

EECS 360
Homework #10

1. Section 5.2 Participation Activities

- 5.2.1: Lowpass and highpass magnitude spectral responses.
- 5.2.2: Bandpass and bandreject magnitude spectral responses.
- 5.2.3: RC circuit lowpass filter (capacitor output).
- 5.2.4: RC circuit highpass filter (resistor output).
- 5.2.6: Ratio to dB conversions.
- 5.2.7: dB to voltage ratio conversions.

2. Exercise 5.2.5

3. Exercise 5.2.6

4. Section 5.3 Participation Activities

- 5.3.1: Examples of bandpass filter responses and Q factor.
- 5.3.2: Designing a bandpass filter for resonant frequency MHz and factor .
- 5.3.5: RLC highpass filter.
- 5.3.7: First order lowpass filter transmission spectrum.

5. Challenge activity

- 5.3.1: Bandpass filters.

6. Section 5.4 Participation Activities

- 5.4.1: Brick-wall lowpass filter response to odd square-wave input.
- 5.4.3: Brick wall filter impulse responses.
- 5.4.4: Brick wall bandpass response to odd square wave.
- 5.4.5: Brick wall bandpass response to rectified sine wave

7. Exercise 5.4.1

8. Let $H(f) = \text{tri}(f/1000)$

- a. Find the first zero bandwidth.
- b. Find the 3dB bandwidth.
- c. Find the equivalent rectangular bandwidth

9. Let $x(t) = 10^4 \text{ sinc}^2(10^4 \pi t)$ is input to an ideal lowpass filter with a bandwidth of B kHz

- a. Find the smallest B such that the filter introduces no distortion.
- b. Find the % energy in x(t) in the frequency range $|f| < 5000\text{Hz}$?
- c. What are the barriers to building the filter described in part a)

10. Give $x(t)$ below with for $\tau = 0.33\text{ms}$ and $T_0 = 1.0\text{ms}$. Design (specify) a system (filter) to convert $x(t)$ to $y(t)$

$$= A \cos(2\pi f_a t + \phi) \text{ where } f_a = 2 \text{ kHz and } A \neq 0.$$

$$x(t) = \sum_{k=-\infty}^{\infty} \text{rect}\left(\frac{t - kT_0}{\tau}\right)$$

11. Given a pulse $x(t) = u(t)e^{-\frac{t}{0.01}}$

- a. Find the 6dB bandwidth (in rad/sec and Hz) of this signal.

b. The signal $x(t)$ is the input to a LPF with a bandwidth B (in rad/sec and Hz) to produce an output $y(t)$.
such that $y(t)$ contains 99% of the energy in $x(t)$.

Find E

12. The transfer function for the voltage across the resistor in a series R, L, C circuit is given

$$H(f) = \frac{j2\pi f RC}{1 + j2\pi f RC - LC(2\pi f)^2}$$

- a. Plot $20\log(|H(f)|)$ with $R=100 \text{ Ohm}$, $L=0.001 \text{ Henry}$, $C=0.000001 \text{ Farad}$.

- b. Find the resonant frequency.

- c. For $R=100 \text{ Ohm}$, $L=0.001 \text{ Henry}$, $C=0.000001 \text{ Farad}$, given $x(t) = \cos(2\pi 17375t)$ find A in

$$y(t) = A$$

$\cos(2\pi 17375t + \phi)$. What is the attenuation in dB relative to the resonant frequency.

d. Find the 3dB bandwidth of $H(f)$.

Hint: use Transfer Function for Series RLC circuit from the class web page.