

EECS 360
Spring 2021

Use the FFT algorithm in Matlab to answer the given questions concerning the following discrete time signals:

$$X_a[n] = 10 \sin Bn \quad 0 \leq n \leq 255$$

$$B = 0.049087$$

$$x_b[n] = 10 \sin Bn \quad 0 \leq n \leq 200$$

$$B = 0.049087$$

$$x_c[n] = 0 \quad n=0$$

$$= 10 \left(1 - \frac{|n - 32|}{32}\right) \quad n = 1, \dots, 64$$

$$= 0 \quad n = 65, \dots, 127$$

$$x_d[n] = 0 \quad n = 0$$

$$= 10 \left(1 - \frac{|n - 32|}{32}\right) \quad n = 1, \dots, 64$$

$$= 0 \quad n = 65, \dots, 255$$

$$x_e[n] = 0 \quad n = 0$$

$$= 10 \left(1 - \frac{|n - 16|}{16}\right) \quad n = 1, \dots, 33$$

$$= 0 \quad n = 34, \dots, 127$$

$$x_f[n] = 0 \quad n=0$$

$$= 10 \quad n = 1, \dots, 49$$

$$= 0 \quad n = 50, \dots, 63$$

1. Use the FFT program to calculate the FFT of $x_a[n]$, $x_b[n]$, $x_c[n]$, $x_d[n]$, $x_e[n]$, and $x_f[n]$ and plot the magnitude of the resulting FFTs.
2. Explain the difference between the FFT's of $x_a[n]$ and $x_b[n]$.
3. Explain the differences between the FFT's of $x_c[n]$ and $x_d[n]$.
4. Explain the differences between the FFT's of $x_c[n]$ and $x_e[n]$.

5. If the sampling rate is 10,000 samples/sec., how long is the time record of $x_c[n]$ in seconds, what is the frequency resolution of the FFT in Hz, what is the highest frequency present in the FFT in Hz? Re-label your graph of the magnitude of the FFT for $x_c(n)$ in Hz in assuming a sampling rate of 10,000 samples/sec.
6. Let $h[n] = \{5, 4, 3, 2, 1\}$ and $x[n] = \{1, 2, 3, 4, 3, 2, 1\}$, use the z-transform to find the linear convolution of $h[n]$ and $x[n]$. Check your result by using FFT algorithm.
7. Use the Discrete Fourier Transform of a Two-Tone Signal at <http://demonstrations.wolfram.com/DiscreteFourierTransformOfATwoToneSignal/> to answer the following questions. Set the noise amplitude to 0.1 for this problem. Note the frequency of the fix tone is 770 Hz and the sample rate is 8000 samples/sec. Use the dBV scale.
 - a) For $N = 512$ what is the record length and Δf .
 - b) Set the sine frequency = 1000 and the sine amplitude = 0.5. Describe and explain the change as N changes from 512 to 1024 to 4096.
 - c) Set the sine frequency = 1000 and the sine amplitude = 0.5 and $N=512$. Describe and explain the change as the window is changed from rect to Hanning to Blackman.