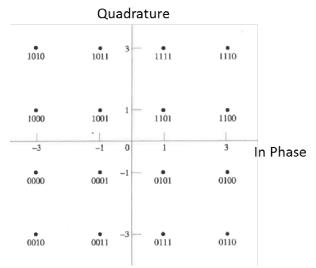
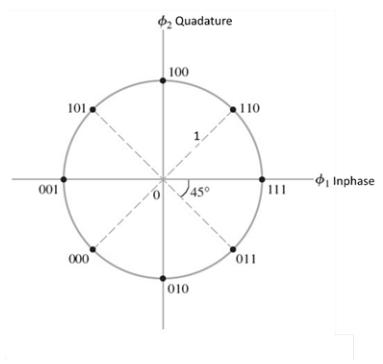
EECS 562

Homework 5

1. Let z_i be a complex symbol for i=1...4


$$ln[\cdot]:= z1 = 3 + j * 3; z2 = 3 - j * 3; z3 = -3 + j * 3; z4 = -3 - j * 3;$$

In a stream of bits to be transmitted each pair of bits (2 bits) is mapped into one complex symbol, here,

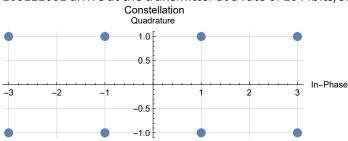

- $(0,0) \longrightarrow z_1$
- $(0,1) \longrightarrow z_2$,
- $(1,0) \longrightarrow z_3$
- $(1,1) \longrightarrow z_4.$

The stream of information bits is thus mapped into a sequence of complex symbols. The modulated RF signal $y_i(t) = \text{Re}[z_i e^{-j2\pi f_c t}]$ transmitted one symbol time. Here a complex symbol is transmitted every symbol time of T_s =1 ms. The modulated RF signal $y_i(t)$ is processed by a quadrature receiver.

- a. Find $y_2(t) = \text{Re}[z_2 * e^{-j2\pi f_c t}]$
- b. What is the transmission bit rate? [Hint: the units of bit rate is bits/sec.]
- c. For a bit sequence = $\{1,1,0,0,0,0,1,0,0,1\}$ list the transmitted complex symbols.
- d. For a bit sequence = $\{1,1,0,0,0,0,1,0,0,1\}$ plot the RF signal, assume a convenient f_c ; note $f_c > \frac{10}{T_c}$.
 - e. Does the RF signal have a constant envelope?
- f. Let $g(t) = \text{Re}[z_1 e^{-j2\pi f_c t}])\cos(2\pi f_c t)$. Find x(t) where $x(t) = h_{\text{ILPF}}(t) * g(t)$ (where * means convolution), that is, g(t) is input to a ILPF with bandwidth $\frac{1}{T_c}$.
- **2.** What is the transmitted (RF) signal for each QPSK symbol with a bit time = T_b =5 μ s and f_c =10MHz and the energy per symbol E_s = 3x10⁻⁶.
- **3.** Draw a QPSK receiver using a LPF followed by a sampler and a QPSK receiver using an integrate-and-dump in the in-phase and quadrature channels respectively. Explain why these provide the same functionality.
- **4.** A signal space diagram (constellation) is given below:

- a. For this constellation what is M in M-QAM?
- b. If the T_s = symbol time = 1ms what is the bit rate?
- c. What is the minimum RF bandwidth?
- d. With raised cosine pulse shaping with α =0.75 what is the required RF bandwidth?
- e. For detection what is the required integration time.
- f. What is the RF signal for the symbol 0101, let f_c =10MHz?
- g. Does the RF signal have a constant envelope?
- h. A QAM coherent detector uses and integrate and dump in the in-phase and quadrature channels respectively at the end of an integration time the I channel sample is -3.1 and Q channel sample is +0.9 what are the output bits?
- i. A QAM coherent detector uses and integrate and dump in the in-phase and quadrature channels respectively at the end of an integration time the I channel sample is 3.1 and Q channel sample is 0.9 what are the output bits?
- 5. The signal space diagram (constellation) for a digital RF signal is given below. The symbol time is 0.1 ms and the carrier frequency = f_c = 10MHz.

- a. What is the transmitted bit rate?
- b. With raised cosine pulse shaping with α =0.5 what is the required RF bandwidth?
 - c. What is the transmitted RF signal for the symbol 000?
 - d. What is the Energy/symbol?
 - e. What is the Energy/bit?
 - f. Does the RF signal have a constant envelope?
 - g. What is the received symbol if the recovered complex signal is z=1.1+j0.05?
 - h. A synchronous (or coherent) detector is required in this case. TRUE or FALSE.


6. Using

Digital Modulation: Quadrature Phase-Shift Keying (QPSK) Signal Constellation and Eye Diagrams Explain the impact in terms of the eye diagram, transmission bandwidth, and signal quality of the following parameter changes:

- a. Changing the raised cosine roll-off factor from .1 to 0.9.
- b. Changing the I/Q phase error from 0 to 25⁰.
- c. Explain what happened when you click on the trajectory.
- 7. What is the advantage of a constant envelope RF signal?
- 8. Fill out the table below assuming a bit rate of 1 Mb/s. Define the spectral efficiency as $\eta_{\text{eff}} = (\text{bits/sec})/(\text{RF bandwidth Hz})$

Modulation	B _{RF} (MHz)	η_{eff}	B _{RF} (MHz)	η_{eff}	B _{RF} (MHz)	η_{eff}
	with $\alpha = 0$	with $\alpha = 0$	with α = 0.5	with α = 0.5	with $\alpha = 1$	with $\alpha = 1$
ASK						
BPSK						
QPSK						
8 – PSK						
16 – QAM						
64 – QAM						
256 – QAM						
1024 – QAM						
4096 – QAM						

9. A digital RF system uses the constellation shown below. Given a sequence of information bits 100111001 arrive at the transmitter at a rate of 10 Mbits/sec.

- a. What is the symbol rate?
- b. Is the energy/symbol the same for all symbols?
- c. Define a mapping of bits to symbols for these information bits information bits 100111001 and plot the RF signal, assume a convenient f_c
- d. Specify the integration time (in μ s) QAM coherent detector used in the integrate-and-dump in the
- e. Does the RF signal have a constant envelope?