EECS 562

Signals and Systems

Quiz

Spring 2017

Instructions

1) Closed Book
2) Closed Notes
3) Be sure and clearly mark your final answer.
4) Where indicated provide justification for your answers. Correct answers with no justification will receive partial/no credit.
5) If you feel that a problem is unclear, contradictory, incomplete, or ambiguous, clearly state the assumptions you used to solve the problem.
1. Let $z_1 = 2 - j2$
 a. 15 pts What is $\text{Re}[z_1]$

\[
\text{Re}[z_1] = 2
\]

b. 10 pts What is $\text{Re}[z_1 e^{j2\pi 100t}]$

\[
z_1 e^{j2\pi 100t} = (2 - j2)(\cos(2\pi 100t) + j \sin(2\pi 100t)) = 2(\cos(2\pi 100t) + j \sin(2\pi 100t)) + j (\text{Re}[z_1 e^{j2\pi 100t}])
\]

\[
\text{Re}[z_1 e^{j2\pi 100t}] = 2
\]
2. A linear time invariant system has a frequency transfer function \(H(f) \) given below

Frequency Transfer Function

\[
H(f) = \begin{cases}
2.0 & \text{if } -1.5 < f < -1.0 \\
1.0 & \text{if } -1.0 < f < -0.5 \\
0.5 & \text{if } 0.5 < f < 1.0 \\
2.0 & \text{if } 1.0 < f < 1.5
\end{cases}
\]

20 pts The input to this is system is \(x(t) = \cos(500\pi t) \). The system output signal \(y(t) \) is:

i. \(y(t) = \cos(1500\pi t) \)

ii. \(y(t) = \cos(500\pi t) \)

\[\boxed{\text{iii. } y(t) = 2\cos(500\pi t) }\]

iv. or none of the above

Clearly circle the correct answer.
3. A linear time invariant system has a frequency transfer function $H(f)$ given as $H(f) = 2e^{-j2\pi(0.25)t}$.

a. 15 pts Find the impulse response $h(t)$ for this linear time invariant system

$$h(t) = 2\delta(t - 0.25)$$

<table>
<thead>
<tr>
<th>$\delta(t)$</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\delta(t - t_0)$</td>
<td>$\delta(f)$</td>
</tr>
<tr>
<td>$\exp(j2\pi f t_0)$</td>
<td>$\exp(-j2\pi f t_0)$</td>
</tr>
<tr>
<td>$\exp(j2\pi f t)$</td>
<td>$\delta(f - f_0)$</td>
</tr>
<tr>
<td>$\cos(2\pi f t)$</td>
<td>$\frac{1}{2}{\delta(f - f_0) + \delta(f + f_0)}$</td>
</tr>
<tr>
<td>$\sin(2\pi f t)$</td>
<td>$\frac{1}{2j}{\delta(f - f_0) - \delta(f + f_0)}$</td>
</tr>
</tbody>
</table>

b. 10 pts Is this linear time invariant system distortion-less? That is, is there distortion-less transmission of an input signal $x(t)$ through the filter, $H(f)$?

TRUE or FALSE - Clearly circle the correct answer

$$\left| H(f) \right| = \text{constant} \quad \left\{ \begin{array}{c} \text{Distortion less} \\ \angle H(f) = \text{linear (constant delay)} \end{array} \right.$$
4. Given a signal \(x(t) = \cos(2\pi 2000t) + 0.5\cos(2\pi 4000t) \)

a. 15 pts The bandwidth of \(x(t) \) is

i. 2 kHz

\(\underline{\text{ii. 4 kHz}} \)

iii. 6 kHz

iv. or none of the above

\textbf{Clearly circle the correct answer.}

b. 10 pts Using the grid below plot the double sided amplitude spectrum of \(x(t) \).

![Amplitude Spectrum Grid](image-url)