EECS 360 Discrete Fourier Transform

Use the FFT algorithm in Matlab to answer the given questions concerning the following discrete time signals:

x _a (n)	=	10 sin Bn	$0 \le n \le 255$ B = 0.049087
x _b (n)	=	10 sin Bn	$0 \le n \le 200$ B = 0.049087
x _c (n)	=	0	n=0
	=	$10(1 - \frac{ n-32 }{32})$	n = 1, 64
	=	0	n = 65, 127
x _d (n)	=	0	n = 0
	=	$10(1 - \frac{ n-32 }{32})$	n = 1, 64
	=	0	n = 65, 255
x _e (n)	=	0	n = 0
	=	$10(1 - \frac{ n - 16 }{16})$	n = 1, 33
	=	0	n = 34, 127
x _f (n)	=	0	n=0
. ,	=	10	n = 1, 49
	=	0	$n = 50, \dots 63$

- 1: Use the FFT program to calculate the FFT of $x_a(n)$, $x_b(n)$, $x_c(n)$, $x_d(n)$, $x_e(n)$, and $x_f(n)$ and plot the magnitude of the resulting FFTs.
- 2: Explain the difference between the FFT's of $x_a(n)$ and $x_b(n)$.
- 3: Explain the differences between the FFT's of $x_c(n)$ and $x_d(n)$.
- 4: Explain the differences between the FFT's of $x_c(n)$ and $x_e(n)$.

- 5: If the sampling rate is 10,000 samples/sec., how long is the time record of $x_c(n)$ in seconds, what is the frequency resolution of the FFT in Hz, what is the highest frequency present in the FFT in Hz? Re-lable your graph of the magnitude of the FFT for $x_c(n)$ in Hz in assuming a sampling rate of 10,000 samples/sec.
- 6: Form product of the FFT of $x_f(n)$ with itself, i.e., $Y(m)=FFT[x_f(n)]FFT[x_f(n)]$. Then take the inverse FFT of Y(m).
 - a) Use Matlab conv function to find the discrete convolution of $x_f(n)$ with $x_f(n)$.
 - b) Comment on the relationship between the result of the inverse FFT of Y(m) and the discrete convolution of $x_f(n)$ with $x_f(n)$ found using conv.
 - c) Pad $x_f(n)$ with N_{pad} zeros to create $x_{fpad}(n)$ and then form product of the FFT of padded version of $x_{fpad}(n)$ with itself, i.e., $Y_{pad}(m)$ =FFT[$x_{fpad}(n)$] FFT[$x_{fpad}(n)$]. Then take the inverse FFT of $Y_{pad}(m)$. Use a value of N_{pad} such that the inverse FFT of Y(m) is the same the discrete convolution of $x_f(n)$ with $x_f(n)$ found using conv, i.e., the same as the result for part a).