EECS 562 Homework #6

- 1. A 4 kHz message signal is transmitted using DSB-SC with a carrier frequency $f_c=200$ kHz over a nosey channel with noise power spectral density of $\eta/2=2x10^{-17}$ W/Hz. The received signal power is -75dBm. What is the post-detection S/N?
- 2. An AM receiver uses an envelope detector. The transmitter operates at total transmit power of 1KW with a 50% modulation index. The information signal is $m(t) = sin(2000\pi t)$. The path loss between the transmitter and AM receiver is 90 dB. The noise power spectral density of η =-113dB/Hz. The RF bandwidth is 10kHz. What is the post-detection S/N?
- 3. Consider an FM transmitter with a transmitter power of 200KW. The path loss is 90dB, η =-113dB_w. The baseband bandwidth is 53 kHz. The modulation index is β =5.
 - a) Find the $(S/N)_{bb}$?
 - b) Find the $(S/N)_0$?
- 4. Consider an FM transmitter with a transmitter power of 200KW. The path loss is 90dB,
 - $\eta = -113$ dBW. The baseband bandwidth is 53 kHz.
 - a. Find β such that the (S/N)_o=35dB?
 - b. What is B_{RF} ?
- 5. Comparison of system resources (power and B_{RF}) for different modulation schemes. In this case:
 - Path loss = 90dB
 - η = -113dBw
 - B_X = baseband bandwidth = 53 kHz
 - a. To meet a required output signal-to-noise ratio, $(S/N)_0=44.5$ dB fill out the table below:

Modulation	Transmit power = P_T	Transmit power = P_T	B _{RF}	B_{RF}/B_x
	(dB_W)	(Watts)	(kHz)	BW
				Expansion
				Factor
DSB-SC				
SSC				
AM with $m = 0.5$				
AM with $m = 1.0$				
FM with β =1.67				
FM with $\beta=5$				
FM with β =7.5				

b. For the FM cases above discuss the trade-off between B_{RF} and P_{T} .

c. Comment of the feasibility of using each modulation format given the required transmit power.