Network Design Problem

- Goal
 - Given
 - QoS metric, e.g.,
 - Average delay
 - Loss probability
 - Characterization of the traffic, e.g.,
 - Average interarrival time (arrival rate)
 - Average holding time (message length)
 - Design the system
 - Three systems will be studied:
 - Circuit switch: Determine the # lines
 → System 1 \(\rightarrow\) M/M/S/S \((M/M/S/S / \infty)\)
 - Ideal router output port: Determine link capacity
 → System 2 \(\rightarrow\) M/M/1 \((M/M/1/\infty/\infty)\)
 - Real router output port: Determine link capacity and buffer size
 → System 3 \(\rightarrow\) M/M/1/N \((M/M/1/N / \infty)\)
Network Performance Evaluation

- Solution methodologies:
 - Mathematical analysis
 - Model this type of process as a Queueing System → good for initial design
 - Simulation techniques → good for more detailed analysis

Network Performance Evaluation: Elements of a Queueing System
Network Performance Evaluation: Elements of a Queueing System

- Number in Servers
- Number in Queue
- Delay
- Number in system

Network Performance Evaluation: Specific cases for theoretical analysis

- Assumptions:
 - Interarrival times are exponentially distributed
 - Service times are exponentially distributed
 - Holding time
 - Packet length
 - Types of systems
 - One server (Stat Mux)
 - Infinite memory
 - Finite memory
 - S servers and a system size of S (Circuit Switch)
Network Performance Evaluation: Approach

- Analysis of a pure birth process to characterize arrival processes
- Extension to general birth/death processes to model arrivals and departures
- Specialization to the specific cases to find:
 - Probability of system occupancy,
 - Average buffer size,
 - Delay,
 - Blocking probability

Goal: Design and analyze statistical multiplexers and circuit switching systems

Network Performance Evaluation: Analysis of a Pure Birth Process

Arrivals and no departures

λ λ λ
0 → 1 → 2 → ... → K

λ

Only Births (Arrivals) Allowed

K = System State (number in system)
-number of arrivals for 0 to t sec
-number in system at time t

Goal: Find Prob [k arrivals in a t sec interval]
Network Performance Evaluation:
Analysis of a Pure Birth Process

- The number represents the *State* of the system. In networks this is usually the number in the buffer plus the number in service. *The system includes the server.*
- The time to clock the message bits onto the transmission facility is the service time. The server is the model for the transmission facility.
- Goal: Find Prob \([k \text{ arrivals in a } t \text{ sec interval}]\)
Network Performance Evaluation:

Analysis of a Pure Birth Process: Assumptions

- \(\text{Prob}[1 \text{ arrivals in } \Delta t \text{ sec }] = \lambda \Delta t \)
- \(\text{Prob}[0 \text{ arrivals in } \Delta t \text{ sec }] = 1 - \lambda \Delta t \)
- Number of arrivals in non-overlapping intervals of times are statistically independent random variables, i.e.,
 \[
 \text{Prob}[N \text{ arrivals in } t, t+T \text{ AND } M \text{ arrivals in } t+T, t+T+\tau] = \text{Prob}[N \text{ arrivals in } t, t+T][M \text{ arrivals in } t+T, t+T+\tau]
 \]

Network Performance Evaluation:

How to get to state \(k \) at \(t + \Delta t \)?

State

\(k \)

\(k-1 \)

\(t \)

\(t + \Delta t \)

time
Network Performance Evaluation: Analysis

- Define probability of k in the system at time t

 $= \text{Prob}[k, t]$

- Probability of k in the system at time $t + \Delta t$

 $= \text{Prob}[k, t + \Delta t] = \text{Prob}[(k \text{ in the system at time } t \text{ and } 0 \text{ arrivals in } \Delta t) \text{ or (}k-1 \text{ in the system at time } t \text{ and } 1 \text{ arrival in } \Delta t)] = (1 - \lambda \Delta t) \text{Prob}[k, t] + \lambda \Delta t \text{Prob}[k-1, t]$

Rearranging terms

\[
\frac{(\text{Prob}[k, t+ \Delta t] - \text{Prob}[k, t])}{\Delta t} + \lambda \text{Prob}[k, t] = \lambda \text{Prob}[k-1, t]
\]

- Letting $\Delta t \rightarrow 0$ results in the following differential equation:

\[
\frac{\text{dProb} \ [k, t]}{\text{dt}} + \lambda \text{Prob} \ [k, t] = \lambda \text{Prob} \ [k - 1, t]
\]
Network Performance Evaluation: Analysis

- For $k = 0$ the solution is:
 - $\text{Prob}[0,t] = e^{-\lambda t}$
- For $k = 1$ the solution is:
 - $\text{Prob}[1,t] = \lambda t e^{-\lambda t}$
- For $k = 2$ the solution is:
 - $\text{Prob}[2,t] = \frac{(\lambda t)^2 e^{-\lambda t}}{2}$

In general the solution is a Poisson probability mass function of the form:

$$\text{Prob} [k, t] = \frac{(\lambda t)^k e^{-\lambda t}}{k!}$$
Network Performance Evaluation: Analysis

- A Possion pmf of this from has the following moments:

\[E[k] = \lambda t \]

\[Var[k] = \lambda t \]

Poisson Arrival Process
The number of arrivals in any \(T \) second interval follows a Poisson probability mass function.

\[
\text{Prob}[t<T_a<t+\Delta t] = \text{Prob}[0 \text{ arrivals in } t \text{ sec and } 1 \text{ arrival in } \Delta t]
\]

\[
\text{Prob}[t<T_a<t+\Delta t] = \text{Prob}[k=0,t]\text{Prob}[k=1, \Delta t]
\]

\[
\text{Prob}[t<T_a<t+\Delta t] = \left(e^{-\lambda t}\right)\lambda \Delta t e^{-\lambda \Delta t}
\]

Network Performance Evaluation: Interarrival Time Analysis

Arrival \(t_a \) Arrival \(T_a = \) interarrival time \(\lambda \Delta \)

\[
\text{Prob}[t<T_a<t+\Delta t] = \text{Prob}[0 \text{ arrivals in } t \text{ sec and } 1 \text{ arrival in } \Delta t]
\]

\[
\text{Prob}[t<T_a<t+\Delta t] = \text{Prob}[k=0,t]\text{Prob}[k=1, \Delta t]
\]

\[
\text{Prob}[t<T_a<t+\Delta t] = \left(e^{-\lambda t}\right)\lambda \Delta t e^{-\lambda \Delta t}
\]
Network Performance Evaluation:
Interarrival Time Analysis

Let $\Delta t \rightarrow 0$ results in the following

$$\text{Prob} \left[t < T_a < t + dt \right] = f_{T_a}(t)dt = \lambda e^{-\lambda t} dt$$

so

$$f_{T_a}(t) = \lambda e^{-\lambda t} \text{ for } t > 0 \quad f_{T_a}(t) = 0 \text{ for } t < 0$$

MAIN RESULT:
The interarrival time for a Poisson arrival process follows an exponential probability density function.

$$E[T_a] = \frac{1}{\lambda} \quad Var[T_a] = \frac{1}{\lambda^2}$$
Network Performance Evaluation: Birth/Death Process Analysis

Now allow arrivals and departures. The Model for the Birth/Death Process

Note that the arrival and service rates are now state dependent.
Network Performance Evaluation: Birth/Death Process Analysis

- The departure process is Poisson--
- \(\text{Prob}[1 \text{ departure in } \Delta t \text{ sec when the system is in state } k] = \mu_k \Delta t \)
- \(\text{Prob}[0 \text{ departure in } \Delta t \text{ sec when the system is in state } k] = 1 - \mu_k \Delta t \)
- Number of departures in non-overlapping intervals of times are statistically independent random variables
- Probability[arrival AND departure in \(\Delta t \)] = 0

Poisson service process implies an exponential probability density function for the message length
Network Performance Evaluation: Birth/Death Process Analysis

To solve for the state probabilities:
Follow the procedure used for the pure birth process and use the transitions shown.

Specific queueing systems are modeled by
- Setting state dependent arrival rates, λ_k
- Setting the state dependent service rates, μ_k
- Solving for the steady state probabilities

For details see: Queueing Systems, Volume 1: Theory by Leonard Kleinrock, Wiley, 1975
(or any queueing theory book)
Network Performance Evaluation:
Queueing System Notation (Kendall's notation)

- A / b / m / K / L
- A = type of arrival process
- b = type of service process
- m = number of servers
- K = maximum number of elements allowed in the system = system size
- L = population size (if L missing then ∞)

Special cases: A / b / m / K / L

- A = M => the arrival process is Poisson and the interarrival times are independent, identically distributed exponential random variables. (M = Markov)
- b = M => the service process is Poisson and the interdeparture times are independent, identically distributed exponential random variables.
- A or b = G => times are independent, identically distributed general random variables.
- A or b = D => times are deterministic, i.e., fixed times

Examples:
- M/M/1/∞/∞ (Ideal router output port)
- M/M/1/N/∞ (Real-finite-buffer router output port)
- M/M/S/S/∞ (Circuit Switch)

In Homework will do M/D/1 for VoIP analysis
Network Performance Evaluation: M/M/1

- No limitation on buffer size means that the arrival rate is independent of state or $\lambda_k = \lambda$
- Only one server means that the service rate is independent of state or $\mu_k = \mu$

Network Performance Evaluation: M/M/1

Solving for the state occupancy probabilities

\[P[k] = \rho^k (1 - \rho) \]

where

\[\rho = \frac{\lambda}{\mu} = \frac{\lambda T_x}{\mu} = \text{load} = \text{traffic intensity} \]

where

\[T_x = \text{Average message length in sec} = \frac{L}{C} \]

where

\[L = \text{Average message length in bits} \]
\[C = \text{Link capacity in b/s} \]

Note \(\rho \) is the traffic intensity and \(\rho < 1 \).

Note \(\rho = \frac{\lambda L}{C} = \frac{r_m}{C} \)
Network Performance Evaluation: M/M/1

If the load is greater than 1 then the system is not stable and the buffer occupancy grows without bound. The expected number in the system is

\[E[K] = \frac{\rho}{1 - \rho} \]

and the variance is

\[\text{Var}[K] = \frac{\rho}{(1 - \rho)^2} \]

Load = 0.5 \quad E[K] = 1
Network Performance Evaluation: M/M/1

Load = 0.95 E[K] = 19 Final simulated value = 12.05
Network Performance Evaluation: M/M/1/N

- Only one server means that the service rate is independent of state or $\mu_k = \mu$
- The limitation on system size means that the arrival rate is dependent of

$\lambda_k = \lambda$ for $k < N$
$\lambda_k = 0$ for $k \geq N$

Arrivals to a full system are blocked so there can be no arrivals to a full system.

Solving for the state occupancy probabilities

$P[k] = \frac{(1 - \rho)\rho^k}{1 - \rho^{N+1}} \text{ for } k \leq N$

$P[k] = 0 \text{ for } k > N$
Network Performance Evaluation: M/M/1/N

- The Quality of Service (QoS) metric in this case is the probability of blocking.
- For a M/M/1/N queue the blocking probability is given by

\[
P_B = \frac{(1 - \rho) \rho^N}{1 - \rho^{N+1}}
\]

Design Problem: Given \(P_B \) and \(\rho \) find \(N \)
(recommend constructing a spread sheet)

Network Performance Evaluation: M/M/1/N

Average Holding Time = 0.95
Arrival rate = 1
(load = 0.95) \(\rightarrow \) Theory \(P_B = 0.23 \)
Simulated \(P_B = 0.219 \)
Network Performance Evaluation: M/M/S/N

The limitation on system size means that the arrival rate is dependent of state or

\[\lambda_k = \lambda \text{ for } k < N \]
\[\lambda_k = 0 \text{ for } k \geq N \]

Arrivals to a full system are blocked so there can be no arrivals to a full system.

Network Performance Evaluation: M/M/S/N

Multiple servers means that

\[\mu_k = k\mu \text{ for } k \leq S \]
\[\mu_k = S\mu \text{ for } k > S \]
Network Performance Evaluation:
M/M/S/N

This model is difficult to solve in general. The case of special interest is $S=N$. This case models a circuit switch system with N transmission facilities. A call arriving to the system with all transmission facilities busy is blocked.

Call Arrivals

1

No Buffer

N

Network Performance Evaluation:
Erlang B formula

Solving for the state occupancy probabilities

$P[k] = \frac{\rho^k}{k!} \sum_{n=0}^{N} \frac{\rho^n}{n!} \quad k=0...N$

and

$P_B = P[k = N] = \frac{\rho^N}{N!} \sum_{n=0}^{N} \frac{\rho^n}{n!}$

Relationship among P_B, N, and ρ found using provided table or web Erlang B calculator.
Network Performance Evaluation:

M/M/S/N

Holding time=3min, Arrival rate=0.833 calls/min N = 4

Load = 3*0.833= 2.5 Erlangs

⇒ Theory $P_B = 0.15$
 (From Erlang B table)

Simulated $P_B = 0.198$

Network Performance Evaluation:

Example

- Design of a building phone system. The design goal is to minimize the number of lines needed between the building and the phone company. The blocking QoS is specified to be 5%.

- A building has four floors, on each floor is a separate department. Each department has 22 phones, each busy 10% of the time during the busy hour.
Network Performance Evaluation: Example-Case A

- Acquire one telephone switch for each floor.
- 2.2 Erlangs/floor & B=5% gives:
- 5 lines/floor or 20 lines for the building.

Network Performance Evaluation: Example-Case B

- Acquire one telephone switch for the building.
- 88 phones @ .1 Erlang/phone = 8.8 Erlangs
- 8.8 Erlangs & B=5% gives:
- 13 lines for the building
- Select Case B
Network Performance Evaluation: Delay Analysis for M/M/1

- Average delay = average transmission time + queueing time

- Queueing time =

 (average number of messages in system ahead) *
 (average time to serve each message)

\[
\text{Average number ahead} = \frac{\rho}{1 - \rho} \tag{1}
\]

\[
\text{Average time/mess age} = \frac{1}{\mu} = \frac{\overline{L}}{C} = \overline{T}_X \tag{2}
\]

\[
E[T] = \text{Average delay} = \frac{1}{\mu} + \frac{1}{\mu} \left(\frac{\rho}{1 - \rho} \right) \tag{3}
\]

\[
E[T] = \frac{1}{\mu(1 - \rho)} = \frac{\overline{T}_X}{(1 - \rho)} = \frac{1}{\mu - \lambda} \tag{4}
\]
Network Performance Evaluation: Example

- Which is better?
Network Performance Evaluation: Example

- Assume you have 10 PC’s each with a 100 kb/s line to a server.
- Assume 1000 bits/packet
- Assume 50 packets/sec/PC
- Service time = 1000bits/100,000 b/s = 10ms
- Traffic intensity = 50*1000/100,000 = 0.5
- Average delay = 10ms/.5 = 20ms

Network Performance Evaluation: Example-continued

- Assume the 10 PC’s are connected to a statistical multiplexer at 1 Mb/s
- Traffic intensity = 0.5
- Service time = 1 ms
- Average delay = 2 ms
- The show that traffic aggregation helps
Do the Design Problem:
Find the link capacity between the stat mux and the server such that the delay is 20 ms.

\[E[T] = \frac{1}{\mu - \lambda} = 0.02 = \frac{1}{50} \]

\[\mu - \lambda = 50 \]

\[\mu = 550 \]

\[C = (1000\text{bits}/\text{packet})(550\text{packets/sec}) = 550\text{kb/s} \]
Network Performance Evaluation: Example

- Assume each customer and printer is connected using Ethernet, i.e. at 1 Gb/s
- How fast does the link between Youngberg and the computer center have to be to guarantee all the customers can use the 1 Gb/s.
- $C = 55 \text{ Gb/s}$
- Too expensive

Network Performance Evaluation: Design Example

- Customer performance requirements:
 - Delay $< 100 \text{ ms}$ (use $M/M/1$ analysis to find C)
 - Loss $< 10\%$ (use $M/M/1/N$ analysis to find N)
- Assume customer traffic:
 - Average packet length = 9000 bytes/packet
 - 55 sources
 - Packets are generated at a rate of 2 per second/source
- Using basic queueing theory
 - $C = 8.6 \text{ Mb/s}$
 - Average system size > 7 packets
Network Simulation

- Define network simulation
- Discuss attributes and application of simulation
- Present implementation of simulation systems
- Discuss analysis of simulation results
- Discuss selection of simulation tools
- Provide an overview of ExtendSim8. On the start up Extendsim window there is:
 - A button for tutorials and a video showing how to build models
 - A link to “ExtendSim for DESS Textbook”, a tutorial on the tool.
 - Other useful tools.
 - There is a link to getting the whole user manual on the class web page. (It is long DO NOT PRINT the whole pdf file.)

A Definition of Communication
Network Simulation

Communication network simulation involves generating *pseudo-random sequences* of message lengths and interarrival times (or other input processes, e.g. time varying link quality) then using these sequences to *exercise an algorithmic description of the network operation*.
Attributes of Simulation

- **Simulation Is a Very Flexible Evaluation Tool**
 - General Network Characteristics (Sources, Topology, Protocols, Etc.)
 - Minute Detail
- **Simulation Models Can Be Expensive to Construct**
 - Human Effort
- **Simulation Models Can Be Expensive to Run**
 - Computer Effort
- **Statistical Analysis of the Results Can Be Difficult**
 - Requires Careful Interpretation
- **Difficult to Gain Insight Into System Behavior**
 - Simulate Only a Set of Specific Scenarios

When to Use Simulation

- Whenever Mathematical **Analysis Is Difficult or Impossible**
 - For Studying Transient Behavior of Networks
 - For Systems With Adaptive Routing
 - For Systems With Adaptive Flow Control
 - For Systems With Blocking (Finite Buffers)
 - For Systems With General Message Interarrival Statistics
- For **Validating Analytic Models and Approximations**
 - How Accurate Is the Model?
 - Do Approximations Distort the Results?
- For **Experimentation Without Disturbing** an Operational System
 - Test Possible Modifications and Adjustments
Modeling Elements for Communication Networks

- Traffic and Input Processes
 - Message Arrival Process
 - Often Interarrival Times
 - Message Lengths
 - Other Message Attributes
 - Service Class
 - Error models

- Algorithmic Descriptions of Network Processing
 - Protocols
 - Links and Queues
 - Routing

Sample Realization of an Input Process

<table>
<thead>
<tr>
<th>Message number</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interarrival time between i+1 and i message (seconds)</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>4</td>
<td>2</td>
<td>5</td>
<td>1</td>
<td>4</td>
<td>2</td>
<td>--</td>
</tr>
<tr>
<td>Length of i^th message (seconds)</td>
<td>1</td>
<td>3</td>
<td>6</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>4</td>
<td>2</td>
<td>5</td>
<td>1</td>
<td>1</td>
<td>3</td>
</tr>
</tbody>
</table>

Arrival Events & Lengths
Time Step Approach to Network Simulation

- Approaches to Discrete Event Simulation
 - Time Step Approach (Fixed Increment Time Advance)
 - Event-Scheduling Approach
- Fixed Increment Time Advance
 - Choice of Increment Important
 - Too Large: Multiple Events Happen In Single Step
 - Too Small: Wasted Processing Time
 - Update System States at End of Each Fixed Time Interval

Event Scheduling Approach to Network Simulation

- Variable Time Advance
 - Advance Time To Next Occurring Event
- Update System State Only When Events Occur
 - For Example, Arrivals or Departures
- Event Calendar
 - Events: Instantaneous Occurrences That Change the State of the System
 - An Event is Described by
 - The Time the Event is to Occur
 - The Activity to Take Place at the Event Time
 - The Calendar is a Time-Ordered List of Events
Event Scheduling Approach: Simplified Flow Control

An Executive (or Mainline) Controls the Selection of Next Event

- Use Event List to determine next event to process
- Advance simulation clock to event time
- Update system state using event routines
- Update event list using event routines

Event Scheduling for Simple Statistical Multiplexer

Arrival
- Use random number generator to obtain next arrival time
- Schedule next arrival
- Assign a message length using a random number generator
- Change State of transmission facility to busy
- Schedule End of transmission at time + message length

Departure (End of Transmission)
- Yes: buffer empties
 - Change status of transmitter facility to idle
 - Return
- No: Read & remove from file the attributes of next message to send
 - Schedule End of Transmission
 - Return

Network Performance...
Verification and Validation of Simulation Models

- Model
 - Mathematical (Algorithmic) Description of Behaviour of “Real Thing”

- Verification
 - Determining Whether the Simulation Model Performs As Intended
 - In Programming Terminology, “Debugging”
 - Example: Is M/M/1 Model Producing Exponential Message Lengths?

- Validation
 - Determining Whether the Simulation Model Itself Is an “Accurate” Representation of the Communication Network Under Study (the “Real Thing”)
 - Example: Is the Assumption of Exponential Message Lengths Accurate?

Verification Methods

- Modular Development and Verification
 - Break Large System Into Smaller Components
 - Verify Component-by-Component

- Structured Walk-Through
 - Step-by-Step Analysis of Behavior for Simple Case
Verification Methods

- Event Trace
 - Detailed Analysis of Model Behavior
 - Compare to Walk-Through Analysis
- Model Simplification and Comparison to Analytic Results
- Graphical Display of Network Status As the Model Progresses
 - To “See” What Is Happening As It Happens

Some Comments on Validation

- Simulation Models Are Always Approximations
- A Simulation Model Developed for One Application May Not Be Valid for Others
- Model Development and Validation Should Be Done Simultaneously
- Specific Modeling Assumptions Should Be Tested
- Sensitivity Analysis Should Be Performed
- Attempt to Establish That the Model Results Resemble the Expected Performance of the Actual System
- Generally, Validation Is More Difficult Than Verification
Analysis of Results: Statistical Considerations

- Starting Rules
 - Overcoming Initial Transients
 - An Initial Transient Period Is Present Which Can Bias the Results
 - Achieving Steady State
 - Use a Run-in Period:
 - Determine T_b Such That the Long-Run Distribution Adequately Describes the System for $t > T_b$
 - Use a “Typical” Starting Condition (State) to Initialize the Model
- Quality of Performance Estimates
 - Variance of Estimated Performance Measures

Quality of Performance Estimates

- Simulation results are like laboratory measurements, they can be modeled as random variables
- Performance estimates should have acceptable variance
- The more observation reduces the variance.
- HOWEVER: Observations taken from network simulation will be correlated
 - Cannot directly apply standard statistical approaches based on iid (Independent, Identically Distributed) observations
Dealing with Lack of Independence

- Simple Replication: Multiple Simulation Runs
 - Assume Results for Each Replication Are Independent
 - Can be Inefficient Because of Multiple Startup Periods

Criteria for Selecting a Network Simulation Tool

- Availability
- Cost
- Usage
- Documentation
- Ease of Learning
- Computation Efficiency
- Flexibility
- Portability
- User Interface
- Extendibility
Guidelines to Network Modeling and Simulation

- Things to Know
 - Know the Customer
 - Know the Network
 - Know the Important Performance Metrics

- Things to Do
 - Establish a Credible Model
 - Expect the Model to Evolve
 - Apply Good Software Management Techniques

Conclusions

- Simulation Can Be an Important Tool for Communication Network Design and Analysis
- Care and Thought Must Go Into Construction of Communication Network Models
- Care and Thought Must Go Into Interpretation of Model Output
Extend® Overview

- **Allows Graphical Description of Networks**
 - Sources, Links, Nodes, Etc.
- **Data Flow Block Diagrams**
- **Hierarchical Structure to Control Complexity**
- **Be sure and create libraries when creating complex models**