

Internetworking:

Application, e.g., Web/HTTP, e-mail-Simple Mail Transfer Protocol, (SMTP), streaming services

Service Provider, end-to-end communications (TCP, UDP or other)

Internetwork, functions to connect networks and routers (previously called gateways) into a total system, (IP)

Subnetwork, e.g., WiFi, LTE, Ethernet, Bluetooth, Wireless, others...

Network Layer...

Network-layer service model

Network	Service	Quality of Service (QoS) Guarantees ?						
Architecture	Model	Bandwidth	Loss	Order	Timing			
Internet	best effort	none	no	no	no			
ATM	Constant Bit Rate	Constant rate	yes	yes	yes			
ATM	Available Bit Rate	Guaranteed min	no	yes	no			
Internet	Intserv Guaranteed (RFC 1633)	yes	yes	yes	yes			
Internet	Diffserv (RFC 2475)	possible	possibly	no	no			

Modified from: 8th edition Jim Kurose, Keith Ross Pearson, 2020

Network Layer: 4-12

Reflections on best-effort service:

- simplicity of mechanism has allowed Internet to be widely deployed adopted
- sufficient provisioning of bandwidth allows performance of real-time applications (e.g., interactive voice, video) to be "good enough" for "most of the time"
- Link and transport layers often provides error recovery (discussed later)
- replicated, application-layer distributed services (datacenters, content distribution networks) connecting close to clients' networks, allow services to be provided from multiple locations
- congestion control of "elastic" services helps

It's hard to argue with success of best-effort service model for IP

Modified from: 8th edition Jim Kurose, Keith Ross Pearson, 2020

Problems with IP architecture

End host assumptions

Not mobile

➤ Address Binding → Coupling between IP address and end-device Security

> Assumed friendly environment but in reality it is adversarial Economic model

> Original architecture did not have an economic mode

 \rightarrow Causes inter-carrier problems with providing QoS

Narrow hourglass model prevents applications awareness

 \rightarrow new applications placing demands for core functionality These are currently addressed via point solutions \rightarrow Middle boxes

Network Layer... 15

Network layer: data plane, control plane

Data plane:

- *local*, per-router function
- determines how datagram arriving on router input port is forwarded to router output port

Control plane

- network-wide logic
- determines how datagram is routed among routers along endend path from source host to destination host
- two control-plane approaches:
 - *traditional routing algorithms:* implemented in routers
 - *software-defined networking (SDN)*: implemented in (remote) servers

Internet	work neader	ing: IPv4	-						
4		32	Bits —		►				
Version	Version IHL Type of service Total length								
	Identification D M F F F Fragment offset								
Time	Time to live Protocol Header checksum								
		Source	address						
		Destinatio	n address						
L T		Options (0 or	more words)						
lf no	options	then routers us	e "fast pa	th" through hardware					
From: "Comp Tanenbaum.	ıter Networks, 3 Prentice Hall, 199	rd Edition, A.S. 96		Netv	vork Layer 22				

Internetworking: IP IP packet header-IPv4 Version, enable transition between different versions of IP datagrams, e.g., IPv4 and IPv6. IHL= Number of 32 bit words in the header ToS= Type of Service, enables the use of priority queuing, basis for IP DiffServ Maximum length of IP datagram (including header) = 65,535 bytes TTL field decremented at each hop if 0 then drop packet. Why? Time-to-live is NOT a time. Header Checksum verifies header only, Why? Identification and flag fields deal with fragmentation & reassembly Protocol field, identifies the associated transport protocol

TTL Field (Not a time!)

The TTL field specifies the maximum number of hops (routers) that a packet can traverse before it is discarded. Each router that forwards a packet decrements the TTL field by one, and when the TTL field reaches zero, the packet is dropped and an ICMP (Internet Control Message Protocol) message is sent back to the source host.

The TTL prevents IP packets from circulating indefinitely in a network due to routing loops or other errors. If a packet's TTL value is too high, it could end up consuming network resources indefinitely, causing congestion and potentially disrupting other network traffic.

The TTL is also useful for troubleshooting network problems, optimizing routing policies, and improving network performance. TTL is used in traceroute (discussed later).

```
Network Laver...
```

25

<section-header><text><text><text>

Differentiated Services: Concept IP DiffServ ToS Field Differentiated Services provide a wide range of services through: Setting bits in the ToS at network edges and administrative boundaries, Using those bits to determine how packets are treated (Queued/Served) by the routers inside the network, and Conditioning the marked packets at network boundaries in accordance with the requirements of each service. Enable CoS in the Internet However, needs agreement across all networks to provide consistent performance.

IP DiffServ ToS Field

Expedited Forwarding (EF): This service is used for time-sensitive and delaysensitive traffic, such as voice or video. It provides a low-latency, low-jitter, and high-bandwidth service with a minimum delay and packet loss rate.

Assured Forwarding (AF): This service is used for applications that require a certain level of service, but not necessarily low-latency or high-bandwidth. AF offers four classes of service with different priority levels and different levels of drop probability.

Network Control (NC) – This class is typically high priority because it supports protocol control

DiffServ enables network administrators the ability to ensure that critical traffic receives the necessary CoS while optimizing the use of network resources.

An address

An address is a unique identifier that is used to locate or communicate with a particular location or entity. An address provides a way to identify a specific location or recipient for the purpose of delivering goods or information.

Addresses can take many forms depending on the context in which they are used.

- A postal address typically includes a street name, house number or apartment number, city, state or province, and zip or postal code.
- > Email addresses consist of a username followed by an @ symbol and the domain name of the email provider.
- > Internet Protocol (IP) addresses are a set of numerical values that identify devices on a network.
- > Socket address identifies an application on a host
- > Uniform Resource Locator (URL) is the address of a given unique resource on the Web

Addresses are essential in facilitating communication and transactions. They allow for information to be delivered accurately and efficiently to the intended recipient. Accurate and up-to-date addresses are particularly important.

Network Laver...

35

Hierarchy of Addresses

Addresses are organized in a hierarchy to provide a structured and systematic way of identifying locations. This hierarchical structure allows for the easy and efficient management of addresses, as well as providing a way to scale up the system as more and more end-points (devices) are added to the network.

The hierarchical structure typically starts with the largest entity (e.g., geographic), such as a country or state/province, and then progresses down to smaller entities such as cities, towns, neighborhoods, and finally specific buildings or units.

In networks addresses are organized in a hierarchy to enable efficient routing of data between devices on a network, the hierarchy provides a systematic and organized way to identify and locate specific devices.

This hierarchy makes it easy to locate and identify a specific location by using a series of progressively more specific identifiers.

Addressing/Naming: Questions

How are IP addresses are organized?

How are IP addresses used to construct hierarchy?

How to translate from names people use to addresses used in the network.

How to get an address?

PHY (Link layer) interfaces have addresses, typically PHY addresses are known locally. How associate an network address (known globally) to a PHY address?

How are applications identified on the host that use the same IP address (more on this in the section on the transport layer)

Network Layer...

Internetworking: Classfull IP Addressing

Class A addresses /8

- > 127 Class A addresses
- > 2²⁴ hosts(16.77 Million)/Class A addresses

Class B networks /16

- > 16383 Class B addresses (address '0' is reserved)
- 2¹⁶ (65K) hosts/addresses KU has a class B address

Class C addresses /24

2,097,152 Class C addresses ('0' and '2,907,151' reserved)
 256 hosts/network.

Class D is used for multicasting

Internetworking: **IP** Addressing Notation 32 bits = 4 bytesRepresent each byte by a decimal Example: 11.55.31.84 > 00001011.00110111.00011111.1010100 11 55 31 84 Example: 129.237.125.27 is a KU address Some tools will show the IP address in Hex, e.g., 129.237.125.27 is 81 ED 7D 1B, e.g., in wireshark the bits on the wire are shown in Hex 42 Network Layer...

CIDR prefix-length	Dotted-Decimal	# Individual Addresses	# of Classful Networks	2^7 2^6 2^5 2^4 2^3 2^2 2^1 2^0
/13	255.248.0.0	512 K	8 Bs or 2048 Cs	
/14	255.252.0.0	256 K	4 Bs or 1024 Cs	
/15	255.254.0.0	128 K	2 Bs or 512 Cs	
/16	255.255.0.0	64 K	1 B or 256 Cs	1 1 1 1 0 0 0 0
117	255.255.128.0	32 K	128 Cs	1 1 1 1 1 0 0 0 2
/18	255.255.192.0	16 K	64 Cs	
/ 19	255.255.224.0	8K	32 Cs	
/20	255.255.240.0	4 K	16 Cs	
/21	255.255.248.0	2 K	8 Cs	# hosts/
122	255.255.252.0	1 K	4Cs	Subnet-2
123	255.255.254.0	512	2 Cs	Sublice 2
124	255.255.255.0	256	10	
125	255.255.255.128	128	1/2 C	# of
/26	255.255.255.192	64	1/4 C	
127	255.255.255.224	32	1/8 C	subnets

Г

Possib	Possible Subnet Mask Values										
	2 ⁷	2 ⁶	2 ⁵	2 ⁴	2 ³	2 ²	2 ¹	2 ⁰]		
	1	0	0	0	0	0	0	0	128		
	1	1	0	0	0	0	0	0	192	Examples of	
	1	1	1	0	0	0	0	0	224	subnet masks:	
	1	1	1	1	0	0	0	0	240	255.254.0.0 255.128.0.0	
	1	1	1	1	1	0	0	0	248	255.255.192.0	
	1	1	1	1	1	1	0	0	252		
	1	1	1	1	1	1	1	0	254		
	1	1	1	1	1	1	1	1	255		50
Modified fro	Modified from: https://www.ict.tuwien.ac.at/skripten/datenkomm/infobase/L30-IP_Technology_Basics_v4-6.pdf Network Layer					52					

Domain Name System: DNS

Domain Name System (DNS) Names $\leftarrow \rightarrow$ IP translation

Non-numeric form for IP addresses host naming

> host.department.institution.domain

Names are long and human understandable

> Wastes space to carry them in packet headers

Hard to parse

Numeric addresses are shorter and machine understandable

> If fixed size, easy to carry in headers and parse

DNS distributed database implemented in hierarchy of many name servers

Network Layer...

53

Domain Name System: DNS

IP Addressing ->Example gauss.eecs.ku.edu=> 129.237.125.220

A different IP address can be assigned to each physical interface on a host, note a physical interface will have a unique physical address, for IEEE 802.3 this is a 48-bit number

A host can have multiple IP addresses: multihomed

See https://who.is/

≻ <u>www.ku.edu</u>

▶ 129.237.11.76

Network Layer...

<section-header><section-header><section-header><section-header><section-header><section-header><section-header><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item>

<section-header><text><text><list-item><list-item><list-item><list-item><list-item>

- 1. User gives name to application client
- 2. Application client passes name to local DNS client
- 3. At boot time the local host is configured with the IP address of at least one DNS server. The DNS client sends a query to the DNS server to get the IP address associated with the name.
- 4. The DNS server responds with the IP address
- 5. The local DNS client passes the IP address to the application
- 6. The application now associates that
- name with an IP address 7. The local DNS client caches results

From: Data Communications and Networking 5th Edition by Behrouz A. Forouzan and Computer and Communication Networks, 2nd Edition. Nader F. Mir. Prentice Hall

Network Layer ..

DNS: a distributed, hierarchical database

Very large distributed database:	
~ billion records, each simple	Top level domains to naming authorities (see
Handles many <i>trillions</i> of queries/day: <i>many</i> more reads than writes <i>performance matters:</i> almost every Internet transaction interacts with DNS - msecs count! Organizationally, physically decentralized: millions of different organizations responsible for their records "bulletproof": reliability, security	Internet Corporations for Assigned Names and Numbers- ICANN; http://www.icann.org) .edu .com .mil .org .gov .net .biz .[country] .il, .uk, .au More
Modified from: 8th edition Jim Kurose, Keith Ross Pearson, 2020	Network Layer 61

Host Configuration: Dynamic Host Configuration Protocol (DHCP)

Every host needs an IP address

Initial approach: System Administrators manually configure host IP information (static)

Management nightmare for large enterprise networks

Management nightmare for "always on" public networks, e.g., cable modem systems

Internet Control Protocols: ARP (On Ethernet)

Address Resolution Protocol (ARP)

 > Purpose: Map IP address to physical address (or link layer address)
 Want to talk to 129.237.116.75
 Send MAC <u>"broadcast"</u> message: Who owns 129.237.116.75
 129.237.116.75 will respond: I do and here is my physical address
 Reverse ARP (RARP)
 Maps Physical address into IP address

Network Laver...

NAT: network address translation

- all devices in local network have 32-bit addresses in a "private" IP address space (10/8, 172.16/12, 192.168/16 prefixes) that can only be used in local network
- advantages:
 - just one IP address needed from provider ISP for all devices
 - can change addresses of host in local network without notifying outside world
 - can change ISP without changing addresses of devices in local network
 - security: devices inside local net not directly addressable, visible by outside world

NAT: network address translation

- NAT overloads the port # construct
- Violates end-to-end argument (hour glass model), applications developers now may need to take NAT into account.
- NAT has been controversial:
 - routers "should" only process up to layer 3
 - address "shortage" should be solved by IPv6
 - violates end-to-end argument (port # manipulation by network-layer device)
 - NAT traversal: what if client wants to connect to server behind NAT?
- but NAT is here to stay:
 - extensively used in home and institutional nets, 4G/5G cellular nets
 - NAT enables the Universal Plug and Play (UPnP) set of protocols, (UPnP is designed to simplify the process of connecting devices to a network and configuring them for use.)

Modified from: $8^{\mbox{th}}$ edition Jim Kurose, Keith Ross Pearson, 2020

Network Layer: 4-73

Tunneling

A tunnel is a *virtual* point-to-point connection between a pair of nodes through an arbitrary number of networks

Packet entering a tunnel is encapsulated into another packet

Packet leaving the tunnel is de-encapsulated restoring the original packet format

Network Layer...

74

	IPv6 F	leade	r						
	40 bytes ←	→	Up to 65,535 bytes				Version TC TC	Вуте:	
+	Base header		Payload		a. IPv6 pacl	cet	Flow Label Payload Length Next Hop	3	
0 Version	4 n Traffic class Payload len	12 ngth	16 Flow label Next header	24 Hop lim	31 it		Header Limit	2 16	
- - - - -		Source (128 bits Destinati (128 bits	e address = 16 bytes) on address = 16 bytes)				Destination Address	16	
Fro	n: Data Communications	b. Base					Extension Headers		80
Fro	n: Data Communications Computer and Commur	b. Base and Networking 5th Ec nication Networks, 2nd	e header lition by Behrouz A. Forouzan Edition. Nader F. Mir. Prentice H	Hall			Extension Headers Networ	k Layer	80

IPv6 Header Format

Version field same size, same location as IPv4 Traffic class to support differentiated services

Flow: sequence of packets from particular source to particular destination for which source requires special handling

IPv6 Heade	er Format				
Payload leng 65535 B Next header: header, e.g.,	th: length of data excluding hea type of extension header that fo ICP or UDP or options	ider, up to bllows basic			
Hop limit: # by a router	hops packet can travel before be 0 4 12 31 Version Traffic Class Pavload Length	eing dropped 16 24 Flov Next Header	t v Label Hop Limit]	
	Source	Address	 	- - -	
Note: <u>No CheckSum !!!</u>	Destination	on Address			
			Netv	vork Layer	82

dress	Types based	l on Prefixe	es
Binary prefix	Types	Percentage of address space	
0000 0000	Reserved	0.39	
0000 0001	Unassigned	0.39	
0000 001	ISO network addresses	0.78	
0000 010	IPX network addresses	0.78	
0000 011	Unassigned	0.78	\neg
0000 1	Unassigned	3.12	
0001	Unassigned	6.25	
001	Aggregatable global unicast addresses	12.5	
010	Provider-based unicast addresses	12.5	
011	Unassigned	12.5	
100	Geographic-based unicast addresses	12.5	
101	Unassigned	12.5	
110	Unassigned	12.5	
1110	Unassigned	6.25	
1111 0	Unassigned	3.12	
1111 10	Unassigned	1.56	
1111 110	Unassigned	0.78	
1111 1110 0	Unassigned	0.2	
1111 1110 10	Link local use addresses	0.098	
1111 1110 11	Site local use addresses	0.098	
1111 1111	Multicast addresses	0.39	

Internet Control Message Protocol: ICMP

Purpose: Report unexpected events & test Used by hosts and routers to communicate network-level information

- > error reporting: unreachable host, network, port, protocol
- > echo request/reply (used by ping)

network-layer "above" IP:

> ICMP messages carried in IP datagrams

ICMP message: type, code plus first 8 bytes of IP datagram causing error ICMPv6

97

Principal ICMP message types

Message type	Description	
Destination unreachable	Packet could not be delivered	
Time exceeded	Time to live field hit 0	
Parameter problem	Invalid header field	
Source quench	Choke packet	
Redirect	Teach a router about geography	
Echo request	Ask a machine if it is alive	
Echo reply	Yes, I am alive	
Timestamp request	Same as Echo request, but with timestamp	
Timestamp reply	Same as Echo reply, but with timestamp	

From: "Computer Networks, 3rd Edition, A.S. Tanenbaum. Prentice Hall, 1996

Network Layer...

98

Network Layer ...

	—	
Example –	- Echo request	
-	@ pingtesla - Ethereal	
	File Edit Capture Display Tools	Help
	No. Time Source Destination Protocol Influence 1 0.000000 0.0000000.0001031dccf7 0.0000000.0001031dccf7 0.00000000000000000000000000000000000	_
	8 15.547669 192.168.2.18 128.100.11.1 ICMP EChO (ping) request 9 15.586209 128.100.11.1 192.168.2.18 ICMP EChO (ping) request 10 16.55228 192.168.2.18 128.100.11.1 ICMP EChO (ping) request 11 16.555526 128.100.11.1 192.168.2.18 ICMP EChO (ping) request 12 22.941534 192.168.2.18 192.168.2.255 BROWSER Domain/Workgroup Announcement @HOME, windows	for Wor
	<pre>B Frame 4 (74 bytes on wire, 74 bytes captured) B Erhement II, Src: 00:01:03:1dicc:f7, DST: 00:04:e2:29:b2:3a B Internet Protocol, Src Addr: 192.168.2.18 (192.168.2.18), DST Addr: 128.100.11.1 (128.100.11.1) B Internet Control Message Protocol Type: 8 (Echo (ping) request) Cde: 0 (cho (ping) request) Cde: 0 (cho (ping) request) Cde: 0 (cho (ping) request) Identifier: 0x0200 Sequence number: 5b:00 Data (32 bytes) </pre>	
	NL	
	0010 00 3c 19 8a 00 00 20 01 33 18 c0 a8 02 12 80 641 0020 0b 10 80 00 f0 5b 02 00 5b 00 61 62 63 64 65 66	
	Filter. Apply File: pingtesla	
From: Communication Networ Authors: A. Leon-Garcia and I	rks: Fundamentals Concepts and Key Architectures Network Layer I. Widjaja	101

Routing vs. Forwarding

Routing is

- > Distributed (routers communicate using a routing protocol)
- "learns" the network topology
- > Finds "shortest" path

Routing is like exploring,

- > Send explorers packets
- > They return with information of possible paths
- > Then calculate the best way to get from "here to there"

Forwarding Table Router 3

10.1.0.0/24
00001010 00000001 00000000 00000000
То
00001010 00000001 00000000 11111111
10.1.2.0/24
00001010 00000001 00000010 00000000
То
00001010 00000001 00000010 11111111
10.2.1.0/24
00001010 00000010 00000001 00000000
То
00001010 00000010 00000001 11111111
10.3.1.0/24
00001010 00000011 00000001 00000000
То
00001010 00000011 00000001 11111111

20.1.0.0/16 00010100 00000001 00000000 00000000 To 00010100 00000001 11111111 1111111

20.2.1.0/28 00010100 00000010 00000001 00000000 To 00010100 00000010 00000001 00001111

Remember that: a) all 0's host ID reserved for the network b) all 1's host ID reserved for broadcast

IP address of arriving packet 20.2.1.2 00010100 00000010 00000001 00000010	
Start with longest prefix known /28 (20.2.1.0/28)	
Net mask 255.255.255.240	
111111111 11111111 11111111 11110000	
Logical AND incoming IP address with net mask	
00010100 00000010 00000001 00000010	
AND	
=	
20.2.1.0/28 is in the table so output Serial0 which is connected to F	R4

Delivery of IP datagrams

There are two distinct processes to delivering IP datagrams:

- 1. **Forwarding:** How to pass a packet from an input interface to the output interface?
- 2. Routing: How to find and setup the forwarding tables?

Forwarding must be done as fast as possible:

- > on routers, is often done with support of hardware
- > on PCs, is done in kernel of the operating system

Routing is less time-critical

- > Filling in the forwarding table using learned information
- > On a PC, routing is done as a background process

Modified from: www.cs.virginia.edu/~itlab/book/slides/module09-ipforwV3.ppt

Processing of IP datagrams is very similar on an IP re	outer and a host
Main difference:	
"IP forwarding" is enabled on router and disabled or	n host
IP forwarding enabled	
\rightarrow if a datagram is received, but it is not for the local	system, the
datagram will be sent to a different system	
IP forwarding disabled	
\rightarrow if a datagram is received, but it is not for the local	system, the
datagram will be dropped	
The CPU in a router can be the local system, e.g., the	destination for
routing messages is the CPU in the router	

Processing o	f an IP datagram at a router	
Receive an IP datagram	 IP header validation (Header checksum) Process options in IP header Parse the destination IP address Forwarding table lookup Decrement TTL Perform fragmentation (if necessary) Calculate checksum Transmit to next hop Send ICMP packet (if necessary) If TTL = 0 after decrement then drop packet and send ICMP message 	
Modified from: www.cs.virginia.ed	u/~itlab/book/slides/module09-ipforwV3.ppt Network Layer	117

Forwarding table lookup: Longest Prefix Match

Network Address/mask	Next Hop
10.0.0/8	R1
128.143.0.0/16	R2
128.143.64.0/20	R3
128.143.192.0/20	R3
128.143.71.0/24	R4
128.143.71.55/32	R3
default	R5

Forward table with IP & prefix defined with /n

	Leftmost bits in destination address-	Next
	network prefix	Нор
shortest prefix	00001010 (/8)	R1
	10000000 10001111 (/16)	R2
	10000000 10001111 0100 (/20)	R3
	10000000 10001111 1100 (/20)	R3
	10000000 10001111 01000111 (/24)	R4
Longest prefix	10000000 10001111 01000111 00110111 (/32)	R3
	Default	R5

Forward table in bits with IP & prefix defined with /n

Forwarding table lookup: Longest Prefix Match

Destination	Next Hop	Interface	
192.168.1.0/24	10.0.0.1	eth0	
192.168.2.0/24	10.0.0.2	eth1	
10.1.0.0/16	10.0.0.3	eth2	
0.0.0/0	10.0.0.254	eth3	

The first entry indicates that any packet destined for the IP addresses in the range of 192.168.1.0 to 192.168.1.255 (subnet mask /24) should be forwarded to the next hop address 10.0.0.1 via interface eth0.

The second entry specifies that packets destined for the IP addresses in the range of 192.168.2.0 to 192.168.2.255 should be forwarded to the next hop address 10.0.0.2 via interface eth1.

The third entry indicates that packets destined for the IP addresses in the range of 10.1.0.0 to 10.1.255.255 should be forwarded to the next hop address 10.0.03 via interface eth2.

The last entry with destination 0.0.0/0 serves as a default route, meaning any packet that doesn't match any specific entry in the forwarding table should be forwarded to the next hop address 10.0.0.254 via interface eth3.

Example: Packet arrives with the destination IP address 192.168.1.100. To determine the appropriate next hop for forwarding, the router performs longest prefix matching:

It compares the destination IP address (192.168.1.100) with the entries in the forwarding table.

The router finds that the destination IP address matches the first entry (192.168.1.0/24) in the forwarding table.

Since this entry has the longest matching prefix (/24), the router selects the corresponding next hop (10.0.0.1) and forwards the packet via the specified interface (eth0).

Network Layer...

121

Example: IP Forwarding Net Addres Interf ace Next Hop Router 1 Host 180.70.65.130 201.4.16.0/22 Local eth0 Host 201.4.16.2 180.70.65.192/2 Local eth1 Host 180.70.65.129 201.4.22.0/24 Router 2 eth3 Host 201.4.16.3 Switch 180 70 65 128/25 180 70 65 128/25 Router 2 eth3 201.4.16.0/22 Switch Default Router 2 180.70.65.131 201.4.16.1 eth3 Router 1 Router 2 fiber1 . م 180.70.65.195 eth1 223.1.9.0/24 eth 223 1 7 0/24 Host 180.70.65.194 Host 201.4.22.2 223.1.8.0/24 Host 180.70.65.193 Tier 1 Host 201.4.22.1 Provide Ethe Switch 201.4.22.0/24 180 70 65 192/26 Switch 223 1 6 0/24 hΛ Tier 2 Router 3 Provide 201.4.22.3 122 Network Laver...

AS Numbers (ASN) In RFC 4893 AS numbers are 32 bits (AS #'s are not IP addresses) KU is an AS with AS # 2496 Internet Assigned Numbers Authority (IANA) gives ASNs to regional internet registry (RIR), RIRs give ASNs to, ISPs and end-user organizations. **RIRs** > African Network Information Centre (AfriNIC) for Africa > American Registry for Internet Numbers (ARIN) for the United States, Canada, and several parts of the Caribbean region. > Asia-Pacific Network Information Centre (APNIC) for Asia, Australia, New Zealand, and neighboring countries > Latin America and Caribbean Network Information Centre (LACNIC) for Latin America and parts of the Caribbean region Réseaux IP Européens Network Coordination Centre (RIPE) for Europe, the Middle East, and Central Asia 131 Network Layer ...

Routing

Routing protocols are used to *"load"* the forwarding tables in IP routers

Routing protocols "learn about the "*state of the network*" and communicate routing information between routers

Routing protocols implement part of the IP, signaling for IP or the *"Control Plane"*

The Routing Problem

Routing algorithms attempt to build forwarding tables to "optimally" route traffic based on some knowledge of the network topology and state (e.g., link delay and loss) Practical problems:

- > Which shortest path algorithm to use?
- > How to learn the topology and network state, e.g., congested routes?
- > How define an optimization metric (length or "distance")?
- The bubble, change paths to reduce delays for some traffic may worsen performance for other traffic.
- > How to respond to:
 - Network element failures
 - Link failures
 - Changes in traffic, e.g., congestion
- > How to establish policies between AS's?

Different routing protocols answer these questions in different ways.

Network Layer... 135

<section-header><section-header><section-header><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item>

New linkFind ShorList all po lengths	weights test path from . ssible paths and	A to D d their		B 5 C	
			3	1	
Path	Length	# hops		1 Link cost	
Path A→B→C→D	Length 10	# hops		1 Link cost	
Path A→B→C→D A→E→D	Length 10 6	# hops 3 2		Link cost	
Path $A \rightarrow B \rightarrow C \rightarrow D$ $A \rightarrow E \rightarrow D$ $A \rightarrow E \rightarrow C \rightarrow D$	Length 10 6 5	# hops 3 2 3		Link cost	

Shortest Path Approaches		
Distance Vector Protocols		
Neighbors exchange list of distances to destinations		
Best next-hop determined for each destination		
Bellman-Ford (distributed) shortest path algorithm		
Link State Protocols		
Link state information flooded to all routers		
Routers have complete topology information		
Shortest path (& hence next hop) calculated		
Dijkstra (centralized) shortest path algorithm		
> Show example of Dijkstra's Algorithm		
http://demonstrations.wolfram.com/ShortestPathsAndTheMinimumSpanningTreeOnA		
GraphWithCartesianE/ From: Communication Networks: Fundamentals Concepts and Key Architectures Authors: A. Loon-Garcia and J. Widjaja	< Layer	144
More on IP Routing: Open Shortest Path First (OSPF)

IGP (within one AS) Link State routing protocol Routers discover > Their neighbors > The state of incident links Communicate state by periodically flooding the Link State Advertisements (LSA) throughout the network All routers converge to same map of the network topology Shortest path algorithm then used for routing. Distance can be more that just hop count. Carried directly by IP

Network Layer... 145

<section-header> More on IP Routing: Border Gateway Protocol (BGP) BGP (Border Gateway Protocol): the de facto standard BGP provides each AS a means to: 0. Obtain subnet reachability information from neighboring ASs. 0. Propagate reachability information to all AS-internal routers. 0. Determine "good" routes to subnets based on reachability information and policy. allows subnet to advertise its existence to rest of Internet: "I am here, here is who I can reach, and how"

More on IP Routing: Border Gateway Protocol (BGP)

EGP (Between AS's) Finds paths for source/destinations pairs that span multiple AS's. Path vector protocol, BGP advertises a sequence of AS #'s to the destination Routing information includes complete list of networks (AS's) between source and destination Path vector info used to prevent routing loops Allows ranking of routes based on polices Polices are arbitrary rules, e.g., based on business agreements BGP enforces policy through selection of different paths to a destination and by control of redistribution of routing information Currently, it is common to have these manually configured Business agreements are reflected in BGP policies BGP uses TCP as the transport protocol

Network Layer... 148

Source Routing

Source host selects path that is to be followed by a packet: sequence of nodes in path inserted into header

Intermediate switches read next-hop address and remove address

Source host needs link state information or access to a route server

Source routing allows the host to control the paths that its information traverses in the network

Potentially the means for customers to select what service providers they use

