Network traffic

- Request for resources
 - Rate of requests = Arrival rate = \(\lambda \)
 - Average resource hold time = \(T_h \)
 - Common Assumptions
 - Time between arrivals ~ exponentially
 - Holding time ~ exponentially

- Load
 - \(\lambda \) = packet/sec or calls/sec or files/sec...
 - \(T_h \) = average holding time sec/call
 - Service rate \(\mu = 1/T_h \)
 - Load = \(\lambda * T_h \) Erlangs = \(\lambda / \mu \)
Network traffic

Packet Voice
- Constraint: limit on end-to-end delay
- Packetization time (ms/packet)
- Role of the Jitter buffer
 - Compensate for random network delays
 - Jitter buffer size in bytes (or bits) or ms
 - Too small: lose packets
 - Too large: increase delay

VoIP Rate calculation

Data
- Burstyness = (Peak rate)/(Average rate)
- Large Burstyness leads to effective statistical multiplexing.
Performance Analysis

- **Given**
 - Traffic
 - QoS

- **Design system**
 - For M/M/1 → Find C
 - For M/M/1/N → Find C and System size=N
 - For M/M/N/N → Find Number of Servers

- **Assumptions**
 - Service time ~ Exponentially distributed
 - Interarrival time ~ Exponentially distributed

M/M/1

Average Number in System =

\[
E[K] = \frac{\rho}{1 - \rho}
\]

Variance of Number in System =

\[
\text{Var}[K] = \frac{\rho}{(1 - \rho)^2}
\]

\[
E[D] = \frac{1}{\mu(1 - \rho)} = \frac{E[L]}{C} = E[TH] = \frac{1}{(1 - \rho)} = \frac{1}{\mu - \lambda}
\]

← Given on Test
M/M/1/K and M/M//N/N

- **M/M/1/K**

 $P_{\text{Blocking}} = P[K = S] = \frac{(1 - \rho)^S}{1 - \rho^{S+1}}$

 - Given on Test

 - Full Table Given on Test

- **M/M/N/N** → **Erlang B**
 - Table Given on Test

MAC

- Scaling & trade-offs WRT: rate (b/s), number of users, and size (km)
- Deterministic (Polling)
 - Operation (why called deterministic)
 - Calculate effective rate & efficiency

$$a = \frac{r'}{L} \quad \text{where} \quad r' = \text{Ring Latency}$$

$$C'$$

As $a \uparrow$, $S_{\text{Max}} \downarrow$
MAC

Random Access
- Collision process
 - Time vulnerable to collision
 - Detecting Collisions
- Time
 - Unslotted
 - Slotted
- Role of backoff process

MAC (Random Access-continued)

- Types (all can be slotted/unslotted)
 - ALOHA (for unslotted $S_{max} = 18\%$, for slotted $S_{max} = 36\%$)
 - CSMA
 - p-persistent (1-persistent)
 - Non-persistent
 - CSMA/CD
 \[
 a = \frac{r}{L} \quad \text{where} \quad r = \text{End-to-End Propagation Time}
 \]
 \[
 \text{As} \quad a \uparrow \quad S_{Max} \downarrow \text{ and as} \quad a \rightarrow 1, \quad S_{Max} \rightarrow ALOHA
 \]
- Leads to specification of Min/Max Packet size
MAC

- Collision Free Protocols
- Random Access and Reservation Systems
 - In upstream send requests to transmit
 - Use part of frame (contention slots) to send requests
 - Use random access to share contention slots
 - Receive grants in the downstream
 - No contention in downstream
 - If no grant in downstream then assume collision for the request, backoff and resend request in upstream

MAC- Ethernet

- IEEE 802.3
 - Evolution
 - Bus
 - Hub
 - Switch
 - 10 Mb/s → 100 Gb/s
 - Role of CSMA/CD
Network Elements

- Repeater
- Bridge
- Switch
- Router
 - Layer 2 Switch
 - Layer 3 Switch
 - Layer 4 Switch
 - Layer “Any” Switch

MAC- Wireless Networks

- Issues
 - Noise
 - Signal Fading
 - Hidden terminal
- RTS/CTS
MAC- Cable Networks

- DOCSIS
- Access protocol
- CM, Headend, CMTS

DLC

- Goal → point-to-point error free link
- Functions
 - Framing → Flags & bit stuffing
 - Error recovery
 - Flow control
DLC

- Sliding window flow control
 - n bits/SN in packet header
 - Max window $\Rightarrow N = 2^n - 1$
 - $N=1 \Rightarrow$ Stop and Wait
 - When to retransmit?
 - Timeout
 - RNR (NACK)
 - What to retransmit?
 - SN
 - Go-back-N
 - Selective Repeat

DLC

- Piggybacking
- Frame structure
 - Components of the packet overhead
- HDLC
DLC

- Performance
 \[\eta = \frac{R_{\text{ef}}}{R} \]
 \[R_{\text{ef}} = \frac{\# \text{bits}}{\text{Time to tx \# bits}} \]

* Understand assumptions behind these equations

- Stop&Wait*
 \[\eta_{\text{Stop\&Wait}} = \frac{1}{1 + \frac{2\tau R}{n_f}} \]

- Sliding window*
 \[\eta_{\text{SlidingWindow}} = \begin{cases}
 1 & \text{if } N \geq \frac{2\tau R}{n_f} + 1 \\
 \frac{N}{1 + \frac{2\tau R}{n_f}} & \text{if } N < \frac{2\tau R}{n_f} + 1
\end{cases} \]

Small Window Case

\[N_{\text{RTT}} = \# \text{Frames in RTT} \]

\[= \frac{1}{1 + N_{\text{RTT}}} \]

DLC

- Open Loop Control
 - DE bit
 - Methods
 - CIR, B_c, B_e
 - Token bucket
 - Average rate
 - Maximum burst size
Transport Layer

- Port & sockets
- UDP
- TCP
 - Error free end-to-end communications
 - Connection oriented
 - Header checksum → covers data and header
 - SN in Bytes

Transport Layer - TCP continued

- Session setup/teardown
- Estimate RTT → set time out
- Window management for flow control
- Adaptive window for congestion control
 - Action on loss (timeout or duplicate ACKS)
 - Phases
 - Slow start
 - Congestion avoidance
 - Threshold
- RED
MPLS

- Internet mechanism to support VC for aggregate flows
- Language of MPLS
 - Label
 - FEC
 - LDP
 - LSR
 - LSP
- Enables
 - Traffic Engineering
 - QoS for FEC
- GMPLS

At the conclusion of this class the students are expected to:

- Understand the basics of network protocols, including,
 - MAC
 - Data link control,
 - Transport protocols
- Understand the nature of network traffic
- Understand the tradeoffs involved in network design in a variety of environments - LAN and WAN, diverse link rates, and varied error and delay conditions
- Perform simple analytic performance and design trade-off studies
- Be fluent in the language of communication networks, i.e., understand the meaning of networking terms and abbreviations