1. a) Convolve \(x(t) = \left(\frac{1}{T_0} \right) \text{rect} \left(\frac{t}{T_0} \right) \) with \(h(t) = u(t) \frac{1}{RC} e^{-\frac{t}{RC}} \) to find the output \(y(t) \), for

a) \(T_0 = 0.05 \) and \(RC = 0.3 \) Plot the result.

b) \(T_0 = 1 \) and \(RC = 0.3 \) Plot the result.

Confirm your answer with Approximate Impulse Response @
http://www.ittc.ku.edu/~frost/EECS_360/Mathematica-360/Impulse_Examples.cdf

Also look at Convolution with a Rectangular Pulse @
http://demonstrations.wolfram.com/ConvolutionWithARectangularPulse/

c) Is the result from part a) close to \(h(t) \), why?

d) Convolve \(x(t) = \left(\frac{1}{T_0} \right) \text{rect} \left(\frac{t}{T_0} \right) \) with \(h(t) = u(t-1) \frac{1}{RC} e^{-\frac{t}{RC}} \) for \(T_0 = 1 \) and \(RC = 0.3 \) Plot the result.

e) What is the relationship between the results in parts b) and d) above?

2. Convolve \(h[n] = .1(u[n] - u[n-10]) \) with \(x[n] = u[n] - u[n-10] \) Plot the result.

Confirm your answers with Discrete-Time Convolution. @
http://demonstrations.wolfram.com/DiscreteTimeConvolution/

3. Let \(x[n] = 0, 1, 2 \) for \(n = 1, 2, 1 \) and \(h[n] = 3, 2, 1 \) for \(n = 0, 1, 2 \). Convolve \(x(n) \) with \(h(n) \) and plot the result. Confirm your answer with Convolution Sum. @
http://demonstrations.wolfram.com/ConvolutionSum/

4. The system input, \(x(t) = \frac{u(t-1)\exp(-(-t-.5))}{\exp(-.5)} + \text{rect}(t-.5) \) and impulse response, \(h(t) = \text{rect}(t-.5) \), are given below. Find the system output. Hint: Use linearity and time invariance.