

Error Detection

Block Codes											
Define a Parity Check Matrix H											
$H = [P^{t}I_{r}] =$	$\lceil p_{11} \rceil$				\mathbf{p}_{k1}	1	0	0	0	0	0
	Ι.					0	1	0	0	0	0
	ļ .					0	0	1	0	0	0
	.					0	0	0	1	0	0
						0	0	0	0	1	0
	p_{1r}				$p_{\rm kr}$	0	0	0	0	0	1
Error-Detection 15											

	Example	of Han	nming I	Distances			
<u>d</u>			<u>c</u>				
d1=00			c1=00	00			
d2=01			c2=01	01			
d3=10			c3=10	10			
d4=11			c4=11	11			
<u>r</u>	<u>d1</u>	<u>d2</u>		<u>d3</u>	<u>d4</u>		
0000	0	2		2	4		
0001	1	1		2	3		
0010	1	3		1	3		
0011	2	2		2	2		
0100	1	1		2	3		
0101	2	0		4	2		
0110	2	2		2	2		
0111	3	2		3	1		
1000	1	2		1	3		
1001	2	2	i	2	2		
1010	2	4		0	2		
1011	3	3	i	1	1		
1100	2	2	Ì	2	2		
1101	3	1		2	1		
1110	3	3		1	1		
1111	4	2		2	0		
						Error-Detection	19

Binary Cyclic Codes

- Advantages:

 - Simple and efficient coding/decoding structure
- Cyclic codes restrict the form of the G matrix
- The cyclic nature of these codes indicates that there is a underlying pattern.

```
Error-Detection 21
```


Binary Cyclic Codes:

Construction of G from g(x)

- 1) Use g(x) to form the kth row of G.
- 2) Use kth row to form (k-1) row by a shift left, or xg(x).
- 3) If (k-1) row in not in standard form then add kth row to shifted row, i.e., (k-1) row becomes xg(x) + g(x).
- 4) Continue to form rows from the row below.
- 5) If the (k-j) row not in standard form the add g(x) to the shifted row.

 $_{\rm Error-Detection} \ 23$

```
Example
g(x) = x^3 \oplus 0x^2 \oplus x \oplus 1
n = 7 \quad k = 4 \quad r = 3
Step 1: k^{th} of G \rightarrow \begin{bmatrix} 0 & 0 & 1 & 0 & 1 & 1 \end{bmatrix}
Step 2: k - 1 row of G \rightarrow \begin{bmatrix} 0 & 0 & 1 & 0 & 1 & 1 \end{bmatrix}
                                                                             0
Form ok .
Step 3: k - 2 row of G \rightarrow \begin{bmatrix} 0 & 1 & 0 & 1 & 1 & 0 & 0 \end{bmatrix}
Form not ok. \begin{bmatrix} 0 & 1 & 0 & 1 & 1 & 0 & 0 \end{bmatrix}
                       + \begin{bmatrix} 0 & 0 & 0 & 1 & 0 & 1 & 1 \end{bmatrix}
                            \begin{bmatrix} 0 & 1 & 0 & 0 & 1 & 1 & 1 \end{bmatrix}
Form ok .
Step 4: k - 3 \text{ row of } G \rightarrow \begin{bmatrix} 1 & 0 & 0 & 1 \end{bmatrix}
                                                                 1 1 0
Form not ok. \begin{bmatrix} 1 & 0 & 0 & 1 & 1 & 0 \end{bmatrix}
                      + \begin{bmatrix} 0 & 0 & 0 & 1 & 0 & 1 & 1 \end{bmatrix}
                            [1 0 0 0 1 0 1]
Form ok .
                          Done
      \begin{bmatrix} 1 & 0 & 0 & 0 & 1 & 0 & 1 \end{bmatrix}
      0 1 0 0 1 1 1
G = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 1 & 1 & 0 \end{bmatrix}
       0 0 0 1 0 1 1
                                                                                                   _{\text{Error-Detection}} \quad 24
```


Binary Cyclic Codes:Standard generator polynomials							
$CRC - 16 \rightarrow g(x) = x^{16} + x^{15} + x^2 + 1$							
$CRC - CCITT \to g(x) = x^{16} + x^{12} + x^5 + 1$							
$CRC - 12 \rightarrow g(x) = x^{12} + x^{11} + x^3 + x^2 + x + 1$							
$AAL3/4 \rightarrow g(x) = x^{10} + x^9 + x5 + x4 + x + 1$							
$AAL5 \to x^{32} + x^{26} + x^{22} + x^{16} + x^{11} + x^{10} + x^{$							
$x^{8} + x^{7} + x^{4} + x^{2} + x + 1$	Error-Detection	26					

