EECS 562 Homework #2

- 1. A message signal is $m(t)=15\cos(2\pi t)$ volts and the carrier wave is $c(t) = 40\cos(100\pi t)$ volts, the percent modulation (sometimes called modulation index or modulation factor) is 80%
 - a. Plot the RF signal in the time domain to scale.
 - b. What is the total RF transmitted power assume a 100 ohm load.
 - c. What is the RF bandwidth?
 - d. Plot the power spectral density of the RF signal signal.
- 2. A message signal is $m(t) = \frac{t}{1+t^2}$ for the following AM percent modulations plot the RF signal
 - a. 40%
 - b. 90%
 - c. 120%
- 3. 3.21
- 4. 3.25
- 5. 3.28
- 6. Let s(t) be an DSB-LC (AM) signal. The unmodulated transmitted power is 6 KW. The message signal is $m(t) = cos(2\pi f_m t)$. The modulated transmitted power is 8 KW.
 - a. Find the corresponding A_c and k_a in equation 3.2.
 - b. What is the modulation factor?
 - c. What is the power efficiency?
 - d. What is the RF bandwidth?
- 7. Given a baseband bandwidth of 90kHz for signals x₁(t), x₂(t), x₃(t).... x_N(t), i.e., B_i=90kHz for i=1...N. These signals are modulated using DSB-SC modulation. The modulated DSB-SC signals are frequency division multiplexed using a shared assigned RF spectrum of 20MHz.
 - a. Assuming no guard band find N.
 - b. Assuming a 20 KHz guard band find N.
- 8. An DSB-LC RF signal is plotted below. What is the modulation index (modulation factor)?

