Figure 3.1

Problem 5.1

Calculate the mass necessary to balance the beam shown.

\[
\text{Mass} = 400 \text{ kg}
\]

\[
\begin{align*}
4.00 \text{ m} & \quad 8.00 \text{ m} \\
\end{align*}
\]

Theory

For an object in static equilibrium, \(\sum M = 0 \)

Where \(M \) is the moment produced by each force about the pivot \(Q \).

Assumption

The mass of the beam is negligible.

Solution

Summing moments about \(Q \), CCW positive (let \(g = \text{accel. of gravity} \))

\[
\sum M = (\text{mass}) g (4.00 \text{ m}) - (40.0 \text{ kg} g)(8.00 \text{ m}) = 0
\]

\[
\text{Step-by-step solution}
\]

\[
\text{Mass} = \frac{(40.0 \text{ kg})(8.00 \text{ m})}{4.00 \text{ m}} = 80.0 \text{ kg}
\]

Problem 5.4

Solve the following equation for \(s \):

\[s^2 + 5s + 6 = 0 \]

Theory

Apply quadratic formula.

\[
s = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}
\]

Where \(as^2 + bs + c = 0 \)

Solution

\[
\begin{align*}
\text{s} & = \frac{-5 \pm \sqrt{5^2 - 4(1)(6)}}{2(1)} \\
& = \frac{-5 \pm \sqrt{25 - 24}}{2} \\
& = \frac{-5 \pm 1}{2} \\
& = -3, -2
\end{align*}
\]

In this example, no assumptions or diagram is needed
