBackoff(CW, 2, aCWmax1); 
    wait(idle1); 
    w = rand()%CW; 
    BackOffCtr1(w); 
    retx++; 
    xmitting++; 
    set(busy); 
    use(s,svc);    //reserve medium 

113 



    clear(busy); 
    record(clock-t1, tbl);  /*record response time for this 
source */ 
    record(clock-t1, tbl3); //record system response time 
    set(finxmission);  /*Indicate that the transmission is 
done */ 
    wait(go);    /*Wait for the ACKgenerator function to check 
xmitting */ 
    xmitting--; 
    clear(go);    /*Once go has been received continue 
execution */ 
    clear(finxmission); 
    st = state(ACK); 
   } 
   record(retx, rtxtbl); //record number of retransmissions 
   record(w, cwtbl);  //Record size of contention window 
   if (retx == dot11RetryLimit || ((clock - t1) >= 
dot11MSDULifeTime1 && st!=1)) 
    record(1.0, drptbl); //Record that this frame was dropped 
   else 
   { 
    clear(ACK); 
    record(0.0, drptbl); //Record that frame wasn't dropped 
   } 
  } 
  else 
   record(1.0, drptbl); //Record that frame was dropped 
 release(q[k]); 
} 
 
void ProcessFrame2(FACILITY q[], double svc, TABLE tbl, TABLE 
cwtbl, TABLE rtxtbl, TABLE drptbl, int k)     //Processes 
frames 
{ 
    double t1; 
    int    st; 
    int    retx=0;     /*keeps track of how many times a 
retransmission occurs. */ 
    int    w;          //used to keep track of number of slots 
    int    CW;         /*used to keep track of the size of the 
contention window */ 
 
    CW = aCWmin2; 
    t1 = clock;     //time of request 
 reserve(q[k]);     /*Enter this frame in the queue for the 
source being processed */ 
  if ((clock - t1) < dot11MSDULifeTime2) 
  { 
   wait(idle2); //Wait until the medium is idle for aAIFSTime 
   w = rand()%CW; 
   BackOffCtr2(w); 

114 



   xmitting++; 
   set(busy); 
   use(s,svc);    //reserve medium 
   clear(busy); 
   record(clock-t1, tbl);  /*record response time for this 
source */ 
   record(clock-t1, tbl3);     //record system response time 
   set(finxmission);  //Indicate that the transmission is done 
   wait(go);    /*Wait for the ACKgenerator function to check 
xmitting */ 
   xmitting--; 
   clear(go);    /*Once go has been received continue 
execution */ 
   clear(finxmission); 
   st = state(ACK); 
   //As long as no ACK has been received. 
   while (st!=1 && retx<dot11RetryLimit && (clock - t1) < 
dot11MSDULifeTime2) 
   { 
    CW = ExpBackoff(CW, 2, aCWmax2); 
    wait(idle2); 
    w = rand()%CW; 
    BackOffCtr2(w); 
    retx++; 
    xmitting++;    /*Increment the number of stations 
transmitting */ 
    set(busy); 
    use(s,svc);    //reserve medium 
    clear(busy); 
    record(clock-t1, tbl);  /*record response time for this 
source */ 
    record(clock-t1, tbl3); //record system response time 
    set(finxmission);  /*Indicate that the transmission is 
done */ 
    wait(go);    /*Wait for the ACKgenerator function to check 
xmitting */ 
    xmitting--; 
    clear(go);   /*Once go has been received continue 
execution */ 
    clear(finxmission); 
    st = state(ACK); 
   } 
   record(retx, rtxtbl); //record number of retransmissions 
   record(w, cwtbl);  //Record size of contention window 
   if (retx == dot11RetryLimit || ((clock - t1) >= 
dot11MSDULifeTime2 && st!=1)) 
    record(1.0, drptbl); //Record that this frame was dropped 
   else 
   { 
    clear(ACK); 
    record(0.0, drptbl); //Record that frame wasn't dropped 

115 



   } 
  } 
  else 
   record(1.0, drptbl); //Record that frame was dropped 
 release(q[k]); 
} 
 
void cust(int i)     //process customer 
{ 
 char procname[32]; 
 MBOX mb; 
 sprintf(procname, "cust %d", i); 
 create(procname);    //required create statement 
 mb = mailbox("mb");    /*Mailbox to receive messages on 
dropped frames */ 
 float frameSize = GenerateFrame(); 
 record(frameSize, frmtbl); 
 double svc = frameSize/LinkSpeed; 
 if (i%4 == 0) 
 { 
  note_entry(qtbl);   //note arrival 
  if (qlength(queues[i]) < 5) 
  { 
   if (random(0,999)%501 != 0) 
   { 
    double svc = frameSize/LinkSpeed; 
    ProcessFrame(queues, svc, tbl, cwtbl, rtxtbl, drptbl, i);
 //Processes frames 
    cnt--; 
   } 
   else 
    DropFrame(queues, drptbl, mb, i); 
  } 
  else 
  { 
   if (random(0,99)%51 != 0) 
   { 
    double svc = frameSize/LinkSpeed; 
    ProcessFrame(queues, svc, tbl, cwtbl, rtxtbl, drptbl, i);
 //Processes frames 
    cnt--; 
   } 
   else 
    DropFrame(queues, drptbl, mb, i); 
  } 
  note_exit(qtbl); 
 } 
 else if (i%2 == 1) 
 { 
  note_entry(qtbl1); 
  if (qlength(queues[i]) < 3) 

116 



  { 
   if (random(0,999)%502 != 0) 
   { 
    double svc = frameSize/LinkSpeed; 
    ProcessFrame1(queues, svc, tbl1, cwtbl1, rtxtbl1, drptbl1, 
i);    //Processes frames 
    cnt--; 
   } 
   else 
    DropFrame(queues, drptbl, mb, i); 
  } 
  else 
  { 
   if (random(0,99)%52 != 0) 
   { 
    double svc = frameSize/LinkSpeed; 
    ProcessFrame1(queues, svc, tbl1, cwtbl1, rtxtbl1, drptbl1, 
i);    //Processes frames 
    cnt--; 
   } 
   else 
    DropFrame(queues, drptbl, mb, i); 
  } 
  note_exit(qtbl1); 
 } 
 else 
 { 
  note_entry(qtbl2); 
  if (qlength(queues[i]) < 10) 
  { 
   if (random(0,999)%503 != 0) 
   { 
    double svc = frameSize/LinkSpeed; 
    ProcessFrame2(queues, svc, tbl2, cwtbl2, rtxtbl2, drptbl2, 
i); //Processes frames 
    cnt--; 
   } 
   else 
    DropFrame(queues, drptbl, mb, i); 
  } 
  else 
  { 
   if (random(0,99)%53 != 0) 
   { 
    double svc = frameSize/LinkSpeed; 
    ProcessFrame2(queues, svc, tbl2, cwtbl2, rtxtbl2, drptbl2, 
i); //Processes frames 
    cnt--; 
   } 
   else 
    DropFrame(queues, drptbl, mb, i); 

117 



  } 
        note_exit(qtbl2);   //note departure 
 } 
 delete_mailbox(mb); 
    if(cnt == 0) 
        set(done);     //if last arrival, signal 
} 
 
void source(int i) 
{ 
 char procname[32]; 
 sprintf(procname, "source %d", i); 
 create(procname); 
 int stdone; 
 do 
 { 
  hold(expntl(IATM));  /*Generate packets according to an 
exponential distribution */ 
  cust(i);    //initiate process cust 
  stdone = state(done); 
 } 
 while (stdone == 2); 
} 
 
void MediumSensing()                //Check state of medium 
{ 
  create("MediumSensing"); 
 int st;       //State of medium 
 int stdone; 
 do 
 { 
  st = state(busy); 
  if (st == 2) 
  { 
   hold(aAIFSTime);  //Wait for an AIFS interval 
   st = state(busy); 
   if (st==2) 
    set(idle);   /*If the medium is free for an AIFS interval 
make it idle */ 
   else 
    hold(aSlotTime); 
  } 
  else 
   hold(aSlotTime); 
  stdone = state(done); 
 } 
 while (stdone == 2); 
} 
 
void MediumSensing1()               //Check state of medium 
{ 

118 



  create("MediumSensing1"); 
 int st;       //State of medium 
 int stdone; 
 do 
 { 
  st = state(busy); 
  if (st == 2) 
  { 
   hold(aAIFSTime1);  //Wait for a AIFS interval 
   st = state(busy); 
   if (st==2) 
    set(idle1);   //If the medium is free for a AIFS interval 
make it idle 
   else 
    hold(aSlotTime); 
  } 
  else 
   hold(aSlotTime); 
  stdone = state(done); 
 } 
 while (stdone == 2); 
} 
 
void MediumSensing2()    //Check state of medium 
{ 
  create("MediumSensing2"); 
 int st;       //State of medium 
 int stdone; 
 do 
 { 
  st = state(busy); 
  if (st == 2) 
  { 
   hold(aAIFSTime2);  //Wait for a AIFS interval 
   st = state(busy); 
   if (st==2) 
    set(idle2);   /*If the medium is free for a AIFS interval 
make it idle */ 
   else 
    hold(aSlotTime); 
  } 
  else 
   hold(aSlotTime); 
  stdone = state(done); 
 } 
 while (stdone == 2); 
} 
 
void ACKgenerator()     /*Determines whether or not an ACK can 
be sent */ 
{ 

119 



 create("ACKgenerator"); 
 set_priority(2); 
 int stdone; 
 double ACKsize = ACKLgth+ PHYHdr; 
 double svc = ACKsize/LinkSpeed; 
 record(ACKsize,frmtbl); 
 do 
 { 
  wait(finxmission); 
  if (xmitting==1 || xmitting==0)   /*Generate an ACK iff one 
station is transmitting */ 
  { 
   hold(aSIFSTime); 
   set(busy); 
   use(s, svc);   //Transmit the ACK frame 
   clear(busy); 
   set(ACK); 
   set(go); 
  } 
  else 
  { 
   clear(ACK); 
   hold(aSIFSTime); 
   set(go); 
  } 
  stdone = state(done); 
 } 
 while (stdone == 2); 
} 
 

120 



 

 

 

 

 

 

APPENDIX E 

EDCF WITH DIFFERENT FRAME  

RETRY LIMITS CODE LISTING 
 

      



 

/* Code to simulate EDCF function */ 
/* All times below are in seconds */ 
 
#include "csim.h" 
#include <stdio.h> 
 
#define aCWmin       15      //Number of slots 
#define aCWmax       63      //Number of slots 
#define aCWmin1      31      //Number of slots 
#define aCWmax1     127      //Number of slots 
#define aCWmin2      63      //Number of slots 
#define aCWmax2    1023      //Number of slots 
#define aSlotTime   0.00002  //time in seconds. 20 microsecs 
#define aSIFSTime   0.00001  //time in seconds. 10 microsecs 
#define aPIFSTime   0.00004  //time in seconds. 40 microsecs 
#define aDIFSTime   0.00005  /*time in seconds. DIFS = SIFS + 
(2*aSlotTime) */ 
#define aAIFSTime   0.00005  //time in seconds. 50 microsecs 
#define aAIFSTime1  0.00007  //time in seconds. 70 microsecs 
#define aAIFSTime2  0.00009  //time in seconds. 90 microsecs 
#define aMPDUMaxLength 4095  /*MPDU in bits.  According to the 
standard 1 <= x <= 4095 */ 
#define dot11RetryLimit 7    /*Number of times a frame may be 
retransmitted */ 
#define dot11MSDULifeTime 0.06  /*Amount of time that a source 
0 frame can be alive */ 
#define dot11MSDULifeTime1 0.1  /*Amount of time that a source 
1 frame can be alive */ 
#define dot11MSDULifeTime2 0.2  /*Amount of time that a source 
2 frame can be alive */ 
#define MACHdr        272.0      //MAC Header Length 
#define PHYHdr        192.0      //PHY Header Length 
#define ACKLgth       112.0      //Length of ACK frame 
 
#define LinkSpeed    54000000.0   // 54 Mbps 
#define NARS  100000            //Number of arrivals 
#define STNS    20 
 
FACILITY s;   //Medium 
FACILITY queues[STNS]; 
 
TABLE tbl;   //To hold frame response times for source 0 
TABLE tbl1;   //To hold frame response times for source 1 
TABLE tbl2;   //To hold frame response times for source 2 
TABLE tbl3;   //To hold frame response times for all sources 
TABLE rtxtbl;  //Table showing number of retransmissions 
TABLE cwtbl;  //Table with contention window sizes 
TABLE drptbl;  //Table with number of dropped frames 
TABLE rtxtbl1;  //Table showing number of retransmissions 
TABLE cwtbl1;  //Table with contention window sizes 
TABLE drptbl1;  //Table with number of dropped frames 

 122      



TABLE rtxtbl2;  //Table showing number of retransmissions 
TABLE cwtbl2;  //Table with contention window sizes 
TABLE drptbl2;  //Table with number of dropped frames 
TABLE frmtbl;  //Table with frame sizes 
 
QTABLE qtbl; 
QTABLE qtbl1; 
QTABLE qtbl2; 
 
EVENT done;   //Event that the simulation is complete 
EVENT ACK;    //Event that an ACK has been received. 
EVENT idle;   //Event that the medium is idle after aAIFSTime 
EVENT idle1;  //Event that the medium is idle after aAIFSTime1 
EVENT idle2;  //Event that the medium is idle after aAIFSTime2 
EVENT busy;   //Event that the medium is currently busy 
EVENT finxmission;  /*Event that a station has finished a 
transmission */ 
EVENT go;     /Event that a function can continue execution 
 
int cnt; 
int xmitting;  //Nbr of stations transmitting simultaneously 
int j; 
double IATM;   //Frame inter-arrival times 
 
void init();   //Initializes structures used in the simulation 
float GenerateFrame();  //Generates frames 
int ExpBackoff(int CW, int PF, int amaxCW); /*Exponential 
Back-off algorithm */ 
void BackOffCtr(int w);  /*Counts down the number of slots in 
the backoff interval */ 
void BackOffCtr1(int w); /*Counts down the number of slots in 
the backoff interval */ 
void BackOffCtr2(int w); /*Counts down the number of slots in 
the backoff interval */ 
void ProcessFrame(FACILITY q[], double svc, TABLE tbl, TABLE 
cwtbl, TABLE rtxtbl, TABLE drptbl, int i, int limtry);
 //Processes frames 
void ProcessFrame1(FACILITY q[], double svc, TABLE tbl, TABLE 
cwtbl, TABLE rtxtbl, TABLE drptbl, int i, int limtry);
 //Processes frames 
void ProcessFrame2(FACILITY q[], double svc, TABLE tbl, TABLE 
cwtbl, TABLE rtxtbl, TABLE drptbl, int i, int limtry);
 //Processes frames 
void cust(int i);  //Generates and processes the frame 
void source(int i);  //Simulates a frame source 
void MediumSensing(); //Medium Sensing function 
void MediumSensing1(); //Medium Sensing function 
void MediumSensing2(); //Medium Sensing function 
void ACKgenerator(); /*Generates ACK iff only one station is 
transmitting. */ 
 

123 



void sim()               //1st process - named sim 
{ 
 int stdone; 
 FILE *out; 
 char filename[16]; 
 
    sprintf(filename, "outrledcf%d.txt", STNS); 
    set_model_name("Simulation of EDCF"); 
 out = fopen(filename, "wt"); 
 for (IATM = 0.1000; IATM > 0.0095; IATM = IATM - 0.0020) 
 { 
  create("sim");             //required create statement 
 
  max_processes(100000000); 
  max_events(10000000); 
  init(); 
 
  reset_prob(clock); 
  cnt = NARS/8; 
  MediumSensing(); 
  MediumSensing1(); 
  MediumSensing2(); 
  ACKgenerator(); 
  for (j=0; j<STNS; j++) 
   source(j); 
  wait(done); 
  clear(done); 
        clear(ACK); 
  clear(idle); 
  clear(idle1); 
  clear(idle2); 
  clear(busy); 
  clear(finxmission); 
  clear(go); 
  xmitting = 0; 
  reset(); 
 
  cnt = 3*NARS; 
  MediumSensing(); 
  MediumSensing1(); 
  MediumSensing2(); 
  ACKgenerator(); 
  for (j=0; j<STNS; j++) 
   source(j); 
  wait(done);                   //wait until all done 
    fprintf(out ,"%i\t%f\t%f\t%f\t%f\t%f\t%f\t%f\t%f\t%f\t%f\t 
                %f\t%f\t%f\t%f\t%f\t%f\t%f\t%f\t%f\t%f\t\n" 
              ,STNS,table_mean(frmtbl),IATM ,table_mean(tbl) 
              ,table_var(tbl),table_mean(rtxtbl) 
              ,table_mean(cwtbl),table_mean(drptbl) 
              ,table_mean(tbl1),table_var(tbl1) 

124 



              ,table_mean(rtxtbl1),table_mean(cwtbl1) 
              ,table_mean(drptbl1),table_mean(tbl2) 
              ,table_var(tbl2),table_mean(rtxtbl2) 
              ,table_mean(cwtbl2),table_mean(drptbl2) 
              ,table_mean(tbl3),table_var(tbl3),util(s)); 
  fflush(out); 
  rerun(); 
 } 
 fclose(out); 
    report();                               //print report 
    mdlstat(); 
} 
 
void init() 
{ 
 s = facility("medium");               //initialize facility 
 facility_set(queues,"src_queues",STNS); 
 
 done = event("done");                 //initialize event 
 ACK = event("ACK"); 
 idle = event("idle"); 
 idle1 = event("idle1"); 
 idle2 = event("idle2"); 
 busy = event("busy"); 
 finxmission = event("finxmission"); 
 go = event("go"); 
 
 tbl = table("Frame response tms");    //initialize table 
 rtxtbl = table("Nbr of retransmissions"); 
 cwtbl = table("Size of contention window"); 
 drptbl= table("Nbr of dropped frames"); 
 tbl1 = table("Frame response tms - class 1"); 
 rtxtbl1 = table("Nbr of retransmissions - class 1"); 
 cwtbl1 = table("Size of contention window - class 1"); 
 drptbl1= table("Nbr of dropped frames - class 1"); 
 tbl2 = table("Frame response tms - class 2"); 
 rtxtbl2 = table("Nbr of retransmissions - class 2"); 
 cwtbl2 = table("Size of contention window - class 2"); 
 drptbl2= table("Nbr of dropped frames - class 2"); 
 tbl3 = table("System resp tms for all classes"); 
 frmtbl = table("Sizes of frames for all classes"); 
 
 qtbl = qhistogram("num from source 0", 10l);   /*initialize 
qhistogram */ 
 qtbl1 = qhistogram("num from source 1", 10l); 
 qtbl2 = qhistogram("num from source 2", 10l); 
 xmitting = 0; 
} 
 
float GenerateFrame()    //Generates frames 
{ 

125 



 int tmpframe = random(1,4095); /*Returns a random # between 1 
and 4095 */ 
 return((tmpframe*8.0) + MACHdr + PHYHdr); 
} 
 
int ExpBackoff(int CW, int PF, int amaxCW) /*Exponential Back-
off algorithm */ 
{ 
 int tempCW= (PF*(CW+1)) - 1; 
 if (tempCW <= amaxCW) 
  return(tempCW); 
 else 
  return (CW); 
} 
 
void BackOffCtr(int w) 
{ 
 int st; 
 int i; 
 for (i=w; i>0; i--) 
 { 
  hold(aSlotTime); 
  st = state(busy); //Sense medium 
  if (st==1)   //If the medium is busy 
   wait(idle); 
 } 
} 
 
void BackOffCtr1(int w) 
{ 
 int st; 
 int i; 
 for (i=w; i>0; i--) 
 { 
  hold(aSlotTime); 
  st = state(busy); //Sense medium 
  if (st==1)   //If the medium is busy 
   wait(idle1); 
 } 
} 
 
void BackOffCtr2(int w) 
{ 
 int st; 
 int i; 
 for (i=w; i>0; i--) 
 { 
  hold(aSlotTime); 
  st = state(busy); //Sense medium 
  if (st==1)   //If the medium is busy 
   wait(idle2); 

126 



 } 
} 
 
void ProcessFrame(FACILITY q[], double svc, TABLE tbl, TABLE 
cwtbl, TABLE rtxtbl, TABLE drptbl, int k, int limtry)    
 //Processes frames 
{ 
    double t1; 
    int    st; 
    int    retx=0;     /*keeps track of how many times a 
retransmission occurs */ 
    int    w;          //used to keep track of number of slots 
    int    CW;         /*used to keep track of the size of the 
contention window */ 
 
    CW = aCWmin; 
    t1 = clock;        //time of request 
 reserve(q[k]);        //Enter this frame in the queue for the 
source being processed 
  if ((clock - t1) < dot11MSDULifeTime) 
  { 
   wait(idle);   //Wait until the medium is idle for aAIFSTime 
   w = rand()%CW; 
   BackOffCtr(w); 
   xmitting++;    /*Increment the number of stations 
transmitting */ 
   set(busy); 
   use(s,svc);    //reserve medium 
   clear(busy); 
   record(clock-t1, tbl);  /*record response time for this 
source */ 
   record(clock-t1, tbl3);     //record system response time 
   set(finxmission);  //Indicate that the transmission is done 
   wait(go);    /*Wait for the ACKgenerator function to check 
xmitting */ 
   xmitting--;    /*Decrement the number of stations 
transmitting */ 
   clear(go);    /*Once go has been received continue 
execution */ 
   clear(finxmission); 
   st = state(ACK); 
   //As long as no ACK has been received. 
   while (st!=1 && retx<limtry && (clock - t1) < 
dot11MSDULifeTime) 
   { 
    CW = ExpBackoff(CW, 2, aCWmax); 
    wait(idle); 
    w = rand()%CW; 
    BackOffCtr(w); 
    retx++; 

127 



    xmitting++;    /*Increment the number of stations 
transmitting */ 
    set(busy); 
    use(s,svc);    //reserve medium 
    clear(busy); 
    record(clock-t1, tbl);  /*record response time for this 
source */ 
    record(clock-t1, tbl3); /*record response time for all 
sources */ 
    set(finxmission);  /*Indicate that the transmission is 
done */ 
    wait(go);    /*Wait for the ACKgenerator function to check 
xmitting */ 
    xmitting--; 
    clear(go);    /*Once go has been received continue 
execution */ 
    clear(finxmission); 
    st = state(ACK); 
   } 
   record(retx, rtxtbl); //record number of retransmissions 
   record(w, cwtbl);  //Record size of contention window 
   if (retx == limtry || ((clock - t1) >= dot11MSDULifeTime && 
st!=1)) 
    record(1.0, drptbl); //Record that frame was dropped 
   else 
   { 
    clear(ACK); 
    record(0.0, drptbl); //Record that frame wasn't dropped 
   } 
  } 
  else 
   record(1.0, drptbl); //Record that frame was dropped 
 release(q[k]); 
} 
 
void ProcessFrame1(FACILITY q[], double svc, TABLE tbl, TABLE 
cwtbl, TABLE rtxtbl, TABLE drptbl, int k, int limtry)    
 //Processes frames 
{ 
    double t1; 
    int    st; 
    int    retx=0;     /*keeps track of how many times a 
retransmission occurs.*/ 
    int    w;          //used to keep track of number of slots 
    int    CW;         /*used to keep track of the size of the 
contention window */ 
 
    CW = aCWmin1; 
    t1 = clock;     //time of request 
 reserve(q[k]);     /*Enter this frame in the queue for the 
source being processed */ 

128 



  if ((clock - t1) < dot11MSDULifeTime1) 
  { 
   wait(idle1);  //Wait until the medium is idle for aAIFSTime 
   w = rand()%CW; 
   BackOffCtr1(w); 
   xmitting++;    /*Increment the number of stations 
transmitting */ 
   set(busy); 
   use(s,svc);    //reserve medium 
   clear(busy); 
   record(clock-t1, tbl);  //record response time for this 
source 
   record(clock-t1, tbl3);     //record system response time 
   set(finxmission);  //Indicate that the transmission is done 
   wait(go);    /*Wait for the ACKgenerator function to check 
xmitting */ 
   xmitting--; 
   clear(go);    /*Once go has been received continue 
execution */ 
   clear(finxmission); 
   st = state(ACK); 
   //As long as no ACK has been received. 
   while (st!=1 && retx<limtry && (clock - t1) < 
dot11MSDULifeTime1) 
   { 
    CW = ExpBackoff(CW, 2, aCWmax1); 
    wait(idle1); 
    w = rand()%CW; 
    BackOffCtr1(w); 
    retx++; 
    xmitting++;    /*Increment the number of stations 
transmitting */ 
    set(busy); 
    use(s,svc);    //reserve medium 
    clear(busy); 
    record(clock-t1, tbl);  /*record response time for this 
source */ 
    record(clock-t1, tbl3); //record system response time 
    set(finxmission);  /*Indicate that the transmission is 
done */ 
    wait(go);    /*Wait for the ACKgenerator function to check 
xmitting */ 
    xmitting--; 
    clear(go);    /*Once go has been received continue 
execution */ 
    clear(finxmission); 
    st = state(ACK); 
   } 
   record(retx, rtxtbl); //record number of retransmissions 
   record(w, cwtbl);  //Record size of contention window 

129 



   if (retx == limtry || ((clock - t1) >= dot11MSDULifeTime1 
&& st!=1)) 
    record(1.0, drptbl); //Record that this frame was dropped 
   else 
   { 
    clear(ACK); 
    record(0.0, drptbl); //Record that frame wasn't dropped 
   } 
  } 
  else 
   record(1.0, drptbl); //Record that frame was dropped 
 release(q[k]); 
} 
 
void ProcessFrame2(FACILITY q[], double svc, TABLE tbl, TABLE 
cwtbl, TABLE rtxtbl, TABLE drptbl, int k, int limtry)    
 //Processes frames 
{ 
    double t1; 
    int    st; 
    int    retx=0;     /*keeps track of how many times a 
retransmission occurs. */ 
    int    w;          //used to keep track of number of slots 
    int    CW;         /*used to keep track of the size of the 
contention window */ 
 
    CW = aCWmin2; 
    t1 = clock;        //time of request 
 reserve(q[k]);        /*Enter this frame in the queue for the 
source being processed */ 
  if ((clock - t1) < dot11MSDULifeTime2) 
  { 
   wait(idle2);  //Wait until the medium is idle for aAIFSTime 
   w = rand()%CW; 
   BackOffCtr2(w); 
   xmitting++;    /*Increment the number of stations 
transmitting */ 
   set(busy); 
   use(s,svc);    //reserve medium 
   clear(busy); 
   record(clock-t1, tbl);  /*record response time for this 
source */ 
   record(clock-t1, tbl3);     /*record response time for all 
sources*/ 
   set(finxmission);  //Indicate that the transmission is done 
   wait(go);    /*Wait for the ACKgenerator function to check 
xmitting */ 
   xmitting--; 
   clear(go);    /*Once go has been received continue 
execution */ 
   clear(finxmission); 

130 



   st = state(ACK); 
   //As long as no ACK has been received. 
   while (st!=1 && retx<limtry && (clock - t1) < 
dot11MSDULifeTime2) 
   { 
    CW = ExpBackoff(CW, 2, aCWmax2); 
    wait(idle2); 
    w = rand()%CW; 
    BackOffCtr2(w); 
    retx++; 
    xmitting++;    /*Increment the number of stations 
transmitting */ 
    set(busy); 
    use(s,svc);    //reserve medium 
    clear(busy); 
    record(clock-t1, tbl);  /*record response time for this 
source */ 
    record(clock-t1, tbl3); //record system response time 
    set(finxmission);  /*Indicate that the transmission is 
done */ 
    wait(go);    /*Wait for the ACKgenerator function to check 
xmitting */ 
    xmitting--;    /*Decrement the number of stations 
transmitting */ 
    clear(go);    /*Once go has been received continue 
execution */ 
    clear(finxmission); 
    st = state(ACK); 
   } 
   record(retx, rtxtbl); //record number of retransmissions 
   record(w, cwtbl);  //Record size of contention window 
   if (retx == limtry || ((clock - t1) >= dot11MSDULifeTime2 
&& st!=1)) 
    record(1.0, drptbl); //Record that this frame was dropped 
   else 
   { 
    clear(ACK); 
    record(0.0, drptbl); //Record that frame wasn't dropped 
   } 
  } 
  else 
   record(1.0, drptbl); //Record that frame was dropped 
 release(q[k]); 
} 
 
void cust(int i)     //process customer 
{ 
 char procname[32]; 
 sprintf(procname, "cust %d", i); 
 create(procname);    //required create statement 
 float frameSize = GenerateFrame(); 

131 



 record(frameSize, frmtbl); 
 double svc = frameSize/LinkSpeed; 
 if (i%4 == 0) 
 { 
  note_entry(qtbl);   //note arrival 
  ProcessFrame(queues, svc, tbl, cwtbl, rtxtbl, drptbl, i, 3);
 //Processes frames 
  note_exit(qtbl); 
 } 
 else if (i%2 == 1) 
 { 
  note_entry(qtbl1); 
  ProcessFrame1(queues, svc, tbl1, cwtbl1, rtxtbl1, drptbl1, 
i, 5);    //Processes frames 
  note_exit(qtbl1); 
 } 
 else 
 { 
  note_entry(qtbl2); 
  ProcessFrame2(queues, svc, tbl2, cwtbl2, rtxtbl2, drptbl2, 
i, 7); //Processes frames 
        note_exit(qtbl2);   //note departure 
 } 
    cnt--; 
    if(cnt == 0) 
        set(done);     //if last arrival, signal 
} 
 
void source(int i) 
{ 
 char procname[32]; 
 sprintf(procname, "source %d", i); 
 create(procname); 
 int stdone; 
 do 
 { 
  hold(expntl(IATM));  /*Generate packets according to an 
exponential distribution */ 
  cust(i);    //initiate process cust 
  stdone = state(done); 
 } 
 while (stdone == 2); 
} 
 
void MediumSensing()    //Check state of medium 
{ 
  create("MediumSensing"); 
 int st;       //State of medium 
 int stdone; 
 do 
 { 

132 



  st = state(busy); 
  if (st == 2) 
  { 
   hold(aAIFSTime);  //Wait for an AIFS interval 
   st = state(busy); 
   if (st==2) 
    set(idle); 
   else 
    hold(aSlotTime); 
  } 
  else 
   hold(aSlotTime); 
  stdone = state(done); 
 } 
 while (stdone == 2); 
} 
 
void MediumSensing1()    //Check state of medium 
{ 
  create("MediumSensing1"); 
 int st;       //State of medium 
 int stdone; 
 do 
 { 
  st = state(busy); 
  if (st == 2) 
  { 
   hold(aAIFSTime1);  //Wait for a AIFS interval 
   st = state(busy); 
   if (st==2) 
    set(idle1); 
   else 
    hold(aSlotTime); 
  } 
  else 
   hold(aSlotTime); 
  stdone = state(done); 
 } 
 while (stdone == 2); 
} 
 
void MediumSensing2()    //Check state of medium 
{ 
  create("MediumSensing2"); 
 int st;       //State of medium 
 int stdone; 
 do 
 { 
  st = state(busy); 
  if (st == 2) 
  { 

133 



   hold(aAIFSTime2);  //Wait for a AIFS interval 
   st = state(busy); 
   if (st==2) 
    set(idle2); 
   else 
    hold(aSlotTime); 
  } 
  else 
   hold(aSlotTime); 
  stdone = state(done); 
 } 
 while (stdone == 2); 
} 
 
void ACKgenerator()     /*Determines whether or not an ACK can 
be sent */ 
{ 
 create("ACKgenerator"); 
 set_priority(2); 
 int stdone; 
 double ACKsize = ACKLgth+ PHYHdr; 
 double svc = ACKsize/LinkSpeed; 
 record(ACKsize,frmtbl); 
 do 
 { 
  wait(finxmission); 
  if (xmitting==1 || xmitting==0)  /*Generate an ACK iff one 
station is transmitting */ 
  { 
   hold(aSIFSTime); 
   set(busy); 
   use(s, svc);   //Transmit the ACK frame 
   clear(busy); 
   set(ACK); 
   set(go); 
  } 
  else 
  { 
   clear(ACK); 
   hold(aSIFSTime); 
   set(go); 
  } 
  stdone = state(done); 
 } 
 while (stdone == 2); 
} 
 

134 



 

 

 

 

 

 

APPENDIX F 

ADAPTIVE EDCF CODE LISTING 
 

       



 

 

/* Code to simulate Adaptive EDCF (AEDCF) function */ 
/* All times below are in seconds */ 
 
#include "csim.h" 
#include <stdio.h> 
 
#define aCWmin       15      //Number of slots 
#define aCWmax       63      //Number of slots 
#define aCWmin1      31      //Number of slots 
#define aCWmax1     127      //Number of slots 
#define aCWmin2      63      //Number of slots 
#define aCWmax2    1023      //Number of slots 
#define aSlotTime   0.00002  //time in seconds. 20 microsecs 
#define aSIFSTime   0.00001  //time in seconds. 10 microsecs 
#define aPIFSTime   0.00004  //time in seconds. 40 microsecs 
#define aDIFSTime   0.00005  /*time in seconds. DIFS = SIFS + 
(2*aSlotTime) */ 
#define aAIFSTime   0.00005  //time in seconds. 50 microsecs 
#define aAIFSTime1  0.00007  //time in seconds. 70 microsecs 
#define aAIFSTime2  0.00009  //time in seconds. 90 microsecs 
#define aMPDUMaxLength 4095  /*MPDU in bits.  According to the 
standard 1 <= x <= 4095 */ 
#define dot11RetryLimit 7    /*Number of times a frame may be 
retransmitted */ 
#define dot11MSDULifeTime 0.06  /*Amount of time that a source 
0 frame can be alive */ 
#define dot11MSDULifeTime1 0.1  /*Amount of time that a source 
1 frame can be alive */ 
#define dot11MSDULifeTime2 0.2  /*Amount of time that a source 
2 frame can be alive */ 
#define MACHdr        272.0      //MAC Header Length 
#define PHYHdr        192.0      //PHY Header Length 
#define ACKLgth       112.0      //Length of ACK frame 
 
#define LinkSpeed    54000000.0   // 54 Mbps 
#define NARS  100000            //Number of arrivals 
#define STNS    10 
#define ObsvSlots 5000    /*Number of slots to observe b/4 
computing collision probability */ 
 
FACILITY s;   //Medium 
FACILITY queues[STNS]; 
 
TABLE tbl;   //To hold frame response times for source 0 
TABLE tbl1;   //To hold frame response times for source 1 
TABLE tbl2;   //To hold frame response times for source 2 
TABLE tbl3;   //To hold frame response times for all sources 
TABLE rtxtbl;  //Table showing number of retransmissions 
TABLE cwtbl;  //Table with contention window sizes 

 136       



TABLE drptbl;  //Table with number of dropped frames 
TABLE rtxtbl1;  //Table showing number of retransmissions 
TABLE cwtbl1;  //Table with contention window sizes 
TABLE drptbl1;  //Table with number of dropped frames 
TABLE rtxtbl2;  //Table showing number of retransmissions 
TABLE cwtbl2;  //Table with contention window sizes 
TABLE drptbl2;  //Table with number of dropped frames 
TABLE frmtbl;  //Table with frame sizes 
 
QTABLE qtbl; 
QTABLE qtbl1; 
QTABLE qtbl2; 
 
EVENT done;   //Event that the simulation is complete 
EVENT ACK;    //Event that an ACK has been received. 
EVENT idle;   //Event that the medium is idle after aAIFSTime 
EVENT idle1;  //Event that the medium is idle after aAIFSTime1 
EVENT idle2;  //Event that the medium is idle after aAIFSTime2 
EVENT busy;   //Event that the medium is busy after DIFS 
EVENT finxmission;  /*Event that a station has finished a 
transmission */ 
EVENT go;     //Event that a function can continue execution 
 
int cnt; 
int xmitting;  //Nbr of stations transmitting simultaneously 
int j; 
int collisions[STNS]; /*holds number of collisions that occur 
in a cycle */ 
double PktsSent[STNS]; /*holds number of frames sent in a 
cycle */ 
double CollRate[STNS]; /*Holds instantaneous collision rate 
per station */ 
double AvgCollRate[STNS]; /*Holds average collision rate per 
station */ 
int lstCW[STNS];  /*Holds the last contention window for each 
class */ 
int currCW[STNS]; /*Holds the current contention window for 
each class */ 
double IATM;        //Frame inter-arrival times 
 
void init();   //Initializes structures used in the simulation 
void ResetCollArrays();  /*Resets the arrays used in computing 
collision rates */ 
void ResetArrays();  //Resets the arrays that keep track of 
history 
float GenerateFrame();  //Generates frames 
int ExpBackoff(int CW, int PF, int amaxCW); /*Exponential 
Back-off algorithm */ 
void ResetCW(int k, int aminCW); /*Resets the contention 
window using history */ 

137 



void BackOffCtr(int w);  /*Counts down the number of slots in 
the backoff interval */ 
void BackOffCtr1(int w); /*Counts down the number of slots in 
the backoff interval */ 
void BackOffCtr2(int w); /*Counts down the number of slots in 
the backoff interval */ 
void ProcessFrame(FACILITY q[], double svc, TABLE tbl, TABLE 
cwtbl, TABLE rtxtbl, TABLE drptbl, int i); //Processes frames 
void ProcessFrame1(FACILITY q[], double svc, TABLE tbl, TABLE 
cwtbl, TABLE rtxtbl, TABLE drptbl, int i); //Processes frames 
void ProcessFrame2(FACILITY q[], double svc, TABLE tbl, TABLE 
cwtbl, TABLE rtxtbl, TABLE drptbl, int i); //Processes frames 
void cust(int i);  //Generates and processes the frame 
void source(int i);  //Simulates a frame source 
void MediumSensing(); //Medium Sensing function 
void MediumSensing1(); //Medium Sensing function 
void MediumSensing2(); //Medium Sensing function 
void ACKgenerator(); /*Generates ACK iff only one station is 
transmitting. */ 
void CollRateEst(int i); //Estimates the collision rate per 
station 
 
void sim()        //1st process - named sim 
{ 
 int stdone; 
 FILE *out; 
 char filename[16]; 
 
 sprintf(filename, "outaedcf%d.txt", STNS); 
 set_model_name("Simulation of AEDCF"); 
 out = fopen(filename, "wt"); 
 for (IATM = 0.1000; IATM > 0.0095; IATM = IATM - 0.0020) 
 { 
  create("sim");              //required create statement 
 
  max_processes(100000000); 
  max_events(10000000); 
  init(); 
  ResetCollArrays(); 
  ResetArrays(); 
 
  reset_prob(clock); 
  cnt = NARS/8; 
  MediumSensing(); 
  MediumSensing1(); 
  MediumSensing2(); 
  ACKgenerator(); 
  for (j=0; j<STNS; j++) 
   source(j); 
  wait(done); 
  clear(done); 

138 



        clear(ACK); 
  clear(idle); 
  clear(idle1); 
  clear(idle2); 
  clear(busy); 
  clear(finxmission); 
  clear(go); 
  ResetCollArrays(); 
  xmitting = 0; 
  reset(); 
  ResetArrays(); 
  cnt = 3*NARS; 
  MediumSensing(); 
  MediumSensing1(); 
  MediumSensing2(); 
  ACKgenerator(); 
  for (j=0; j<STNS; j++) 
   source(j); 
  wait(done);                     //wait until all done 
  fprintf(out ,"%i\t%f\t%f\t%f\t%f\t%f\t%f\t%f\t%f\t%f\t%f\t 
                %f\t%f\t%f\t%f\t%f\t%f\t%f\t%f\t%f\t%f\t\n" 
              ,STNS,table_mean(frmtbl),IATM ,table_mean(tbl) 
              ,table_var(tbl),table_mean(rtxtbl) 
              ,table_mean(cwtbl),table_mean(drptbl) 
              ,table_mean(tbl1),table_var(tbl1) 
              ,table_mean(rtxtbl1),table_mean(cwtbl1) 
              ,table_mean(drptbl1),table_mean(tbl2) 
              ,table_var(tbl2),table_mean(rtxtbl2) 
              ,table_mean(cwtbl2),table_mean(drptbl2) 
              ,table_mean(tbl3),table_var(tbl3),util(s)); 
  fflush(out); 
  rerun(); 
 } 
 fclose(out); 
    report();                               //print report 
    mdlstat(); 
} 
 
void ResetCollArrays() 
{ 
 int i; 
 for (i=0; i<STNS; i++) 
 { 
  collisions[i]=0; 
  PktsSent[i]=0; 
  CollRate[i]=0; 
 } 
} 
 
void ResetArrays() 
{ 

139 



 int i; 
 for (i=0; i<STNS; i++) 
 { 
  AvgCollRate[i]=0; 
  lstCW[i]=0; 
  currCW[i]=0; 
 } 
} 
 
void init() 
{ 
 s = facility("medium");               //initialize facility 
 facility_set(queues,"src_queues",STNS); 
 
 done = event("done");                 //initialize event 
 ACK = event("ACK"); 
 idle = event("idle"); 
 idle1 = event("idle1"); 
 idle2 = event("idle2"); 
 busy = event("busy"); 
 finxmission = event("finxmission"); 
 go = event("go"); 
 
 tbl = table("Frame response tms");    //initialize table 
 rtxtbl = table("Nbr of retransmissions"); 
 cwtbl = table("Size of contention window"); 
 drptbl= table("Nbr of dropped frames"); 
 tbl1 = table("Frame response tms - class 1"); 
 rtxtbl1 = table("Nbr of retransmissions - class 1"); 
 cwtbl1 = table("Size of contention window - class 1"); 
 drptbl1= table("Nbr of dropped frames - class 1"); 
 tbl2 = table("Frame response tms - class 2"); 
 rtxtbl2 = table("Nbr of retransmissions - class 2"); 
 cwtbl2 = table("Size of contention window - class 2"); 
 drptbl2= table("Nbr of dropped frames - class 2"); 
 tbl3 = table("System resp tms for all classes"); 
 frmtbl = table("Sizes of frames for all classes"); 
 
 qtbl = qhistogram("num from source 0", 10l);   /*initialize 
qhistogram */ 
 qtbl1 = qhistogram("num from source 1", 10l); 
 qtbl2 = qhistogram("num from source 2", 10l); 
 xmitting = 0; 
} 
 
float GenerateFrame()    //Generates frames 
{ 
 int tmpframe = random(1,4095); /*Returns a random # between 1 
and 4095 */ 
 return((tmpframe*8.0) + MACHdr + PHYHdr); 
} 

140 



 
int ExpBackoff(int CW, int PF, int amaxCW) /*Exponential Back-
off algorithm */ 
{ 
 int tempCW= (PF*(CW+1)) - 1; 
 if (tempCW <= amaxCW) 
  return(tempCW); 
 else 
  return (CW); 
} 
 
void ResetCW(int k, int aminCW)  /*Resets the contention 
window using history */ 
{ 
 double MF;  //Multiplicative factor 
 if (k%4 == 0) //Indicates it is of class 0 
 { 
  MF = AvgCollRate[k]; 
  if (MF < 0.8) 
   MF = 0.8; 
 } 
 else if (k%2 == 1) //Indicates it is of class 1 
 { 
  MF = 3*AvgCollRate[k]; 
  if (MF < 0.8) 
   MF = 0.8; 
 } 
 else    //indicates it is of class 2 
 { 
  MF = 5*AvgCollRate[k]; 
  if (MF < 0.8) 
   MF = 0.8; 
 } 
 int tempCW = lstCW[k]*MF; 
 if (tempCW < aminCW) 
  currCW[k] = aminCW; 
 else 
  currCW[k] = tempCW; 
} 
void BackOffCtr(int w) 
{ 
 int st; 
 int i; 
 for (i=w; i>0; i--) 
 { 
  hold(aSlotTime); 
  st = state(busy); //Sense medium 
  if (st==1)   //If the medium is busy 
   wait(idle); 
 } 
} 

141 



 
void BackOffCtr1(int w) 
{ 
 int st; 
 int i; 
 for (i=w; i>0; i--) 
 { 
  hold(aSlotTime); 
  st = state(busy); //Sense medium 
  if (st==1)   //If the medium is busy 
   wait(idle1); 
 } 
} 
 
void BackOffCtr2(int w) 
{ 
 int st; 
 int i; 
 for (i=w; i>0; i--) 
 { 
  hold(aSlotTime); 
  st = state(busy); //Sense medium 
  if (st==1)   //If the medium is busy 
   wait(idle2); 
 } 
} 
 
void ProcessFrame(FACILITY q[], double svc, TABLE tbl, TABLE 
cwtbl, TABLE rtxtbl, TABLE drptbl, int k)     /*Processes 
frames */ 
{ 
    double t1; 
    int    st; 
    int    retx=0;     /*keeps track of how many times a 
retransmission occurs */ 
    int    w;          //used to keep track of number of slots 
    int    CW;         /*used to keep track of contention 
window size*/ 
 
 ResetCW(k, aCWmin); 
 CW = currCW[k]; 
 t1 = clock;                         //time of request 
 reserve(q[k]);      /*Enter this frame in the queue for the 
source being processed */ 
  if ((clock - t1) < dot11MSDULifeTime) 
  { 
   wait(idle);   //Wait until the medium is idle for aAIFSTime 
   w = rand()%CW; 
   BackOffCtr(w); 
   xmitting++;    /*Increment the number of stations 
transmitting */ 

142 



   set(busy); 
   use(s,svc);    //reserve medium 
   clear(busy); 
   record(clock-t1, tbl);  /*record response time for this 
source */ 
   record(clock-t1, tbl3);     //record system response time  
   set(finxmission);  //Indicate that the transmission is done 
   wait(go);    //Wait for the ACKgenerator function to check 
xmitting 
   xmitting--;    //Decrement the number of stations 
transmitting 
   clear(go);    /*Once go has been received continue 
execution */ 
   clear(finxmission); 
   PktsSent[k]++;   //Indicate one frame has been sent 
   lstCW[k] = CW; 
   st = state(ACK); 
   //As long as no ACK has been received. 
   while (st!=1 && retx<dot11RetryLimit && (clock - t1) < 
dot11MSDULifeTime) 
   { 
    CW = ExpBackoff(CW, 2, aCWmax); 
    wait(idle); 
    w = rand()%CW; 
    BackOffCtr(w); 
    retx++; 
    xmitting++; 
    set(busy); 
    use(s,svc);    //reserve medium 
    clear(busy); 
    record(clock-t1, tbl);  /*record response time for this 
source */ 
    record(clock-t1, tbl3); //record system response time 
    set(finxmission);  /*Indicate that the transmission is 
done */ 
    wait(go);    //Wait for the ACKgenerator function to check 
xmitting 
    xmitting--; 
    clear(go);    /*Once go has been received continue 
execution */ 
    clear(finxmission); 
    collisions[k]++; 
    PktsSent[k]++;   //Indicate one frame has been sent 
    lstCW[k] = CW; 
    st = state(ACK); 
   } 
   record(retx, rtxtbl); //record number of retransmissions 
   record(w, cwtbl);  //Record size of contention window 
   if (retx == dot11RetryLimit || ((clock - t1) >= 
dot11MSDULifeTime && st!=1)) 
    record(1.0, drptbl); //Record that frame was dropped 

143 



   else 
   { 
    clear(ACK); 
    record(0.0, drptbl); //Record that frame wasn't dropped 
   } 
  } 
  else 
   record(1.0, drptbl); //Record that frame was dropped 
 release(q[k]); 
} 
 
void ProcessFrame1(FACILITY q[], double svc, TABLE tbl, TABLE 
cwtbl, TABLE rtxtbl, TABLE drptbl, int k)     //Processes 
frames 
{ 
    double t1; 
    int    st; 
    int    retx=0;    /*keeps track of how many times a 
retransmission occurs. */ 
    int    w;         //used to keep track of number of slots 
    int    CW;        /*used to keep track of the size of the 
contention window */ 
 
    ResetCW(k, aCWmin1); 
    CW = currCW[k]; 
    t1 = clock;       //time of request 
    reserve(q[k]);    /*Enter this frame in the queue for the 
source being processed */ 
  if ((clock - t1) < dot11MSDULifeTime1) 
  { 
   wait(idle1);  //Wait until the medium is idle for aAIFSTime 
   w = rand()%CW; 
   BackOffCtr1(w); 
   xmitting++; 
   set(busy); 
   use(s,svc);    //reserve medium 
   clear(busy); 
   record(clock-t1, tbl); 
   record(clock-t1, tbl3);     //record system response time 
   set(finxmission);  //Indicate that the transmission is done 
   wait(go);    /*Wait for the ACKgenerator function to check 
xmitting */ 
   xmitting--; 
   clear(go);    /*Once go has been received continue 
execution */ 
   clear(finxmission); 
   PktsSent[k]++;   //Indicate one frame has been sent 
   lstCW[k] = CW; 
   st = state(ACK); 
   //As long as no ACK has been received. 

144 



   while (st!=1 && retx<dot11RetryLimit && (clock - t1) < 
dot11MSDULifeTime1) 
   { 
    CW = ExpBackoff(CW, 2, aCWmax1); 
    wait(idle1); 
    w = rand()%CW; 
    BackOffCtr1(w); 
    retx++; 
    xmitting++; 
    set(busy); 
    use(s,svc);    //reserve medium 
    clear(busy); 
    record(clock-t1, tbl); 
    record(clock-t1, tbl3); //record system response time 
    set(finxmission);  /*Indicate that the transmission is 
done */ 
    wait(go);    /*Wait for the ACKgenerator function to check 
xmitting */ 
    xmitting--; 
    clear(go);    /*Once go has been received continue 
execution */ 
    clear(finxmission); 
    collisions[k]++; 
    PktsSent[k]++;   //Indicate one frame has been sent 
    lstCW[k] = CW; 
    st = state(ACK); 
   } 
   record(retx, rtxtbl); //record number of retransmissions 
   record(w, cwtbl);  //Record size of contention window 
   if (retx == dot11RetryLimit || ((clock - t1) >= 
dot11MSDULifeTime1 && st!=1)) 
    record(1.0, drptbl); //Record that frame was dropped 
   else 
   { 
    clear(ACK); 
    record(0.0, drptbl); //Record that frame wasn't dropped 
   } 
  } 
  else 
   record(1.0, drptbl); //Record that frame was dropped 
 release(q[k]); 
} 
 
void ProcessFrame2(FACILITY q[], double svc, TABLE tbl, TABLE 
cwtbl, TABLE rtxtbl, TABLE drptbl, int k)     //Processes 
frames 
{ 
    double t1; 
    int    st; 
    int    retx=0;     /*keeps track of how many times a 
retransmission occurs. */ 

145 



    int    w;          //used to keep track of number of slots 
    int    CW;  //used to keep track of contention window size 
 
 ResetCW(k, aCWmin2); 
 CW = currCW[k]; 
 t1 = clock;                     //time of request 
 reserve(q[k]);     /*Enter this frame in the queue for the 
source being processed */ 
  if ((clock - t1) < dot11MSDULifeTime2) 
  { 
   wait(idle2);  //Wait until the medium is idle for aAIFSTime 
   w = rand()%CW; 
   BackOffCtr2(w); 
   xmitting++; 
   set(busy); 
   use(s,svc);    //reserve medium 
   clear(busy); 
   record(clock-t1, tbl); 
   record(clock-t1, tbl3); 
   set(finxmission);  //Indicate that the transmission is done 
   wait(go); 
   xmitting--; 
   clear(go); 
   clear(finxmission); 
   PktsSent[k]++;   //Indicate one frame has been sent 
   lstCW[k] = CW; 
   st = state(ACK); 
   //As long as no ACK has been received. 
   while (st!=1 && retx<dot11RetryLimit && (clock - t1) < 
dot11MSDULifeTime2) 
   { 
    CW = ExpBackoff(CW, 2, aCWmax2); 
    wait(idle2); 
    w = rand()%CW; 
    BackOffCtr2(w); 
    retx++; 
    xmitting++; 
    set(busy); 
    use(s,svc);    //reserve medium 
    clear(busy); 
    record(clock-t1, tbl); 
    record(clock-t1, tbl3); 
    set(finxmission); 
    wait(go); 
    xmitting--; 
    clear(go);    /*Once go has been received continue 
execution */ 
    clear(finxmission); 
    collisions[k]++; 
    PktsSent[k]++;   //Indicate one frame has been sent 
    lstCW[k] = CW; 

146 



    st = state(ACK); 
   } 
   record(retx, rtxtbl); //record number of retransmissions 
   record(w, cwtbl);  //Record size of contention window 
   if (retx == dot11RetryLimit || ((clock - t1) >= 
dot11MSDULifeTime2 && st!=1)) 
    record(1.0, drptbl); //Record that frame was dropped 
   else 
   { 
    clear(ACK); 
    record(0.0, drptbl); //Record that frame wasn't dropped 
   } 
  } 
  else 
   record(1.0, drptbl); //Record that frame was dropped 
 release(q[k]); 
} 
 
void cust(int i)     //process customer 
{ 
 char procname[32]; 
 sprintf(procname, "cust %d", i); 
 create(procname);    //required create statement 
 float frameSize = GenerateFrame(); 
 record(frameSize, frmtbl); 
 double svc = frameSize/LinkSpeed; 
 if (i%4 == 0) 
 { 
  note_entry(qtbl);   //note arrival 
  ProcessFrame(queues, svc, tbl, cwtbl, rtxtbl, drptbl, i);
 //Processes frames 
  note_exit(qtbl); 
 } 
 else if (i%2 == 1) 
 { 
  note_entry(qtbl1); 
  ProcessFrame1(queues, svc, tbl1, cwtbl1, rtxtbl1, drptbl1, 
i);    //Processes frames 
  note_exit(qtbl1); 
 } 
 else 
 { 
  note_entry(qtbl2); 
  ProcessFrame2(queues, svc, tbl2, cwtbl2, rtxtbl2, drptbl2, 
i); //Processes frames 
        note_exit(qtbl2);   //note departure 
 } 
    cnt--; 
    if(cnt == 0) 
        set(done);     //if last arrival, signal 
} 

147 



 
void source(int i) 
{ 
 char procname[32]; 
 sprintf(procname, "source %d", i); 
 create(procname); 
 int stdone; 
 CollRateEst(i);    /*Start the collision rate estimator for 
this source */ 
 do 
 { 
  hold(expntl(IATM));  /*Generate packets according to an 
exponential distribution */ 
        cust(i);    //initiate process cust 
  stdone = state(done); 
 } 
 while (stdone == 2); 
} 
 
void MediumSensing()    //Check state of medium 
{ 
  create("MediumSensing"); 
 int st;       //State of medium 
 int stdone; 
 do 
 { 
  st = state(busy); 
  if (st == 2) 
  { 
   hold(aAIFSTime);  //Wait for an AIFS interval 
   st = state(busy); 
   if (st==2) 
    set(idle);   /*If the medium is free for an AIFS interval 
make it idle */ 
   else 
    hold(aSlotTime); 
  } 
  else 
   hold(aSlotTime); 
  stdone = state(done); 
 } 
 while (stdone == 2); 
} 
 
void MediumSensing1()    //Check state of medium 
{ 
  create("MediumSensing1"); 
 int st;       //State of medium 
 int stdone; 
 do 
 { 

148 



  st = state(busy); 
  if (st == 2) 
  { 
   hold(aAIFSTime1);  //Wait for a AIFS interval 
   st = state(busy); 
   if (st==2) 
    set(idle1); 
   else 
    hold(aSlotTime); 
  } 
  else 
   hold(aSlotTime); 
  stdone = state(done); 
 } 
 while (stdone == 2); 
} 
 
void MediumSensing2()    //Check state of medium 
{ 
  create("MediumSensing2"); 
 int st;       //State of medium 
 int stdone; 
 do 
 { 
  st = state(busy); 
  if (st == 2) 
  { 
   hold(aAIFSTime2);  //Wait for a AIFS interval 
   st = state(busy); 
   if (st==2) 
    set(idle2); 
   else 
    hold(aSlotTime); 
  } 
  else 
   hold(aSlotTime); 
  stdone = state(done); 
 } 
 while (stdone == 2); 
} 
 
void ACKgenerator()     /*Determines whether or not an ACK can 
be sent */ 
{ 
 create("ACKgenerator"); 
 set_priority(2); 
 int stdone; 
 double ACKsize = ACKLgth+ PHYHdr; 
 double svc = ACKsize/LinkSpeed; 
 record(ACKsize,frmtbl); 
 do 

149 



 { 
  wait(finxmission); 
  if (xmitting==1 || xmitting==0)  /*Generate an ACK iff one 
station is transmitting */ 
  { 
   hold(aSIFSTime); 
   set(busy); 
   use(s, svc);   //Transmit the ACK frame 
   clear(busy); 
   set(ACK); 
   set(go); 
  } 
  else 
  { 
   clear(ACK); 
   hold(aSIFSTime); 
   set(go); 
  } 
  stdone = state(done); 
 } 
 while (stdone == 2); 
} 
 
void CollRateEst(int k)  /*Estimates the collision rate per 
station */ 
{ 
 char procname[32]; 
 sprintf(procname, "CollRateEst %d", k); 
 create(procname); 
 int stdone; 
 int i; 
 do 
 { 
  for (i=0; i<ObsvSlots; i++) 
   hold(aSlotTime); 
  if (PktsSent[k]!= 0) 
   CollRate[k] = (collisions[k]*1.0)/PktsSent[k]; 
  else 
   CollRate[k] = 0; 
  /*The equation below is based on page 3 of the AEDCF paper. 
alpha = 0.8 */ 
  AvgCollRate[k] = (0.2* CollRate[k]) + (0.8* AvgCollRate[k]); 
  ResetCollArrays(); 
  stdone = state(done); 
 } 
 while (stdone == 2); 
} 
 

150 



 

 

 

 

 

 

APPENDIX G 

ADAPTIVE EDCF WITH VARYING PERSISTENCE 

 FACTOR CODE LISTING 
 

        



 

/* Code to simulate Adaptive EDCF (AEDCF) function with 
varying PF */ 
/* All times below are in seconds */ 
 
#include "csim.h" 
#include <stdio.h> 
 
#define aCWmin       15      //Number of slots 
#define aCWmax       63      //Number of slots 
#define aCWmin1      31      //Number of slots 
#define aCWmax1     127      //Number of slots 
#define aCWmin2      63      //Number of slots 
#define aCWmax2    1023      //Number of slots 
#define aSlotTime   0.00002  //time in seconds. 20 microsecs 
#define aSIFSTime   0.00001  //time in seconds. 10 microsecs 
#define aPIFSTime   0.00004  //time in seconds. 40 microsecs 
#define aDIFSTime   0.00005  /*time in seconds. DIFS = SIFS + 
(2*aSlotTime) */ 
#define aAIFSTime   0.00005  //time in seconds. 50 microsecs 
#define aAIFSTime1  0.00007  //time in seconds. 70 microsecs 
#define aAIFSTime2  0.00009  //time in seconds. 90 microsecs 
#define aMPDUMaxLength 4095  /*MPDU in bits.  According to the 
standard 1 <= x <= 4095 */ 
#define dot11RetryLimit 7    /*Number of times a frame may be 
retransmitted */ 
#define dot11MSDULifeTime 0.06  /*Amount of time that a source 
0 frame can be alive */ 
#define dot11MSDULifeTime1 0.1  /*Amount of time that a source 
1 frame can be alive */ 
#define dot11MSDULifeTime2 0.2  /*Amount of time that a source 
2 frame can be alive */ 
#define MACHdr        272.0      //MAC Header Length 
#define PHYHdr        192.0      //PHY Header Length 
#define ACKLgth       112.0      //Length of ACK frame 
 
#define LinkSpeed    54000000.0   // 54 Mbps 
#define NARS  100000            //Number of arrivals 
#define STNS    30 
#define ObsvSlots 5000    /*Number of slots to observe b/4 
computing collision probability */ 
 
FACILITY s;   //Medium 
FACILITY queues[STNS]; 
 
TABLE tbl;   //To hold frame response times for source 0 
TABLE tbl1;   //To hold frame response times for source 1 
TABLE tbl2;   //To hold frame response times for source 2 
TABLE tbl3;   //To hold frame response times for all sources 
TABLE rtxtbl;  //Table showing number of retransmissions 
TABLE cwtbl;  //Table with contention window sizes 
TABLE drptbl;  //Table with number of dropped frames 

 152        



TABLE rtxtbl1;  //Table showing number of retransmissions 
TABLE cwtbl1;  //Table with contention window sizes 
TABLE drptbl1;  //Table with number of dropped frames 
TABLE rtxtbl2;  //Table showing number of retransmissions 
TABLE cwtbl2;  //Table with contention window sizes 
TABLE drptbl2;  //Table with number of dropped frames 
TABLE frmtbl;  //Table with frame sizes 
TABLE prbtbl;  /*Table with collision probabilities for the 
simulation */ 
 
QTABLE qtbl; 
QTABLE qtbl1; 
QTABLE qtbl2; 
 
EVENT done;   //Event that the simulation is complete 
EVENT ACK;    //Event that an ACK has been received. 
EVENT idle;   //Event that the medium is idle after aAIFSTime 
EVENT idle1;  //Event that the medium is idle after aAIFSTime1 
EVENT idle2;  //Event that the medium is idle after aAIFSTime2 
EVENT busy;   //Event that the medium is busy after DIFS 
EVENT finxmission;  /*Event that a station has finished a 
transmission */ 
EVENT go;     //Event that a function can continue execution 
 
int cnt; 
int xmitting;  //Nbr of stations transmitting simultaneously 
int j; 
int collisions[STNS]; //holds number of collisions that occur 
in a cycle 
double PktsSent[STNS]; //holds amount of data sent in a cycle 
double CollRate[STNS]; //Holds instantaneous collision rate 
per station 
double AvgCollRate[STNS]; //Holds average collision rate per 
station 
int lstCW[STNS];  //Holds the last contention window for each 
class 
int currCW[STNS]; //Holds the current contention window for 
each class 
int PFactor[STNS]; //Holds the current persistence factor for 
each class 
double IATM;        //Frame inter-arrival times 
 
void init();   //Initializes structures used in the simulation 
void ResetCollArrays();  //Resets the arrays used in computing 
collision rates 
void ResetArrays();  //Resets the arrays that keep track of 
history 
float GenerateFrame();  //Generates frames 
int ExpBackoff(int CW, int PF, int amaxCW); //Exponential 
Back-off algorithm 

153 



void ResetCW(int k, int aminCW); //Resets the contention 
window using history 
void BackOffCtr(int w);  //Counts down the number of slots in 
the backoff interval 
void BackOffCtr1(int w); //Counts down the number of slots in 
the backoff interval 
void BackOffCtr2(int w); //Counts down the number of slots in 
the backoff interval 
void ProcessFrame(FACILITY q[], double svc, TABLE tbl, TABLE 
cwtbl, TABLE rtxtbl, TABLE drptbl, int i); //Processes frames 
void ProcessFrame1(FACILITY q[], double svc, TABLE tbl, TABLE 
cwtbl, TABLE rtxtbl, TABLE drptbl, int i); //Processes frames 
void ProcessFrame2(FACILITY q[], double svc, TABLE tbl, TABLE 
cwtbl, TABLE rtxtbl, TABLE drptbl, int i); //Processes frames 
void cust(int i);  //Generates and processes the frame 
void source(int i);  //Simulates a frame source 
void MediumSensing(); //Medium Sensing function 
void MediumSensing1(); //Medium Sensing function 
void MediumSensing2(); //Medium Sensing function 
void ACKgenerator(); //Generates ACK iff only one station is 
transmitting. 
void CollRateEst(int i); //Estimates the collision rate per 
station 
 
void sim()                              //1st process - named 
sim 
{ 
 int stdone; 
 FILE *out; 
 char filename[16]; 
 
    sprintf(filename, "outpaedcf%d.txt", STNS); 
    set_model_name("Simulation of AEDCF, w/ varying PF"); 
 out = fopen(filename, "wt"); 
 for (IATM = 0.1000; IATM > 0.0095; IATM = IATM - 0.0020) 
 { 
  create("sim");                        //required create 
statement 
 
  max_processes(100000000); 
  max_events(10000000); 
  init(); 
  ResetCollArrays(); 
  ResetArrays(); 
 
  reset_prob(clock); 
  cnt = NARS/8; 
  MediumSensing(); 
  MediumSensing1(); 
  MediumSensing2(); 
  ACKgenerator(); 

154 



  for (j=0; j<STNS; j++) 
   source(j); 
  wait(done); 
  clear(done); 
        clear(ACK); 
  clear(idle); 
  clear(idle1); 
  clear(idle2); 
  clear(busy); 
  clear(finxmission); 
  clear(go); 
  ResetCollArrays(); 
  xmitting = 0; 
  reset(); 
  ResetArrays(); 
  cnt = 3*NARS; 
  MediumSensing(); 
  MediumSensing1(); 
  MediumSensing2(); 
  ACKgenerator(); 
  for (j=0; j<STNS; j++) 
   source(j); 
  wait(done);                   //wait until all done 
    fprintf(out ,"%i\t%f\t%f\t%f\t%f\t%f\t%f\t%f\t%f\t%f\t%f\t 
                %f\t%f\t%f\t%f\t%f\t%f\t%f\t%f\t%f\t%f\t\n" 
              ,STNS,table_mean(frmtbl),IATM ,table_mean(tbl) 
              ,table_var(tbl),table_mean(rtxtbl) 
              ,table_mean(cwtbl),table_mean(drptbl) 
              ,table_mean(tbl1),table_var(tbl1) 
              ,table_mean(rtxtbl1),table_mean(cwtbl1) 
              ,table_mean(drptbl1),table_mean(tbl2) 
              ,table_var(tbl2),table_mean(rtxtbl2) 
              ,table_mean(cwtbl2),table_mean(drptbl2) 
              ,table_mean(tbl3),table_var(tbl3),util(s)); 
  fflush(out); 
  rerun(); 
 } 
 fclose(out); 
    report();                               //print report 
    mdlstat(); 
} 
 
void ResetCollArrays() 
{ 
 int i; 
 for (i=0; i<STNS; i++) 
 { 
  collisions[i]=0; 
  PktsSent[i]=0; 
  CollRate[i]=0; 
 } 

155 



} 
 
void ResetArrays() 
{ 
 int i; 
 for (i=0; i<STNS; i++) 
 { 
  AvgCollRate[i]=0; 
  lstCW[i]=0; 
  currCW[i]=0; 
  PFactor[i]=2; 
 } 
} 
 
void init() 
{ 
 s = facility("medium");               //initialize facility 
 facility_set(queues,"src_queues",STNS); 
 
 done = event("done");                 //initialize event 
 ACK = event("ACK"); 
 idle = event("idle"); 
 idle1 = event("idle1"); 
 idle2 = event("idle2"); 
 busy = event("busy"); 
 finxmission = event("finxmission"); 
 go = event("go"); 
 
 tbl = table("Frame response tms");    //initialize table 
 rtxtbl = table("Nbr of retransmissions"); 
 cwtbl = table("Size of contention window"); 
 drptbl= table("Nbr of dropped frames"); 
 tbl1 = table("Frame response tms - class 1"); 
 rtxtbl1 = table("Nbr of retransmissions - class 1"); 
 cwtbl1 = table("Size of contention window - class 1"); 
 drptbl1= table("Nbr of dropped frames - class 1"); 
 tbl2 = table("Frame response tms - class 2"); 
 rtxtbl2 = table("Nbr of retransmissions - class 2"); 
 cwtbl2 = table("Size of contention window - class 2"); 
 drptbl2= table("Nbr of dropped frames - class 2"); 
 tbl3 = table("System resp tms for all classes"); 
 frmtbl = table("Sizes of frames for all classes"); 
 prbtbl = table("Collision probabilities"); 
 
 qtbl = qhistogram("num from source 0", 10l);   /*initialize 
qhistogram */ 
 qtbl1 = qhistogram("num from source 1", 10l); 
 qtbl2 = qhistogram("num from source 2", 10l); 
 xmitting = 0; 
} 
 

156 



float GenerateFrame()    //Generates frames 
{ 
 int tmpframe = random(1,4095); /*Returns a random # between 1 
and 4095 */ 
 return((tmpframe*8.0) + MACHdr + PHYHdr); 
} 
 
int ExpBackoff(int CW, int PF, int amaxCW) /*Exponential Back-
off algorithm */ 
{ 
 int tempCW= (PF*(CW+1)) - 1; 
 if (tempCW <= amaxCW) 
  return(tempCW); 
 else 
  return (CW); 
} 
 
void ResetCW(int k, int aminCW)  /*Resets the contention 
window using history */ 
{ 
 double MF;  //Multiplicative factor 
 if (k%4 == 0) //Indicates it is of class 0 
 { 
  MF = AvgCollRate[k]; 
  if (MF < 0.8) 
   MF = 0.8; 
 } 
 else if (k%2 == 1) //Indicates it is of class 1 
 { 
  MF = 3*AvgCollRate[k]; 
  if (MF < 0.8) 
   MF = 0.8; 
 } 
 else    //indicates it is of class 2 
 { 
  MF = 5*AvgCollRate[k]; 
  if (MF < 0.8) 
   MF = 0.8; 
 } 
 int tempCW = lstCW[k]*MF; 
 if (tempCW < aminCW) 
  currCW[k] = aminCW; 
 else 
  currCW[k] = tempCW; 
 if (AvgCollRate[k]> 0.0625) 
  PFactor[k] = 4; 
 else 
  PFactor[k] = 2; 
} 
void BackOffCtr(int w) 
{ 

157 



 int st; 
 int i; 
 for (i=w; i>0; i--) 
 { 
  hold(aSlotTime); 
  st = state(busy); //Sense medium 
  if (st==1)   //If the medium is busy 
   wait(idle); 
 } 
} 
 
void BackOffCtr1(int w) 
{ 
 int st; 
 int i; 
 for (i=w; i>0; i--) 
 { 
  hold(aSlotTime); 
  st = state(busy); //Sense medium 
  if (st==1)   //If the medium is busy 
   wait(idle1); 
 } 
} 
 
void BackOffCtr2(int w) 
{ 
 int st; 
 int i; 
 for (i=w; i>0; i--) 
 { 
  hold(aSlotTime); 
  st = state(busy); //Sense medium 
  if (st==1)   //If the medium is busy 
   wait(idle2); 
 } 
} 
 
void ProcessFrame(FACILITY q[], double svc, TABLE tbl, TABLE 
cwtbl, TABLE rtxtbl, TABLE drptbl, int k)     /*Processes 
frames */ 
{ 
    double t1; 
    int    st; 
    int    retx=0;    /*keeps track of how many times a 
retransmission occurs */ 
    int    w;         //used to keep track of number of slots 
    int    CW;        //used to keep track of contention 
window size */ 
 
 ResetCW(k, aCWmin); 
 CW = currCW[k]; 

158 



 t1 = clock;                         //time of request 
 reserve(q[k]);      /*Enter this frame in the queue for the 
source being processed */ 
  if ((clock - t1) < dot11MSDULifeTime) 
  { 
   wait(idle);   //Wait until the medium is idle for aAIFSTime 
   w = rand()%CW; 
   BackOffCtr(w); 
   xmitting++;    /*Increment the number of stations 
transmitting */ 
   set(busy); 
   use(s,svc);    //reserve medium 
   clear(busy); 
   record(clock-t1, tbl);  /*record response time for this 
source */ 
   record(clock-t1, tbl3);     /*record system response time*/ 
   set(finxmission);  //Indicate that the transmission is done 
   wait(go);    /*Wait for the ACKgenerator function to check 
xmitting */ 
   xmitting--;    /*Decrement the number of stations 
transmitting */ 
   clear(go);    /*Once go has been received continue 
execution */ 
   clear(finxmission); 
   PktsSent[k]++;   //Indicate one frame has been sent 
   lstCW[k] = CW; 
   st = state(ACK); 
   //As long as no ACK has been received. 
   while (st!=1 && retx<dot11RetryLimit && (clock - t1) < 
dot11MSDULifeTime) 
   { 
    CW = ExpBackoff(CW, PFactor[k], aCWmax); 
    wait(idle); 
    w = rand()%CW; 
    BackOffCtr(w); 
    retx++; 
    xmitting++; 
    set(busy); 
    use(s,svc);    //reserve medium 
    clear(busy); 
    record(clock-t1, tbl); 
    record(clock-t1, tbl3); /*record system response time*/ 
    set(finxmission);  /*Indicate that the transmission is 
done */ 
    wait(go);    /*Wait for the ACKgenerator function to check 
xmitting */ 
    xmitting--; 
    clear(go);    /*Once go has been received continue 
execution */ 
    clear(finxmission); 
    collisions[k]++; 

159 



    PktsSent[k]++;   //Indicate one frame has been sent 
    lstCW[k] = CW; 
    st = state(ACK); 
   } 
   record(retx, rtxtbl); //record number of retransmissions 
   record(w, cwtbl);  //Record size of contention window 
   if (retx == dot11RetryLimit || ((clock - t1) >= 
dot11MSDULifeTime && st!=1)) 
    record(1.0, drptbl); //Record that frame was dropped 
   else 
   { 
    clear(ACK); 
    record(0.0, drptbl); //Record that frame wasn't dropped 
   } 
  } 
  else 
   record(1.0, drptbl); //Record that frame was dropped 
 release(q[k]); 
} 
 
void ProcessFrame1(FACILITY q[], double svc, TABLE tbl, TABLE 
cwtbl, TABLE rtxtbl, TABLE drptbl, int k)     /*Processes 
frames */ 
{ 
    double t1; 
    int    st; 
    int    retx=0;     /*keeps track of how many times a 
retransmission occurs. */ 
    int    w;          //used to keep track of number of slots 
    int    CW;         /*used to keep track of the size of the 
contention window */ 
 
 ResetCW(k, aCWmin1); 
 CW = currCW[k]; 
 t1 = clock;                     //time of request 
 reserve(q[k]);     /*Enter this frame in the queue for the 
source being processed */ 
  if ((clock - t1) < dot11MSDULifeTime1) 
  { 
   wait(idle1);  //Wait until the medium is idle for aAIFSTime 
   w = rand()%CW; 
   BackOffCtr1(w); 
   xmitting++; 
   set(busy); 
   use(s,svc);    //reserve medium 
   clear(busy); 
   record(clock-t1, tbl); 
   record(clock-t1, tbl3); 
   set(finxmission);  //Indicate that the transmission is done 
   wait(go);    /*Wait for the ACKgenerator function to check 
xmitting */ 

160 



   xmitting--; 
   clear(go);    /*Once go has been received continue 
execution */ 
   clear(finxmission); 
   PktsSent[k]++;   //Indicate one frame has been sent 
   lstCW[k] = CW; 
   st = state(ACK); 
   //As long as no ACK has been received. 
   while (st!=1 && retx<dot11RetryLimit && (clock - t1) < 
dot11MSDULifeTime1) 
   { 
    CW = ExpBackoff(CW, PFactor[k], aCWmax1); 
    wait(idle1); 
    w = rand()%CW; 
    BackOffCtr1(w); 
    retx++; 
    xmitting++; 
    set(busy); 
    use(s,svc);    //reserve medium 
    clear(busy); 
    record(clock-t1, tbl); 
    record(clock-t1, tbl3); 
    set(finxmission);  /*Indicate that the transmission is 
done */ 
    wait(go);    /*Wait for the ACKgenerator function to check 
xmitting */ 
    xmitting--; 
    clear(go);    //Once go has been received continue 
execution 
    clear(finxmission); 
    collisions[k]++; 
    PktsSent[k]++;   //Indicate one frame has been sent 
    lstCW[k] = CW; 
    st = state(ACK); 
   } 
   record(retx, rtxtbl); //record number of retransmissions 
   record(w, cwtbl);  //Record size of contention window 
   if (retx == dot11RetryLimit || ((clock - t1) >= 
dot11MSDULifeTime1 && st!=1)) 
    record(1.0, drptbl); //Record that this frame was dropped 
   else 
   { 
    clear(ACK); 
    record(0.0, drptbl); //Record that frame wasn't dropped 
   } 
  } 
  else 
   record(1.0, drptbl); //Record that frame was dropped 
 release(q[k]); 
} 
 

161 



void ProcessFrame2(FACILITY q[], double svc, TABLE tbl, TABLE 
cwtbl, TABLE rtxtbl, TABLE drptbl, int k)     /*Processes 
frames */ 
{ 
    double t1; 
    int    st; 
    int    retx=0;   /*keeps track of how many times a 
retransmission occurs.*/ 
    int    w;        //used to keep track of number of slots 
    int    CW;       /*used to keep track of the size of the 
contention window */ 
 
 ResetCW(k, aCWmin2); 
 CW = currCW[k]; 
 t1 = clock;                     //time of request 
 reserve(q[k]);     /*Enter this frame in the queue for the 
source being processed */ 
  if ((clock - t1) < dot11MSDULifeTime2) 
  { 
   wait(idle2);  //Wait until the medium is idle for aAIFSTime 
   w = rand()%CW; 
   BackOffCtr2(w); 
   xmitting++; 
   set(busy); 
   use(s,svc);    //reserve medium 
   clear(busy); 
   record(clock-t1, tbl);  /*record response time for this 
source */ 
   record(clock-t1, tbl3);     /*record response time for all 
sources */ 
   set(finxmission);  //Indicate that the transmission is done 
   wait(go);    /*Wait for the ACKgenerator function to check 
xmitting */ 
   xmitting--; 
   clear(go);    //Once go has been received continue 
execution 
   clear(finxmission); 
   PktsSent[k]++;   //Indicate one frame has been sent 
   lstCW[k] = CW; 
   st = state(ACK); 
   //As long as no ACK has been received. 
   while (st!=1 && retx<dot11RetryLimit && (clock - t1) < 
dot11MSDULifeTime2) 
   { 
    CW = ExpBackoff(CW, PFactor[k], aCWmax2); 
    wait(idle2); 
    w = rand()%CW; 
    BackOffCtr2(w); 
    retx++; 
    xmitting++; 
    set(busy); 

162 



    use(s,svc);    //reserve medium 
    clear(busy); 
    record(clock-t1, tbl); 
    record(clock-t1, tbl3); 
    set(finxmission);  /*Indicate that the transmission is 
done */ 
    wait(go);    /*Wait for the ACKgenerator function to check 
xmitting */ 
    xmitting--; 
    clear(go);    /*Once go has been received continue 
execution */ 
    clear(finxmission); 
    collisions[k]++; 
    PktsSent[k]++;   //Indicate one frame has been sent 
    lstCW[k] = CW; 
    st = state(ACK); 
   } 
   record(retx, rtxtbl); //record number of retransmissions 
   record(w, cwtbl);  //Record size of contention window 
   if (retx == dot11RetryLimit || ((clock - t1) >= 
dot11MSDULifeTime2 && st!=1)) 
    record(1.0, drptbl); //Record that frame was dropped 
   else 
   { 
    clear(ACK); 
    record(0.0, drptbl); //Record that frame wasn't dropped 
   } 
  } 
  else 
   record(1.0, drptbl); //Record that frame was dropped 
 release(q[k]); 
} 
 
void cust(int i)     //process customer 
{ 
 char procname[32]; 
 sprintf(procname, "cust %d", i); 
 create(procname);    //required create statement 
 float frameSize = GenerateFrame(); 
 record(frameSize, frmtbl); 
 double svc = frameSize/LinkSpeed; 
 if (i%4 == 0) 
 { 
  note_entry(qtbl);   //note arrival 
  ProcessFrame(queues, svc, tbl, cwtbl, rtxtbl, drptbl, i);
 //Processes frames 
  note_exit(qtbl); 
 } 
 else if (i%2 == 1) 
 { 
  note_entry(qtbl1); 

163 



  ProcessFrame1(queues, svc, tbl1, cwtbl1, rtxtbl1, drptbl1, 
i);    //Processes frames 
  note_exit(qtbl1); 
 } 
 else 
 { 
  note_entry(qtbl2); 
  ProcessFrame2(queues, svc, tbl2, cwtbl2, rtxtbl2, drptbl2, 
i); //Processes frames 
        note_exit(qtbl2);   //note departure 
 } 
    cnt--; 
    if(cnt == 0) 
        set(done);     //if last arrival, signal 
} 
 
void source(int i) 
{ 
 char procname[32]; 
 sprintf(procname, "source %d", i); 
 create(procname); 
 int stdone; 
 CollRateEst(i);    /*Start the collision rate estimator for 
this source */ 
 do 
 { 
  hold(expntl(IATM));  /*Generate packets according to an 
exponential distribution */ 
        cust(i);    //initiate process cust 
  stdone = state(done); 
 } 
 while (stdone == 2); 
} 
 
void MediumSensing()    //Check state of medium 
{ 
  create("MediumSensing"); 
 int st;       //State of medium 
 int stdone; 
 do 
 { 
  st = state(busy); 
  if (st == 2) 
  { 
   hold(aAIFSTime);  //Wait for an AIFS interval 
   st = state(busy); 
   if (st==2) 
    set(idle);   /*If the medium is free for an AIFS interval 
make it idle */ 
   else 
    hold(aSlotTime); 

164 



  } 
  else 
   hold(aSlotTime); 
  stdone = state(done); 
 } 
 while (stdone == 2); 
} 
 
void MediumSensing1()    //Check state of medium 
{ 
  create("MediumSensing1"); 
 int st;       //State of medium 
 int stdone; 
 do 
 { 
  st = state(busy); 
  if (st == 2) 
  { 
   hold(aAIFSTime1);  //Wait for a AIFS interval 
   st = state(busy); 
   if (st==2) 
    set(idle1); 
   else 
    hold(aSlotTime); 
  } 
  else 
   hold(aSlotTime); 
  stdone = state(done); 
 } 
 while (stdone == 2); 
} 
 
void MediumSensing2()    //Check state of medium 
{ 
  create("MediumSensing2"); 
 int st;       //State of medium 
 int stdone; 
 do 
 { 
  st = state(busy); 
  if (st == 2) 
  { 
   hold(aAIFSTime2); 
   st = state(busy); 
   if (st==2) 
    set(idle2); 
   else 
    hold(aSlotTime); 
  } 
  else 
   hold(aSlotTime); 

165 



  stdone = state(done); 
 } 
 while (stdone == 2); 
} 
 
void ACKgenerator()     /*Determines whether or not an ACK can 
be sent */ 
{ 
 create("ACKgenerator"); 
 set_priority(2); 
 int stdone; 
 double ACKsize = ACKLgth+ PHYHdr; 
 double svc = ACKsize/LinkSpeed; 
 record(ACKsize,frmtbl); 
 do 
 { 
  wait(finxmission); 
  if (xmitting==1 || xmitting==0)  /*Generate an ACK iff one 
station is transmitting */ 
  { 
   hold(aSIFSTime); 
   set(busy); 
   use(s, svc);   //Transmit the ACK frame 
   clear(busy); 
   set(ACK); 
   set(go); 
  } 
  else 
  { 
   clear(ACK); 
   hold(aSIFSTime); 
   set(go); 
  } 
  stdone = state(done); 
 } 
 while (stdone == 2); 
} 
 
void CollRateEst(int k)  /*Estimates the collision rate per 
station */ 
{ 
 char procname[32]; 
 sprintf(procname, "CollRateEst %d", k); 
 create(procname); 
 int stdone; 
 int i; 
 do 
 { 
  for (i=0; i<ObsvSlots; i++) 
   hold(aSlotTime); 
  if (PktsSent[k]!= 0) 

166 



   CollRate[k] = (collisions[k]*1.0)/PktsSent[k]; 
  else 
   CollRate[k] = 0; 
  /*The equation below is based on page 3 of the AEDCF paper. 
alpha = 0.8 */ 
  AvgCollRate[k] = (0.2* CollRate[k]) + (0.8* AvgCollRate[k]); 
  record(AvgCollRate[k],prbtbl); 
  ResetCollArrays(); 
  stdone = state(done); 
 } 
 while (stdone == 2); 
} 
 

167 



 

 

 

 

 

 

APPENDIX H 

ADAPTIVE EDCF WITH VARYING PERSISTENCE 

 FACTOR CODE AND CWMAX CODE LISTING 
 

        



 

 

/* Code to simulate Adaptive EDCF (AEDCF) function with 
varying PF and CWmax */ 
/* All times below are in seconds */ 
 
#include "csim.h" 
#include <stdio.h> 
 
#define aCWmin       15      //Number of slots 
#define aCWmax       63      //Number of slots 
#define aCWmin1      31      //Number of slots 
#define aCWmax1     127      //Number of slots 
#define aCWmin2      63      //Number of slots 
#define aCWmax2    1023      //Number of slots 
#define aSlotTime   0.00002  //time in seconds. 20 microsecs 
#define aSIFSTime   0.00001  //time in seconds. 10 microsecs 
#define aPIFSTime   0.00004  //time in seconds. 40 microsecs 
#define aDIFSTime   0.00005  /*time in seconds. DIFS = SIFS + 
(2*aSlotTime) */ 
#define aAIFSTime   0.00005  //time in seconds. 50 microsecs 
#define aAIFSTime1  0.00007  //time in seconds. 70 microsecs 
#define aAIFSTime2  0.00009  //time in seconds. 90 microsecs 
#define aMPDUMaxLength 4095  /*MPDU in bits.  According to the 
standard 1 <= x <= 4095 */ 
#define dot11RetryLimit 7    /*Number of times a frame may be 
retransmitted */ 
#define dot11MSDULifeTime 0.06  /*Amount of time that a source 
0 frame can be alive */ 
#define dot11MSDULifeTime1 0.1  /*Amount of time that a source 
1 frame can be alive */ 
#define dot11MSDULifeTime2 0.2  /*Amount of time that a source 
2 frame can be alive */ 
#define MACHdr        272.0      //MAC Header Length 
#define PHYHdr        192.0      //PHY Header Length 
#define ACKLgth       112.0      //Length of ACK frame 
 
#define LinkSpeed    54000000.0   // 54 Mbps 
#define NARS  100000            //Number of arrivals 
#define STNS    30 
#define ObsvSlots 5000    /*Number of slots to observe b/4 
computing collision probability */ 
 
FACILITY s;   //Medium 
FACILITY queues[STNS]; 
 
TABLE tbl;   //To hold frame response times for source 0 
TABLE tbl1;   //To hold frame response times for source 1 
TABLE tbl2;   //To hold frame response times for source 2 
TABLE tbl3;   //To hold frame response times for all sources 
TABLE rtxtbl;  //Table showing number of retransmissions 

 169        



TABLE cwtbl;  //Table with contention window sizes 
TABLE drptbl;  //Table with number of dropped frames 
TABLE rtxtbl1;  //Table showing number of retransmissions 
TABLE cwtbl1;  //Table with contention window sizes 
TABLE drptbl1;  //Table with number of dropped frames 
TABLE rtxtbl2;  //Table showing number of retransmissions 
TABLE cwtbl2;  //Table with contention window sizes 
TABLE drptbl2;  //Table with number of dropped frames 
TABLE frmtbl;  //Table with frame sizes 
TABLE prbtbl;  /*Table with collision probabilities for the 
simulation */ 
 
QTABLE qtbl; 
QTABLE qtbl1; 
QTABLE qtbl2; 
 
EVENT done;   //Event that the simulation is complete 
EVENT ACK;    //Event that an ACK has been received. 
EVENT idle;   //Event that the medium is idle after aAIFSTime 
EVENT idle1;  //Event that the medium is idle after aAIFSTime1 
EVENT idle2;  //Event that the medium is idle after aAIFSTime2 
EVENT busy;   //Event that the medium is currently busy 
EVENT finxmission;  /*Event that a station has finished a 
transmission */ 
EVENT go;      //Event that a function can continue execution 
 
int cnt; 
int xmitting;  //Nbr of stations transmitting simultaneously 
int j; 
int collisions[STNS]; //holds number of collisions that occur 
in a cycle */ 
double PktsSent[STNS]; //Holds amount of data sent in a cycle 
double CollRate[STNS]; /*Holds instantaneous collision rate 
per station */ 
double AvgCollRate[STNS]; //Holds average collision rate per 
station 
int lstCW[STNS];  /*Holds last contention window size for each 
class */ 
int currCW[STNS]; /*Holds the current contention window size 
for each class */ 
int PFactor[STNS]; /*Holds the current persistence factor for 
each class */ 
double IATM;        //Frame inter-arrival times 
 
void init();   //Initializes structures used in the simulation 
void ResetCollArrays();  /*Resets the arrays used in computing 
collision rates */ 
void ResetArrays();  /*Resets the arrays that keep track of 
history */ 
float GenerateFrame();  //Generates frames 

170 



int ExpBackoff(int CW, int PF, int amaxCW); /*Exponential 
Back-off algorithm */ 
void ResetCW(int k, int aminCW); /*Resets the contention 
window using history */ 
void BackOffCtr(int w);  /*Counts down the number of slots in 
the backoff interval */ 
void BackOffCtr1(int w); /*Counts down the number of slots in 
the backoff interval */ 
void BackOffCtr2(int w); /*Counts down the number of slots in 
the backoff interval */ 
void ProcessFrame(FACILITY q[], double svc, TABLE tbl, TABLE 
cwtbl, TABLE rtxtbl, TABLE drptbl, int i); //Processes frames 
void ProcessFrame1(FACILITY q[], double svc, TABLE tbl, TABLE 
cwtbl, TABLE rtxtbl, TABLE drptbl, int i); //Processes frames 
void ProcessFrame2(FACILITY q[], double svc, TABLE tbl, TABLE 
cwtbl, TABLE rtxtbl, TABLE drptbl, int i); //Processes frames 
void cust(int i);  //Generates and processes the frame 
void source(int i);  //Simulates a frame source 
void MediumSensing(); //Medium Sensing function 
void MediumSensing1(); //Medium Sensing function 
void MediumSensing2(); //Medium Sensing function 
void ACKgenerator(); /*Generates ACK iff only one station is 
transmitting. */ 
void CollRateEst(int i); /*Estimates the collision rate per 
station */ 
 
void sim()                  //1st process - named sim 
{ 
 int stdone; 
 FILE *out; 
 char filename[16]; 
 
 sprintf(filename, "outcpaedcf%d.txt", STNS); 
 set_model_name("Simulation of AEDCF, w/ varying PF, CWmax"); 
 out = fopen(filename, "wt"); 
 for (IATM = 0.0500; IATM > 0.0095; IATM = IATM - 0.0020) 
 { 
  create("sim");             //required create statement 
 
  max_processes(100000000); 
  max_events(10000000); 
  init(); 
  ResetCollArrays(); 
  ResetArrays(); 
 
  reset_prob(clock); 
  cnt = NARS/8; 
  MediumSensing(); 
  MediumSensing1(); 
  MediumSensing2(); 
  ACKgenerator(); 

171 



  for (j=0; j<STNS; j++) 
   source(j); 
  wait(done); 
  clear(done); 
        clear(ACK); 
  clear(idle); 
  clear(idle1); 
  clear(idle2); 
  clear(busy); 
  clear(finxmission); 
  clear(go); 
  ResetCollArrays(); 
  xmitting = 0; 
  reset(); 
  ResetArrays(); 
  cnt = 3*NARS; 
  MediumSensing(); 
  MediumSensing1(); 
  MediumSensing2(); 
  ACKgenerator(); 
  for (j=0; j<STNS; j++) 
   source(j); 
  wait(done);                  //wait until all done 
  fprintf(out ,"%i\t%f\t%f\t%f\t%f\t%f\t%f\t%f\t%f\t%f\t%f\t 
                %f\t%f\t%f\t%f\t%f\t%f\t%f\t%f\t%f\t%f\t\n" 
              ,STNS,table_mean(frmtbl),IATM ,table_mean(tbl) 
              ,table_var(tbl),table_mean(rtxtbl) 
              ,table_mean(cwtbl),table_mean(drptbl) 
              ,table_mean(tbl1),table_var(tbl1) 
              ,table_mean(rtxtbl1),table_mean(cwtbl1) 
              ,table_mean(drptbl1),table_mean(tbl2) 
              ,table_var(tbl2),table_mean(rtxtbl2) 
              ,table_mean(cwtbl2),table_mean(drptbl2) 
              ,table_mean(tbl3),table_var(tbl3),util(s)); 
  fflush(out); 
  rerun(); 
 } 
 fclose(out); 
    report();                               //print report 
    mdlstat(); 
} 
 
void ResetCollArrays() 
{ 
 int i; 
 for (i=0; i<STNS; i++) 
 { 
  collisions[i]=0; 
  PktsSent[i]=0; 
  CollRate[i]=0; 
 } 

172 



} 
 
void ResetArrays() 
{ 
 int i; 
 for (i=0; i<STNS; i++) 
 { 
  AvgCollRate[i]=0; 
  lstCW[i]=0; 
  currCW[i]=0; 
  PFactor[i]=2; 
 } 
} 
 
void init() 
{ 
 s = facility("medium");               //initialize facility 
 facility_set(queues,"src_queues",STNS); 
 
 done = event("done");                 //initialize event 
 ACK = event("ACK"); 
 idle = event("idle"); 
 idle1 = event("idle1"); 
 idle2 = event("idle2"); 
 busy = event("busy"); 
 finxmission = event("finxmission"); 
 go = event("go"); 
 
 tbl = table("Frame response tms");    //initialize table 
 rtxtbl = table("Nbr of retransmissions"); 
 cwtbl = table("Size of contention window"); 
 drptbl= table("Nbr of dropped frames"); 
 tbl1 = table("Frame response tms - class 1"); 
 rtxtbl1 = table("Nbr of retransmissions - class 1"); 
 cwtbl1 = table("Size of contention window - class 1"); 
 drptbl1= table("Nbr of dropped frames - class 1"); 
 tbl2 = table("Frame response tms - class 2"); 
 rtxtbl2 = table("Nbr of retransmissions - class 2"); 
 cwtbl2 = table("Size of contention window - class 2"); 
 drptbl2= table("Nbr of dropped frames - class 2"); 
 tbl3 = table("System resp tms for all classes"); 
 frmtbl = table("Sizes of frames for all classes"); 
 prbtbl = table("Collision probabilities"); 
 
 qtbl = qhistogram("num from source 0", 10l);   /*initialize 
qhistogram */ 
 qtbl1 = qhistogram("num from source 1", 10l); 
 qtbl2 = qhistogram("num from source 2", 10l); 
 xmitting = 0; 
} 
 

173 



float GenerateFrame()    //Generates frames 
{ 
 int tmpframe = random(1,4095); /*Returns a random # between 1 
and 4095 */ 
 return((tmpframe*8.0) + MACHdr + PHYHdr); 
} 
 
int ExpBackoff(int CW, int PF, int amaxCW) //Exponential Back-
off algorithm 
{ 
 int tempCW= (PF*(CW+1)) - 1; 
 if (tempCW <= amaxCW) 
  return(tempCW); 
 else 
  return (CW); 
} 
 
void ResetCW(int k, int aminCW)  /*Resets the contention 
window using history */ 
{ 
 double MF;  //Multiplicative factor 
 if (k%4 == 0) //Indicates it is of class 0 
 { 
  MF = AvgCollRate[k]; 
  if (MF < 0.8) 
   MF = 0.8; 
 } 
 else if (k%2 == 1) //Indicates it is of class 1 
 { 
  MF = 3*AvgCollRate[k]; 
  if (MF < 0.8) 
   MF = 0.8; 
 } 
 else    //indicates it is of class 2 
 { 
  MF = 5*AvgCollRate[k]; 
  if (MF < 0.8) 
   MF = 0.8; 
 } 
 int tempCW = lstCW[k]*MF; 
 if (tempCW < aminCW) 
  currCW[k] = aminCW; 
 else 
  currCW[k] = tempCW; 
 if (AvgCollRate[k]> 0.0625) 
  PFactor[k] = 4; 
 else 
  PFactor[k] = 2; 
} 
void BackOffCtr(int w) 
{ 

174 



 int st; 
 int i; 
 for (i=w; i>0; i--) 
 { 
  hold(aSlotTime); 
  st = state(busy); //Sense medium 
  if (st==1)   //If the medium is busy 
   wait(idle); 
 } 
} 
 
void BackOffCtr1(int w) 
{ 
 int st; 
 int i; 
 for (i=w; i>0; i--) 
 { 
  hold(aSlotTime); 
  st = state(busy); //Sense medium 
  if (st==1)   //If the medium is busy 
   wait(idle1); 
 } 
} 
 
void BackOffCtr2(int w) 
{ 
 int st; 
 int i; 
 for (i=w; i>0; i--) 
 { 
  hold(aSlotTime); 
  st = state(busy); //Sense medium 
  if (st==1)   //If the medium is busy 
   wait(idle2); 
 } 
} 
 
void ProcessFrame(FACILITY q[], double svc, TABLE tbl, TABLE 
cwtbl, TABLE rtxtbl, TABLE drptbl, int k)     //Processes 
frames 
{ 
    double t1; 
    int    st; 
    int    retx=0;    /*keeps track of how many times a 
retransmission occurs */ 
    int    w;         //used to keep track of number of slots 
    int    CW;        /*used to keep track of contention 
window size*/ 
 
 ResetCW(k, aCWmin); 
 CW = currCW[k]; 

175 



 t1 = clock;      //time of request 
 reserve(q[k]);   /*Enter this frame in the queue for the 
source being processed */ 
  if ((clock - t1) < dot11MSDULifeTime) 
  { 
   wait(idle);   //Wait until the medium is idle for aAIFSTime 
   w = rand()%CW; 
   BackOffCtr(w); 
   xmitting++;    //Increment the nbr of stations transmitting 
   set(busy); 
   use(s,svc);    //reserve medium 
   clear(busy); 
   record(clock-t1, tbl);  /*record response time for this 
source */ 
   record(clock-t1, tbl3);     //record system response time 
   set(finxmission);  //Indicate that the transmission is done 
   wait(go);    /*Wait for the ACKgenerator function to check 
xmitting */ 
   xmitting--;   //Decrement the nbr of stations transmitting 
   clear(go);    /*Once go has been received continue 
execution */ 
   clear(finxmission); 
   PktsSent[k]++;   //Indicate one frame has been sent 
   lstCW[k] = CW; 
   st = state(ACK); 
   //As long as no ACK has been received. 
   while (st!=1 && retx<dot11RetryLimit && (clock - t1) < 
dot11MSDULifeTime) 
   { 
    if (AvgCollRate[k]< 0.03125) 
     CW = ExpBackoff(CW, PFactor[k], aCWmax); 
    else 
     CW = ExpBackoff(CW, PFactor[k], (2*(aCWmax+1) - 1)); 
    wait(idle); 
    w = rand()%CW; 
    BackOffCtr(w); 
    retx++; 
    xmitting++; 
    set(busy); 
    use(s,svc);    //reserve medium 
    clear(busy); 
    record(clock-t1, tbl); 
    record(clock-t1, tbl3); //record system response time 
    set(finxmission);  /*Indicate that the transmission is 
done */ 
    wait(go);    /*Wait for the ACKgenerator function to check 
xmitting */ 
    xmitting--; 
    clear(go);    /*Once go has been received continue 
execution */ 
    clear(finxmission); 

176 



    collisions[k]++; 
    PktsSent[k]++;   //Indicate one frame has been sent 
    lstCW[k] = CW; 
    st = state(ACK); 
   } 
   record(retx, rtxtbl); //record number of retransmissions 
   record(w, cwtbl);  //Record size of contention window 
   if (retx == dot11RetryLimit || ((clock - t1) >= 
dot11MSDULifeTime && st!=1)) 
    record(1.0, drptbl); //Record that frame was dropped 
   else 
   { 
    clear(ACK); 
    record(0.0, drptbl); //Record that frame wasn't dropped 
   } 
  } 
  else 
   record(1.0, drptbl); //Record that frame was dropped 
 release(q[k]); 
} 
 
void ProcessFrame1(FACILITY q[], double svc, TABLE tbl, TABLE 
cwtbl, TABLE rtxtbl, TABLE drptbl, int k)     /*Processes 
frames */ 
{ 
    double t1; 
    int    st; 
    int    retx=0;  //keeps track of nbr of  retransmissions.  
    int    w;       //used to keep track of number of slots 
    int    CW;  //used to keep track of contention window size 
 
 ResetCW(k, aCWmin1); 
 CW = currCW[k]; 
 t1 = clock;                     //time of request 
 reserve(q[k]);     /*Enter this frame in the queue for the 
source being processed */ 
  if ((clock - t1) < dot11MSDULifeTime1) 
  { 
   wait(idle1);  //Wait until the medium is idle for aAIFSTime 
   w = rand()%CW; 
   BackOffCtr1(w); 
   xmitting++; 
   set(busy); 
   use(s,svc);    //reserve medium 
   clear(busy); 
   record(clock-t1, tbl);  /*record response time for this 
source */ 
   record(clock-t1, tbl3);     //record system response time 
   set(finxmission);  //Indicate that the transmission is done 
   wait(go);    /*Wait for the ACKgenerator function to check 
xmitting */ 

177 



   xmitting--; 
   clear(go);    /*Once go has been received continue 
execution */ 
   clear(finxmission); 
   PktsSent[k]++;   //Indicate one frame has been sent 
   lstCW[k] = CW; 
   st = state(ACK); 
   //As long as no ACK has been received. 
   while (st!=1 && retx<dot11RetryLimit && (clock - t1) < 
dot11MSDULifeTime1) 
   { 
    if (AvgCollRate[k]< 0.03125) 
     CW = ExpBackoff(CW, PFactor[k], aCWmax1); 
    else 
     CW = ExpBackoff(CW, PFactor[k], (2*(aCWmax1+1) - 1)); 
    wait(idle1); 
    w = rand()%CW; 
    BackOffCtr1(w); 
    retx++; 
    xmitting++; 
    set(busy); 
    use(s,svc);    //reserve medium 
    clear(busy); 
    record(clock-t1, tbl); 
    record(clock-t1, tbl3); //record system response time 
    set(finxmission);  /*Indicate that the transmission is 
done */ 
    wait(go);    /*Wait for the ACKgenerator function to check 
xmitting */ 
    xmitting--; 
    clear(go);    /*Once go has been received continue 
execution */ 
    clear(finxmission); 
    collisions[k]++; 
    PktsSent[k]++;   //Indicate one frame has been sent 
    lstCW[k] = CW; 
    st = state(ACK); 
   } 
   record(retx, rtxtbl); //record number of retransmissions 
   record(w, cwtbl);  //Record size of contention window 
   if (retx == dot11RetryLimit || ((clock - t1) >= 
dot11MSDULifeTime1 && st!=1)) 
    record(1.0, drptbl); //Record that this frame was dropped 
   else 
   { 
    clear(ACK); 
    record(0.0, drptbl); //Record that frame wasn't dropped 
   } 
  } 
  else 
   record(1.0, drptbl); //Record that frame was dropped 

178 



 release(q[k]); 
} 
 
void ProcessFrame2(FACILITY q[], double svc, TABLE tbl, TABLE 
cwtbl, TABLE rtxtbl, TABLE drptbl, int k)     //Processes 
frames 
{ 
    double t1; 
    int    st; 
    int    retx=0;  //keeps track of nbr of retransmissions 
    int    w;       //used to keep track of number of slots 
    int    CW;      /*used to keep track of the size of the 
contention window */ 
 
 ResetCW(k, aCWmin2); 
 CW = currCW[k]; 
 t1 = clock;                     //time of request 
 reserve(q[k]);     /*Enter this frame in the queue for the 
source being processed */ 
  if ((clock - t1) < dot11MSDULifeTime2) 
  { 
   wait(idle2);  //Wait until the medium is idle for aAIFSTime 
   w = rand()%CW; 
   BackOffCtr2(w); 
   xmitting++; 
   set(busy); 
   use(s,svc);    //reserve medium 
   clear(busy); 
   record(clock-t1, tbl); 
   record(clock-t1, tbl3);     //record system response time 
   set(finxmission);  //Indicate that the transmission is done 
   wait(go);    /*Wait for the ACKgenerator function to check 
xmitting */ 
   xmitting--; 
   clear(go);    /*Once go has been received continue 
execution */ 
   clear(finxmission); 
   PktsSent[k]++;   //Indicate one frame has been sent 
   lstCW[k] = CW; 
   st = state(ACK); 
   //As long as no ACK has been received. 
   while (st!=1 && retx<dot11RetryLimit && (clock - t1) < 
dot11MSDULifeTime2) 
   { 
    if (AvgCollRate[k]< 0.03125) 
     CW = ExpBackoff(CW, PFactor[k], aCWmax2); 
    else 
     CW = ExpBackoff(CW, PFactor[k], (2*(aCWmax2+1) - 1)); 
    wait(idle2); 
    w = rand()%CW; 
    BackOffCtr2(w); 

179 



    retx++; 
    xmitting++; 
    set(busy); 
    use(s,svc);    //reserve medium 
    clear(busy); 
    record(clock-t1, tbl); 
    record(clock-t1, tbl3); //record system response time 
    set(finxmission);  /*Indicate that the transmission is 
done */ 
    wait(go);    /*Wait for the ACKgenerator function to check 
xmitting */ 
    xmitting--; 
    clear(go);    /*Once go has been received continue 
execution */ 
    clear(finxmission); 
    collisions[k]++; 
    PktsSent[k]++;   //Indicate one frame has been sent 
    lstCW[k] = CW; 
    st = state(ACK); 
   } 
   record(retx, rtxtbl); //record number of retransmissions 
   record(w, cwtbl);  //Record size of contention window 
   if (retx == dot11RetryLimit || ((clock - t1) >= 
dot11MSDULifeTime2 && st!=1)) 
    record(1.0, drptbl); //Record that frame was dropped 
   else 
   { 
    clear(ACK); 
    record(0.0, drptbl); //Record that frame wasn't dropped 
   } 
  } 
  else 
   record(1.0, drptbl); //Record that frame was dropped 
 release(q[k]); 
} 
 
void cust(int i)     //process customer 
{ 
 char procname[32]; 
 sprintf(procname, "cust %d", i); 
 create(procname);    //required create statement 
 float frameSize = GenerateFrame(); 
 record(frameSize, frmtbl); 
 double svc = frameSize/LinkSpeed; 
 if (i%4 == 0) 
 { 
  note_entry(qtbl);   //note arrival 
  ProcessFrame(queues, svc, tbl, cwtbl, rtxtbl, drptbl, i);
 //Processes frames 
  note_exit(qtbl); 
 } 

180 



 else if (i%2 == 1) 
 { 
  note_entry(qtbl1); 
  ProcessFrame1(queues, svc, tbl1, cwtbl1, rtxtbl1, drptbl1, 
i);    //Processes frames 
  note_exit(qtbl1); 
 } 
 else 
 { 
  note_entry(qtbl2); 
  ProcessFrame2(queues, svc, tbl2, cwtbl2, rtxtbl2, drptbl2, 
i); //Processes frames 
        note_exit(qtbl2);   //note departure 
 } 
    cnt--; 
    if(cnt == 0) 
        set(done);     //if last arrival, signal 
} 
 
void source(int i) 
{ 
 char procname[32]; 
 sprintf(procname, "source %d", i); 
 create(procname); 
 int stdone; 
 CollRateEst(i);    /*Start the collision rate estimator for 
this source*/ 
 do 
 { 
  hold(expntl(IATM));  /*Generate packets according to an 
exponential distribution */ 
        cust(i);    //initiate process cust 
  stdone = state(done); 
 } 
 while (stdone == 2); 
} 
 
void MediumSensing()    //Check state of medium 
{ 
  create("MediumSensing"); 
 int st;       //State of medium 
 int stdone; 
 do 
 { 
  st = state(busy); 
  if (st == 2) 
  { 
   hold(aAIFSTime);  //Wait for an AIFS interval 
   st = state(busy); 
   if (st==2) 

181 



    set(idle);   /*If medium is free for an AIFS interval set 
idle event */ 
   else 
    hold(aSlotTime); 
  } 
  else 
   hold(aSlotTime); 
  stdone = state(done); 
 } 
 while (stdone == 2); 
} 
 
void MediumSensing1()    //Check state of medium 
{ 
  create("MediumSensing1"); 
 int st;       //State of medium 
 int stdone; 
 do 
 { 
  st = state(busy); 
  if (st == 2) 
  { 
   hold(aAIFSTime1);  //Wait for an AIFS1 interval 
   st = state(busy); 
   if (st==2) 
    set(idle1);   /*If medium is free for an AIFS1 interval 
set idle event */ 
   else 
    hold(aSlotTime); 
  } 
  else 
   hold(aSlotTime); 
  stdone = state(done); 
 } 
 while (stdone == 2); 
} 
 
void MediumSensing2()    //Check state of medium 
{ 
  create("MediumSensing2"); 
 int st;       //State of medium 
 int stdone; 
 do 
 { 
  st = state(busy); 
  if (st == 2) 
  { 
   hold(aAIFSTime2);   st = state(busy); 
   if (st==2) 
    set(idle2); 
   else 

182 



    hold(aSlotTime); 
  } 
  else 
   hold(aSlotTime); 
  stdone = state(done); 
 } 
 while (stdone == 2); 
} 
 
void ACKgenerator()     /*Determines whether or not an ACK can 
be sent */ 
{ 
 create("ACKgenerator"); 
 set_priority(2); 
 int stdone; 
 double ACKsize = ACKLgth+ PHYHdr; 
 double svc = ACKsize/LinkSpeed; 
 record(ACKsize,frmtbl); 
 do 
 { 
  wait(finxmission); 
  if (xmitting==1 || xmitting==0)  /*Generate an ACK iff one 
station is transmitting */ 
  { 
   hold(aSIFSTime); 
   set(busy); 
   use(s, svc);   //Transmit the ACK frame 
   clear(busy); 
   set(ACK); 
   set(go); 
  } 
  else 
  { 
   clear(ACK); 
   hold(aSIFSTime); 
   set(go); 
  } 
  stdone = state(done); 
 } 
 while (stdone == 2); 
} 
 
void CollRateEst(int k)  /*Estimates the collision rate per 
station */ 
{ 
 char procname[32]; 
 sprintf(procname, "CollRateEst %d", k); 
 create(procname); 
 int stdone; 
 int i; 
 do 

183 



 { 
  for (i=0; i<ObsvSlots; i++) 
   hold(aSlotTime); 
  if (PktsSent[k]!= 0) 
   CollRate[k] = (collisions[k]*1.0)/PktsSent[k]; 
  else 
   CollRate[k] = 0; 
  /*The equation below is based on page 3 of the AEDCF paper. 
alpha = 0.8 */ 
  AvgCollRate[k] = (0.2* CollRate[k]) + (0.8* AvgCollRate[k]); 
  record(AvgCollRate[k],prbtbl); 
  ResetCollArrays(); 
  stdone = state(done); 
 } 
 while (stdone == 2); 
} 
 

184 



REFERENCES 
 

[1] IEEE 802.11 Std. 802.11, Part 11: Wireless LAN Medium Access Control 

(MAC) and Physical Layer (PHY) Specifications, IEEE, 1999. 

[2]  IEEE 802.11 Std. 802.11g, Part 11: Wireless LAN Medium Access Control 

(MAC) and Physical Layer (PHY) Specifications, Amendment 4: Further Higher 

Data Rate Extension in the 2.4 GHz Band, IEEE, 2003. 

[3] G. Berger-Sabbatel et al., “Fairness and its Impact on Delay in 802.11 

Networks,” Proc. Of Global Telecommunications Conference, 2004 

(GLOBECOM 2004), 2004, pp. 2697-2793. 

[4] G. Bianchi, “Performance analysis of the IEEE 802.11 Distributed 

Coordination Function,” IEEE Journal on Selected Areas in Communications, 

March 2000, pp. 535-547. 

[5] G. Bianchi and I. Tinnirello, “Kalman filer estimation of the number of 

competing terminals in an IEEE 802.11 network,” Proc. Of Twenty-Second 

Annual Joint Conference of the IEEE Computer and Communications Societies 

(INFOCOM 2003), 2003, pp. 844-852. 

[6] P. Ferré et al., “Throughput Analysis of IEEE 802.11 and IEEE 802.11e 

MAC,” Proc. Of Wireless Communications and Networking Conference, 2004, 

(WCNC 2004), 2004, pp. 783-788. 

185  



[7] P. Garg et al., “Using 802.11e MAC for QoS over Wireless,” Proc. 0f 2003 

IEEE International Conference on Communication (ICC 2003), 2003, pp. 537-

542. 

[8] A. Grilo et al., “A Scheduling Algorithm for QoS Support in 

IEEE802.11e Networks,” IEEE Wireless Communications, June 2003, pp. 

36-43. 

[9] A. Lindgren et al., “Evaluation of Quality of Service Schemes for IEEE 

802.11 Wireless LANs,” Proc. Of Local Computer Networks (LCN 2001), 

2001, pp. 348-351. 

[10] S. Mangold et al., “Analysis of IEEE 802.11e for QoS Support in 

Wireless LANs,” IEEE Wireless Communications, Dec. 2003, pp. 40-50. 

[11]  K. Medepalli and F.A. Tobagi, “Throughput Analysis of IEEE 802.11 

Wireless LANs using an Average Cycle Time Approach,” to be published 

in Proc. Of Global Telecommunications Conference, 2005 (GLOBECOM 2005),   

[12]  W. Pattara-Atikom et al., “Distributed Mechanisms for Quality of 

Service in Wireless LANs”, IEEE Wireless Communications Magazine, June 

2003, pp. 26-34. 

[13]  D. Pong and T. Moors, “Call Admission Control for IEEE 802.11 

Contention Access Mechanism,” Proc. Of Global Telecommunications 

Conference, 2003 (GLOBECOM 2003), 2003, pp. 174-178. 

186  



[14]  J.d.P. Pravón and S. Shankar N, “Impact of Frame Size, Number of 

Stations and Mobility on the Throughput Performance of IEEE 

802.11e,” Proc. Of Wireless Communications and Networking Conference, 2004, 

(WCNC 2004), 2004, pp. 789-795. 

[15]  J.W. Robinson and T.S. Randhawa, “Saturation Throughput Analysis of 

IEEE 802.11e Enhanced Distributed Coordination Function,” IEEE 

Journal on Selected Areas in Communications, June 2004, pp. 917-928. 

[16]  L. Romdhani et al., “Adaptive EDCF: enhanced service differentiation 

for IEEE 802.11 wireless ad-hoc networks,” Wireless Communications and 

Networking Conference, 2003, (WCNC 2003), pp. 1373-1378. 

[17]  M. Wentink et al., “HCF Ad Hoc Group Recommendation – Normative 

Text to EDCF Access Category,” Mar. 2002; 

http://grouper.ieee.org/groups/802/11/Documents/DocumentHolder/

2-241.zip 

[18]  Y. Xiao and J. Rosdahl, “Throughput and Delay Limits of IEEE 

802.11,” IEEE Communication Letters, Aug. 2002, pp. 355-357. 

[19]  Y. Xiao, “Saturation Performance Metrics of the IEEE 802.11 MAC,” 

Proc. Of 58th IEEE Vehicular Technology Conference (VTC 2003), 2003, pp. 

1453-1457. 

187  

http://grouper.ieee.org/groups/802/11/Documents/DocumentHolder/2-241.zip
http://grouper.ieee.org/groups/802/11/Documents/DocumentHolder/2-241.zip


[20]  Y. Xiao, “Performance Analysis of IEEE 802.11e EDCF under 

Saturation Condition,” Proc. 0f 2004 IEEE International Conference on 

Communication (ICC 2004), 2004, pp. 170-174. 

[21]  Y. Xiao, “IEEE 802.11e: QoS Provisioning at the MAC Layer,” IEEE 

Wireless Communications Magazine, June 2004, pp. 72-79. 

[22]  Y. Xiao et al., “Game theory models for IEEE 802.11 DCF in wireless 

ad hoc networks,” IEEE Radio Communications Magazine, Mar. 2005, pp. 

S22-S26. 

[23]  K. Xu et al., “Performance Analysis of Differentiated QoS supported by 

IEEE 802.11e Enhanced Distributed Coordination Function (EDCF) in 

WLAN,” Proc. Of Global Telecommunications Conference, 2003 (GLOBECOM 

2003), 2003, pp. 1048-1053. 

[24] S. Xu, “Advances in WLAN QoS for 802.11: an Overview,” 14th IEEE 

2003 International Symposium on Personal, Indoor and Mobile Radio 

Communication Proceedings, 2003, pp. 2297-2301. 

[25]   H. Zhu et al., “A survey of quality of service in IEEE 802.11 networks,” 

IEEE Wireless Communications Magazine, August 2004, pp. 6-14. 

 

188  



VITA 
 

       Daniel Tangyi Fokum was born on August 4, 1979 in Kulundji, Kwango, 

Zaire (present day Democratic Republic of Congo).  He was educated in local 

parochial schools in Cameroon, graduating from Sacred Heart College, Mankon 

in 1997.  He studied Mathematics at the University of Buea, Cameroon, for a year 

before coming to the United States in 1998 to study Computer Science at Park 

College in Parkville, Missouri.  He graduated from Park University magna cum 

laude in December 2000.  His degree was a Bachelor of Arts in Computer 

Science with a minor in Mathematics. 

       After working for a year at Truman Medical Centers’ in Kansas City, 

Missouri, Mr. Fokum began a master’s program in network architecture at the 

University of Missouri-Kansas City.  Upon completion of his degree 

requirements, Mr. Fokum plans to continue his education in computer science. 

189  


	ABSTRACT
	ILLUSTRATIONS
	TABLES
	ACKNOWLEDGMENTS
	INTRODUCTION
	OVERVIEW OF THE CONTENTION PERIOD ACCESS FUNCTIONS
	DCF
	DCF Operation

	EDCF
	EDCF Operation


	REVIEW OF PREVIOUS RESEARCH
	RESEARCH MOTIVATION
	RESEARCH RESULTS
	Research Goals
	DCF Simulation Approach
	Results of Basic DCF Simulation
	Results of Frame Dropping DCF Simulation

	EDCF Simulation Approach
	Results of Basic EDCF Simulation
	Results of EDCF Simulation with Random Frame Dropping
	Results of EDCF Simulation with Varying Retry Limits

	AEDCF Simulation Approach
	Results of Adaptive EDCF Simulation
	Results of Adaptive EDCF Simulation with Varying Persistence
	Results of Adaptive EDCF Simulation with Varying Persistence
	Impact of Changes



	CONCLUSION
	DCF CODE LISTING
	DCF WITH RANDOM FRAME DROPPING
	CODE LISTING
	EDCF CODE LISTING
	EDCF WITH RANDOM FRAME
	DROPPING CODE LISTING
	EDCF WITH DIFFERENT FRAME
	RETRY LIMITS CODE LISTING
	ADAPTIVE EDCF CODE LISTING
	ADAPTIVE EDCF WITH VARYING PERSISTENCE
	FACTOR CODE LISTING
	ADAPTIVE EDCF WITH VARYING PERSISTENCE
	FACTOR CODE AND CWMAX CODE LISTING
	REFERENCES
	VITA

