

EECS 360
Homework #2

1. Section 2.5 Participation activities

- 2.5.1: Formation of unit step function.
- 2.5.2: Unit step function.
- 2.5.4: Ramp function.
- 2.5.5: Triangle waveform synthesized from ramps.
- 2.5.6: Rectangular (rect) function.
- 2.5.8: Impulse function.
- 2.5.9: Sampling property of the impulse function.
- 2.5.10: Time-scaling of impulse function sampling integrals.
- 2.5.11: Exponential function.
- 2.5.12: Exponential functions.

2. Challenge activity

- 2.5.1: Nonperiodic waveforms 3.

3. Exercise 2.5.3

4. Exercise 2.5.4

5. Exercise 2.5.12

6. Plot and compare these three signals. Explain their similarities and differences.

$$x_1(t) = 5\cos(2\pi 50t), x_2(t) = 5 \cos\left(2\pi 50\left(t - \frac{1}{300}\right)\right), x_3(t) = 5 \cos\left(2\pi 50t - \frac{\pi}{3}\right)$$

7. Let

$$x(t) = \sum_{i=-n}^n 4 \operatorname{tri}\left(\frac{t-i}{.25}\right)$$

- a. For $n=2$ plot $x(t)$
- b. Sketch $x(t)$ as $n \rightarrow \infty$, in this case is $x(t)$ periodic, if so what is the period.

8. Plot

$$x(t) = 1 + \frac{1}{2} \sum_{n=1}^5 \frac{4}{n\pi} \sin(2\pi nt) \text{ for } -3 < t < 3$$

9. A Binary Phase Keyed (BPSK) modulation is used to modulate binary information onto a radio frequency (RF) carrier. Given a set of information bits $b_i = \{-1, 1, -1, 1\}$. a. Plot $x(t)$ the modulated BPSK RF signal given as

$$x(t) = \sum_{n=1}^4 b_n \operatorname{rect}(t - n + 0.5) \cos(2\pi 12t)$$

- b. Repeat for $b_i = \{1, 0, 1, 0\}$ (This an example of modulation using amplitude shift keying-ASK).

10. Solve the following.

a. $\int_{-\infty}^{\infty} \delta(\tau) e^{-2\tau} d\tau$

b. $\int_{-\infty}^{\infty} \delta(\tau - 0.3) u(t) e^{-2\tau} d\tau$

c. $\int_{-\infty}^{\infty} \delta(\tau - .75) u(t) e^{-2\tau} d\tau$

d. $\int_{-\infty}^{\infty} \delta(\tau - t) u(t) e^{-2\tau} d\tau$