Specific Systems:

Broadband Powerline Communications Networks (PLCs) #16

Victor S. Frost
Dan F. Servey Distinguished Professor
Electrical Engineering and Computer Science
University of Kansas
2335 Irving Hill Dr.
Lawrence, Kansas 66045
Phone: (785) 864-4833 FAX:(785) 864-7789
e-mail: frost@eecs.ku.edu
http://www.ittc.ku.edu/

Outline

• What is a PLC?
• Topology
• Channel characteristics
• Noise characteristics
• A MAC protocol for PLC networks
 - Assumptions
 - Operation
• MAC protocol is an example of:
 - Earliest deadline first scheduling
 - Scheduling algorithm that accounts for retransmissions
What is a Broadband PLC Network

- Powerlines have been used for:
 - Low speed data transport for many years
 - Control
 - Telemetry
 - In home power wiring have been used for networking
 - Broadband PLC is an alternative for internet access-last mile

Broadband PLC topology

Modified from: Design and performance evaluation of an hybrid reservation polling MAC protocol for power-line communications

From: Distributed MAC protocols and priority oriented scheduling
for a PLC access network Sundaresan, S. Anand, S. Srikanth, y and C. N.
Broadband PLC System Architecture

- OM = outdoor master
- OR = outdoor repeater
- OAP = outdoor access point
- IA = Indoor adaptor
- IC = Indoor Controller

PLC Channel

- Time varying
- Frequency dependent
- EMC issues with amateur radio operators
- CENELEC (European Committee for Electrotechnical Standardization)
 - Europe
 - 3-148.5 kHz
 - 5 mW
 - 144 kb/s
- Broadband PLC: 1-30 Mhz
PLC noise environment

- **Colored background noise**
 - Source: Sum of low power noise sources
 - Timescale: minutes to hours
- **Narrowband noise**
 - Source: broadcast stations
 - Timescale: varies with time of day
- **Periodic impulsive noise asynchronous to the main frequency**
 - Source: Switching power supplies
 - Timescale: ms (repetition rate 50-200Hz)
- **Periodic impulsive noise synchronous to the main frequency**
 - Source: appliances
 - Timescale: ms (repetition rate 50-100Hz or 60Hz and 120Hz), duration 10-100us
- **Asynchronous impulsive noise**
 - Source: Switching transients in the power grid
 - Timescale: duration us-ms and level 50dB above background noise level
 - Major source of errors
Estimation of Channel Capacity for Broadband PLC Networks

- Based on last mile capacity analysis in: “Powerline Communications”, Klaus Dostert, Prentice Hall 2001
 - Channel characteristics
 - Noise characteristics

<table>
<thead>
<tr>
<th>Link Length</th>
<th>Best Case</th>
<th>Worst Case</th>
</tr>
</thead>
<tbody>
<tr>
<td>100-300m</td>
<td>250 Mb/s</td>
<td>14 Mb/s</td>
</tr>
<tr>
<td>Theoretical</td>
<td>100 Mb/s</td>
<td>5 Mb/s</td>
</tr>
</tbody>
</table>

A MAC protocol for Broadband PLC Networks

- Assumptions
 - Fast ARQ is better than FEC in impulsive noise environments like broadband PLC
 - FEC has a constant bandwidth penalty
 - Fast ARQ is only invoked when errors, here induced via impulsive noise.
 - Half duplex channel: same resources used for up and down stream communications
 - Time division
 - Frames
 - Slots
 - Minislots
A MAC protocol for Broadband PLC Networks

Types of Slots:
- Downlink
- Uplink
- Reservation

F=Framing
C_i=Command
-AU ID
-Acks

A MAC protocol for Broadband PLC Networks

- **DLW**
 - Link layer at AU send ACK on a slot by slot basis \(\rightarrow\) fast retransmission

- **UPL**
 - Supports one fixed length packet
 - AU's request slots
 - BS grants slots
 - Acks for UPL from AU_i are piggybacked in the control in next DLW even if slot not destine for AU_i

- **RSV**
 - AU has packet to send \(\rightarrow\) contending state
 - Reservation slots are subdivided into minislots
 - A random access protocol like ALOHA is used for contention
 - When BS receives a minislot for AU_i, a grant for AU_i is placed in a polling list
 - The command in the next DLW contains a reservation ack
A MAC protocol for Broadband PLC Networks

- A connection set-up is used to identify all AU’s that can access the channel
 - AU’s are given a connection ID
 - AU’s provide traffic/QoS parameters
 - Maximum tolerable delay (MD)
 - Data Rate expressed as interarrival time (IT), maybe dynamically updated for VBR traffic
 - For each AU the BS also tracks
 - The remaining lifetime head-of-line packet = MD - W; W is waiting time for HOL packet
 - Number of retransmission attempts

- AU states
 - Idle
 - Active
 - Contending

A MAC protocol for Broadband PLC Networks

- Active → AU is granted slots according to scheduling rules
- Transition from Active → Idle: AU notifies BS to stop sending grants
- Transition from Idle → Active: AU enters contending state
- Controlling the frequency of RSV slots
 - Too frequent → uses capacity
 - Not frequent enough → high delay
 - Proposed process
 - Issue RSV slot every T sec
 - If one collision of a minislot in RSV then send consecutive RSV slots subject to QoS constraint
A MAC protocol for Broadband PLC Networks

• The BS is designed to be an earliest deadline first scheduler
• Let $MD_{\text{max}} = \text{Max} \ MD \ of \ all \ AU's$
• Set up a polling register that controls the order of polling the AU's
• AU placed at position k in the polling register implies that the relevant packet must be transmitted on the channel in at most k slots, otherwise it expires
• Upon reservation the AU ID is placed a position $MD-W$ or below.

<table>
<thead>
<tr>
<th>$MD_{\text{max}} - 1$</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>k</th>
<th>ID for target AU transmission time</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

A MAC protocol for Broadband PLC Networks

• If no retransmissions then the scheduler issues grants for the AU in the lowest position in the polling register
• The AU in the bottom position of the polling register is always transmitted, it is that packets last opportunity.
• If retransmissions then the scheduler issues grants for the AU in the lowest position in the polling register and a retransmission counter
A MAC protocol for Broadband PLC Networks

• At the end of a transmission the BS learns
 - Transmission successful
 • If the AU is active the next grant is scheduled interarrival time (IT) slots later
 - Transmission successful
 • If the AU transitions from active to idle the AU is removed from polling register
 - Transmission unsuccessful
 • Leave in same position in polling register and increment the retransmission counter
 • Note that MAC/scheduled deals with retransmissions

• The polling register is shifted down each time slot.
• Note if packet in bottom of the polling register is corrupted then it is lost, that is a retransmission will exceed MD for that AU.
• Use of retransmission counter
 - the transmission grant is assigned to the station in the lowest register position, among the ones with lowest retransmission counter value
A MAC protocol for Broadband PLC Networks

• Example:
 - 3 AUs
 - Assume \(W_A = W_B = W_C = 0 \)
 - Minislot for A arrives first, MD = 5 so place in 5th position in polling register
 - Minislot for B arrives second, MD = 4 so place in 4th position in polling register
 - Minislot for C arrives last, MD = 4, 4th position in polling register is full, so place in 3rd position in polling register

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>MD</td>
<td>MD = 5</td>
<td>MD = 4</td>
<td>MD = 4</td>
</tr>
<tr>
<td>IT</td>
<td>IT = 3</td>
<td>IT = 3</td>
<td>IT = 4</td>
</tr>
</tbody>
</table>

RSV Slot

• AU_C is lowest in polling register so it is transmitted
• Assume this packet is corrupted
• Left in same position before shift down
• Increment retransmission counter shown by X
A MAC protocol for Broadband PLC Networks

- B granted next
 - Lowest in polling register with lowest retransmission count
- Assume B successful

A MAC protocol for Broadband PLC Networks

- Using $IT_g = 3$ MD $= 4$: a new reservation for B in placed in the 4th location
- Note A is next to be granted and assume it is corrupted
- Increment its retransmission counter
- So stays in polling register and after shift down is in the 2nd location
- New reservation for A is not placed in the polling register until the previous one is cleared out
A MAC protocol for Broadband PLC Networks

- C is given a grant next because it is in the bottom position of the polling register.
- Assume this is successful.
- So a new reservation for C is placed in the polling register because it has an MD = 4.

A MAC protocol for Broadband PLC Networks

- In time slot 5 a grant is given to AU B.
- Assume this is transmission is successful.
A MAC protocol for Broadband PLC Networks

- AU A is given a grant for slot 6
- Assume this is successful
- Now new reservation for AU A can be placed on the polling register; should go in position 2, but after shift C is there so it goes in position 1
A MAC protocol for Broadband PLC Networks

• Multiple classes of service
 - Allow more than one AU per position in the polling register
 • Low priority AU granted after all high priority AU
 • View as multiple polling registers; when the high priority polling register is empty the low priority polling register is used to make grants
 - Rearrange the polling register
 • High priority AU's are substituted for low priority AU's in the polling register

Performance Evaluation*

• Focus on Packet voice with on/off model
 • Ave on time = 1 sec
 • Ave off time = 1.3 sec
 • Durations ~ exponentially
 • Slot time 576 bits
 • payload
 • Command
 • Packet header
 • Guard time
 • Packet interarrival time = 16 ms
• Rates 720 Kb/s, 1.44 Mb/s and 2.88 Mb/s
• Noise
 • Gilbert model
 • Good/Bad states
 • Bad state models impulse noise
 • IMT mean time between noise bursts

A MAC protocol for Broadband PLC Networks

Conclusions

- **MAC protocol is an example of:**
 - Earliest deadline first scheduling
 - Scheduling algorithm that accounts for retransmissions
- **PLC access networks operate in a harsh environment**
- **Available capacity is not very high**
- **Requires MAC protocols to overcome impulsive noise**
- **Standards still evolving**
References
