
1Transport Layer...

Transport Protocols and 
Network Control #8

2Transport Layer...

Outline
� Goals:

 Understand principles behind transport layer services
 Multiplexing/demultiplexing (Ports/Sockets)

� Examples of Transport Protocols
 UDP
 TCP

 Note there are other transport layer protocols
� Network control

 Active Queue Management
 MPLS
 SDN
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Transport services and protocols
� Provide logical communication

between app processes running 
on different hosts

� Transport protocols run in end 
systems 
 send side: breaks app 

messages into segments, 
passes to  network layer

 rcv side: reassembles 
segments into messages, 
passes to app layer

� More than one transport 
protocol available to apps
 Internet: TCP, RTP, UDP 

and others

application
transport
network
data link
physical

application
transport
network
data link
physical

Modified from: Computer Networking: A Top Down Approach 
4th edition.  Jim Kurose, Keith Ross
Addison-Wesley, July 2007.

Transport  layer packet=segment
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Sockets

� A socket is programming 
interface that allows 
communication between 
applications running on 
different computers or 
devices. 

� A socket is identified by an 
IP address and a port 
number (which identifies a 
specific application or 
service running on that 
device). The combination of 
an IP address and port 
number is used to establish 
a unique endpoint for 
communication.
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How multiplexing works
� IP datagrams

 each datagram has source 
IP address, destination IP 
address

 each datagram carries 1 
transport-layer segment

 each segment has a:
– source port number
– destination port number 

� host uses IP addresses & port 
numbers to direct segment to 
appropriate socket

source port # dest port #

32 bits

application
data 
(message)

other header fields

TCP/UDP segment format

From: Computer Networking: A Top Down Approach 
4th edition.  Jim Kurose, Keith Ross
Addison-Wesley, July 2007.
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Ports & Sockets: Multiplexing

Modified from: Computer and Communication Networks. 
Nader F. Mir Prentice Hall. 
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Ports
� Port address 
� Ports are 16 bits
� The port address is internal to the host (indicates application)
� A socket address is unique in the Internet
� Once an application creates a socket and TCP connection then a write is 

used to send to the network and a read used to receive from the 
network. 
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Ports
� Ports are 16 bits
� Well Known Ports are those from

0 through 1023.
� The Registered Ports are those 

from 1024 through 49151
� The Dynamic and/or Private Ports 

are those from 49152 through 65535

� There are some common port numbers
 Example: 

– File data transfer (21)
– TELNET (23)
– Simple Mail Transfer Protocol (SMTP)(25)
– Remote Procedure Call [RPC] (111)
– Web servers listens on port 80

http://www.iana.org/assignments/port-numbers
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Transport Layer: UDP
� UDP

 Connectionless
 No congestion control 
 No acknowledgments
 Packets may be

– lost
– delivered out of order to app

 No handshaking between UDP sender, 
receiver

 Each UDP segment handled 
independently of others

 UDP checksum covers header and data 
 optional, but commonly used

Modified from: Computer Networks, 3rd 
Edition, A.S. Tanenbaum.  Prentice Hall, 1996

Modified from: Computer and Communication Networks. 
Nader F. Mir Prentice Hall. 
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Ports and UDP

 UDP socket, must specify
 destination IP address
 destination port #

 When receiving host receives UDP segment:
 Checks destination port # in segment
 Directs UDP segment to socket with that port #
 IP/UDP datagrams with same dest. port #, but different source 

IP addresses and/or source port numbers will be directed to 
same socket at receiving host

Modified from: 8th edition Jim Kurose, Keith Ross Pearson, 2020
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UDP Use Cases
� Streaming multimedia apps
 loss tolerant
 rate sensitive

� DNS
� Simple Network Management 

Protocol(SNMP)
� Reliable transfer over UDP: add 

reliability at application layer 
application-specific error recovery!

Modified from: Computer Networking: A Top Down Approach 
4th edition.  Jim Kurose, Keith Ross
Addison-Wesley, July 2007.

UDP

 “no frills” protocol: 
• segments may be lost, delivered out of order

• best effort service: “send and hope for the best”

 UDP has its plusses:
• no setup/handshaking needed (no RTT incurred)

• can function when network service is compromised

• checksum on covers the header and data

 build additional functionality on top of UDP in application layer 
(e.g., HTTP/3)

Modified from: 8th edition Jim Kurose, Keith Ross Pearson, 2020
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Transport Layer: TCP
� TCP provides for assured delivery of PDU’s
� TCP Services
Connection oriented (end-to-end)

– Need call processing (in end points)
(not inside the network)

– Information on the status of each 
connection is available

Reliable data transfer
– Uses acknowledgments 
– Uses sequence numbers

TCP: overview  RFCs: 793,1122, 2018, 5681, 7323

 cumulative ACKs

 pipelining:
• TCP congestion and flow control 
set window size

 connection‐oriented: 
• handshaking (exchange of control 
messages) initializes sender, 
receiver state before data exchange

 flow controlled:
• sender will not overwhelm receiver

 point‐to‐point:
• one sender, one receiver

 reliable, in‐order byte 
steam:
• no “message boundaries"

 full duplex data:
• bi‐directional data flow in 
same connection

• MSS: maximum segment size

Transport Layer: 3‐14
Modified from: 8th edition Jim Kurose, Keith Ross Pearson, 2020



Connection‐oriented demultiplexing

 TCP socket identified by 
4‐tuple: 
• source IP address
• source port number

• dest IP address
• dest port number

 server may support many 
simultaneous TCP sockets:
• each socket identified by its 
own 4‐tuple

• each socket associated with 
a different connecting client

 demux: receiver uses all 
four values (4‐tuple) to 
direct segment to 
appropriate socket

Transport Layer: 3‐15
Modified from: 8th edition Jim Kurose, Keith Ross Pearson, 2020
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Connection management

� Connection management allocates, synchronizes, and 
deallocates states while allowing the communicating 
parties to negotiate their operation modes and 
resources needed for their association.



TCP header

source port # dest port #

32 bits

not
used receive window flow control: # bytes 

receiver willing to accept

sequence number
segment seq  #: counting 
bytes of data into bytestream (not 
segments or packets like in DLC!)

application
data 

(variable length)

data sent by 
application into 
TCP socket

A

acknowledgement number

ACK: seq # of next expected 
byte; A bit: this is an ACK

options (variable length)

TCP options

head
lenlength (of TCP header)

checksumInternet checksum
Covers: Header and Data

RST, SYN, FIN: connection 
management

FSR

Urg data pointer

PUC E

C, E: congestion notification

Modified from: 8th edition Jim Kurose, Keith Ross Pearson, 2020

TCP sequence numbers, ACKs

Sequence numbers:

• byte stream “number” of 
first byte in segment’s data

source port # dest port #

sequence number

acknowledgement number

checksum

rwnd

urg pointer

outgoing segment from receiver

A

sent 
ACKed

sent, not-
yet ACKed
(“in-flight”)

usable
but not 
yet sent

not 
usable

window size(Bytes)
N 

sender sequence number space 

source port # dest port #

sequence number

acknowledgement number

checksum

rwnd

urg pointer

outgoing segment from sender

Acknowledgements:

• seq # of next byte expected 
from other side

• cumulative ACK

Q: how receiver handles out‐of‐order 
segments

• A: TCP spec doesn’t say, ‐ up to 
implementor (common to use “Selective Repeat”)

Modified from: 8th edition Jim Kurose, Keith Ross Pearson, 2020
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TCP Header

� Source/Destination identify local end points
� Window size (in Bytes) used to dynamically 

control source rate into the network
� Checksum, checks the header and data
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TCP
� Stream-oriented

 TCP collect user bytes and forms segments to be 
passed on to the IP layer

 Sequence number based on byte counts
� Push

 Upper layer protocol send Push message to TCP 
to force it to send all the bytes collected in a 
segment

� Resequencing
 IP may deliver information out of order, TCP 

must put it back together
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TCP Header

From: “Computer Networks, 3rd Edition, A.S. 
Tanenbaum.  Prentice Hall, 1996

Modified from: Computer and Communication Networks. 
Nader F. Mir Prentice Hall. 

Urgent data pointer is used when a sender 
wants to send data that requires immediate 
attention at the receiver's end, it can mark that 
data as "urgent." 

The urgent data could be used, for example, 
to send time-critical control messages or 
notifications.

The urgent data mechanism in TCP is 
optional and not commonly used.
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TCP
� Inclusive Acknowledgment

 Acknowledgment number, acknowledges all 
received bytes prior to the one specified

� Flow control
 Window size is in bytes
 Transmit N-bytes and the must wait for 

acknowledgment
 Window size is dynamic, i.e., it changes based on 

“knowledge” of availability of buffer space in 
receiver and network congestion
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TCP
� Multiplexing
Allows multiple sessions within one host 

to be transmitted over an IP path 
(ports/sockets)

� Full duplex
� Graceful close
All traffic in flow is acknowledged before 

the session is ended.

24Transport Layer...From: “Computer Networks, 3rd Edition, A.S. Tanenbaum. 
Prentice Hall, 1996

TCP 
Session
Processing

TCP Connection 
Management: 
Finite State 
Machine
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Host A Host B

From: Communications Networks, Garcia and 
Widaja, McGraw Hill, 2000

TCP Connection Setup: Three-way Handshake
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tcpdump 
http connection set up

� Output columns are  Time SourceIP.SourcePort > DestIP.DestPort Flags ...
� 11:13:38.524046 x.x.x.x.3600 > 64.233.167.104.80: S 

2021815674:2021815674(0) win 64240 <mss 1460,nop,nop,sackOK> (DF)
 First  packet is from client host x.x.x.x.
 Client host is using 3600 as a source port.
 Destination host is 64.233.167.104 on port 80 (that’s Google's webserver).
 The packet with flag S is a TCP SYN packet, means in words "i'd like to 

open a TCP connection with you“
 Client host will have a temporarily opened port (3600) in order to receive 

data back from the server.
� 11:13:38.558668 64.233.167.104.80 > x.x.x.x.3600: S 

3132749891:3132749891(0) ack 2021815675 win 8190 <mss 1460>
 Second packet is sent from Google webserver. This packet comes from 

64.233.167.104 source port 80, and contains SYN/ACK
 TCP flags sent to client port 3600, means "ok you may open a connection 

with me".
� 11:13:38.559105 x.x.x.x.3600 > 64.233.167.104.80: . ack 1 win 64240 (DF)

 Third packet is the client host sending a last ACK packet, which means "ok 
we are now connected". Source and dest ports must stay the same here.
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Example
Wireshark Trace-Session Establishment (Set-up)

Wireshark Trace-Session Close (Tear-down)

Modified from: Basic TCP analysis with Wireshark, by Waleed Tageldeen: 
https://codeburst.io/basic-tcp-analysis-with-wireshark-b99ed54fa499

There are other Session Close (or Connection Termination) sequences 

Session 
Establishment
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Wireshark traces: Open/Close
� From Basic TCP analysis with Wireshark, by Waleed 

Tageldeen: https://codeburst.io/basic-tcp-analysis-
with-wireshark-b99ed54fa499

� Connection Establishment:
 https://github.com/chrissanders/packets/blob/master/tc

p_handshake.pcapng

� Connection Close
 https://github.com/chrissanders/packets/blob/master/tc

p_teardown.pcapng
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Example: 
A http TCP Session: Start-to-Finish

Wireshark Trace

30Transport Layer...From: “Computer Networks, 3rd Edition, A.S. 
Tanenbaum.  Prentice Hall, 1996

TCP Window Management
Flow Control

Called Window 
Advertisement

2K sent to 
Application

Initial Receiver State

2048 Bytes available
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TCP Animation: 
TCP Window Management  

� http://www.ccs-
labs.org/teaching/rn/animations/flow/

32Transport Layer...

Silly Window Syndrome
� Situation:  

 Transmitter sends large amount of data
 Receiver buffer depleted slowly, so buffer fills
 Every time a few bytes read from buffer, a new 

advertisement to transmitter is generated
 Sender immediately sends data & fills buffer
 Many small, inefficient segments are transmitted

� Solution:
 Receiver does not advertize window until window is at 

least ½ of receiver buffer or maximum segment size
 Transmitter refrains from sending small segments

From: Communication Networks: 
Fundamentals Concepts and Key Architectures
Authors: A. Leon-Garcia and I. Widjaja



33Transport Layer...

Delay-BW Product & Advertised Window Size
� Suppose RTT=100 ms, R=2.4 Gbps

 # bits in pipe = 30 Mbytes

� If single TCP process occupies pipe, then 
required advertised window size is
 RTT x Bit rate = 30 Mbytes
 Normal maximum window size is 65535 bytes
 With normal max window efficiency ~ 0.2%

� Solution:  Window Scale Option
 Window size up to 65535 x 214 = 1 Gbyte allowed
 Requested in SYN segment
 Uses options Fields

From: Communication Networks: 
Fundamentals Concepts and Key Architectures
Authors: A. Leon-Garcia and I. Widjaja

34Transport Layer...

TCP: Retransmission Procedures

� TCP uses a positive acknowledgment
� Selecting  timeout timer value
Delay unknown a-priori
Segments may be lost making 

measurements of the round-trip time 
(RTT) difficult, i.e., measurement of RTT 
can have a large variance



TCP round trip time, timeout

Q: how to set TCP timeout 
value?

 longer than RTT, but RTT varies!

 too short: premature timeout, 
unnecessary retransmissions

 too long: slow reaction to 
segment loss

Q: how to estimate RTT?
SampleRTT:measured time 
from segment transmission until 
ACK receipt
• ignore retransmissions

SampleRTT will vary, want 
estimated RTT “smoother”
• average several recent
measurements, not just current 
SampleRTT

Modified from: 8th edition Jim Kurose, Keith Ross Pearson, 2020

TCP round trip time, timeout
EstimatedRTT = (1- )*EstimatedRTT + *SampleRTT

 exponential weighted moving average (EWMA)

 influence of past sample decreases exponentially fast

 typical value:  = 0.125

RT
T 

(m
illi

se
co

nd
s)

RTT: gaia.cs.umass.edu to fantasia.eurecom.fr

sampleRTT
EstimatedRTT

time (seconds)
Modified from: 8th edition Jim Kurose, Keith Ross Pearson, 2020

Note: first order infinite 
impulse response 
(recursive) filter
y[n]=(1-)y[n-1]+x[n]



TCP round trip time, timeout

 timeout interval: EstimatedRTT plus “safety margin”

• large variation in  EstimatedRTT: want a larger safety margin

TimeoutInterval = EstimatedRTT + 4*DevRTT

estimated RTT “safety margin”

* Check out the online interactive exercises for more examples: http://gaia.cs.umass.edu/kurose_ross/interactive/

DevRTT = (1-)*DevRTT + *|SampleRTT-EstimatedRTT|

(typically,  = 0.25)

DevRTT: EWMA of SampleRTT deviation from EstimatedRTT: 

Modified from: 8th edition Jim Kurose, Keith Ross Pearson, 2020

Congestion:

 informally: “too many sources sending too 
much data too fast for network to handle”

manifestations:

• long delays (queueing in router buffers)
• packet loss (buffer overflow at routers)

 different from flow control!

Principles of congestion control

congestion control (global): 
too many senders, sending too fast for network

flow control (local): 
one sender too fast for one 
receiver

 a top‐10 problem!

Modified from: 8th edition Jim Kurose, Keith Ross Pearson, 2020



End‐end congestion control:

 no explicit feedback from 
network

 congestion inferred from 
observed loss, delay

Approaches towards congestion control

datadata
ACKs

ACKs

 approach taken by TCP

Transport Layer: 3‐39Modified from: 8th edition Jim Kurose, Keith Ross Pearson, 2020
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TCP:
Adaptive Congestion Control

� If time out TCP assumes congestion caused loss
� If the network is congested then want to slow the 

source down to reduce congestion
� When the network congestion disappears then 

want to allow the source to send faster
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TCP: Adaptive Congestion Control

� Turn efficiency calculation of data link 
control algorithms around

� Use window size to control the flow of 
traffic into the network
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TCP: Adaptive Congestion Control
� Increase algorithm

 If acknowledgement 
received then increase 
the window size by one 
segment, i.e.,

 new_window = 
old_window + 1 
segment

 This is called the slow 
start phase

 Initial rate is slow, but 
ramps up exponentially 
fast

Host A

R
T

T

Host B

time

Modified from: Computer Networking: A Top Down Approach 
4th edition.  Jim Kurose, Keith Ross
Addison-Wesley, July 2007.
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TCP: Adaptive Congestion Control

� If every packet is acknowledged in slow start then the 
window (and rate) doubles every RTT, Exponential increase.

� After the window reaches a threshold, it enters the congestion 
avoidance phase.

� In the congestion avoidance phase, upon receipt of an Ack it 
is increased by 1 segment every RTT, Linear increase

44Transport Layer...

TCP: Adaptive Congestion Control

� Decrease Algorithm
 If loss then set 

– new_threshold = (1/2)current window 
– Redo Slow Start from CWND = 1 Segment

� Congestion Window (CWND): CWND is a parameter that dynamically adjusts the 
amount of unacknowledged data a sender can have in flight at any given time. It acts 
as a throttle to prevent sending data faster than the network can handle.

� This is a distributed, asynchronous algorithm – has been shown to:
 optimize congested flow rates network wide!
 have desirable stability properties
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TCP Congestion Control:  
Congestion

� Congestion is detected upon 
timeout or receipt of duplicate 
ACKs

� Assume current cwnd
corresponds to available 
bottleneck link capacity

� Adjust congestion threshold = 
½ x current cwnd

� Reset cwnd to 1 (TCP Tahoe)
� Go back to slow-start
� Over several cycles expect to 

converge to congestion 
threshold equal to about ½ the 
available bottleneck link 
capacity

C
on

ge
st

io
n 

w
in

do
w

(c
w

nd
)

10

5

15

20

0

Round-trip times

Slow
start

Congestion
avoidance

Time-out

Threshold

Modified from: Communication Networks: 
Fundamentals Concepts and Key Architectures
Authors: A. Leon-Garcia and I. Widjaja

TCP: from slow start to congestion avoidance

Q: when should the exponential 
increase switch to linear? 

A: when cwnd gets to 1/2 of its 
value before timeout.

Implementation:
 variable ssthresh

 on loss event, ssthresh is set to 
1/2 of cwnd just before loss event

* Check out the online interactive exercises for more examples: http://gaia.cs.umass.edu/kurose_ross/interactive/

X

Transport Layer: 3‐46Modified from: 8th edition Jim Kurose, Keith Ross Pearson, 2020
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Variation of TCP Algorithms: Intertwined algorithms 
used commonly in TCP implementations

� TCP can use Go-Back-N or Selective Acknowledgements 
(SACK); SACK is most common

� Slow Start - Every ack increases the sender’s window (cwnd)
size by 1

� Congestion Avoidance - Reducing sender’s window size by 
half at experience of loss, and increase the sender’s window at 
the rate of about one packet per RTT (NOTE: not per ack)

� Fast Retransmit - Don’t wait for retransmit timer to go off, loss 
event is when 3 duplicate acks received

� Fast Recovery - Since duplicate ack came through, one packet 
has left the wire. Perform congestion avoidance, don’t jump down 
to slow start

Modified from : Paul D. Amer, University of Delaware
www.cis.udel.edu/~amer/856/tcpvariations-Amer.ppt
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TCP Animation: 
TCP Congestion Control

� https://media.pearsoncmg.com/aw/ecs_kurose_com
pnetwork_7/cw/content/interactiveanimations/tcp-
congestion/index.html
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Approximate TCP (Reno) performance

Example 1:  MSS = 1500 bytes, RTT=10ms, segment loss rate = 10-6

RTCP=1.8x 108 Bytes/sec = 1.4 Gb/s 

MSS=Maximum Segment Size=largest amount of data can be received in a single TCP segment
PL=packet loss probability

Example 2: Large DBP network: MSS = 1500 bytes, RTT=100ms, segment loss rate = 10-10

RTCP=1.8 109 Bytes/sec = 14.64 Gb/s

To achieve very high throughputs requires a very small segment loss probability, 
spurring on development of new TCPs for high speed environment

With PL = (#bits in segment)*BER
PL = 10-6 and 1500B segment

BER= ~8*10-10

Example 3: Large DBP network: MSS = 1500 bytes, RTT=100ms, BER= 10-7 & segment loss rate = 1.2*10-3   

RTCP=520kBytes/sec = ~4.64 Mb/s

See Average Throughput of TCP Connection for TCP Reno
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Approximate TCP performance
 For losses due to transmission (bit) errors an 

approach to reducing the packet loss rate at the transport layer

 Recover errored packets at the link layer
• Error control at the link layer increases the delay
• Error control at the link layer “hides” loss from the transport layer
• Trade-off delay for loss
• Cannot hide all losses
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Flavors of TCP
� TCP is end-to-end so many variations can co-exist in 

the Internet.
 TCP-Tahoe
 TCP-Reno (most commonly deployed variant)
 TCP-Vegas
 TCP-NewReno
 Fast TCP (FastTCP)
 BIC TCP (Binary Increase Congestion control)
 CUBIC TCP
 HighSpeed TCP (HSTCP) 
 Compound TCP (CTCP) 

– Microsoft algorithm that was introduced as part of the Windows Vista 
and Window Server 2008 TCP stack.
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Congestion Control

� Global Issue
� Demand for network resources must be 

controlled.
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Traffic and network engineering
� Network Engineering: Network engineering involves the design, 

implementation, and maintenance of computer networks. It focuses on the 
overall architecture, topology, and infrastructure of a network, including 
hardware, protocols, and connectivity. Network engineering involves network 
planning, device configuration, network optimization, security, and scalability.

� Network engineering involves long-term planning and design activities that 
are typically performed during the initial network design, deployment, or 
major upgrades. Network engineering builda foundation for the network 
infrastructure, considering factors like scalability, redundancy, and future 
growth.

� The goal of Network Engineering is to design and maintain a robust and 
scalable network infrastructure that meets the organization's requirements. 
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Traffic and network engineering
� Traffic Engineering is a subset of network engineering that specifically deals 

with the management and optimization of network traffic flows. It focuses on 
controlling and directing network traffic to improve performance, efficiency, 
and resource utilization. Traffic engineering involves modifying traffic 
patterns, implementings traffic management techniques, optimizings routing 
protocols.

� Traffic engineering mechanisms are implemented at the packet level and are  
dynamic and responsive, addressing real-time or near-real-time conditions 
within the network. 

� The goal of traffic engineering is to prevent congestion and optimize the flow 
of network traffic to achieve specific performance objectives. 

� TCP uses Adaptive Congestion Control 
� Other mechanisms will be discusses next.
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Congestion Control-Objective
Desired performance

Offered  Load

Carried 
Load or
Throughput

Offered  Load

Carried 
Load or
Throughput Possible performance

1.    Light traffic
Arrival Rate << R
Low delay
Can accommodate more

2. Knee (congestion onset)
Arrival rate approaches R 
Delay increases rapidly
Throughput begins to saturate

3. Congestion collapse
Arrival rate > R
Large delays, packet loss
Useful application
throughput drops

56Transport Layer...

Congestion Control

� Preventative 
Call Admission Control (CAC)
VC switching

� Reactive
Packet Dropping
TCP is reactive End-to-End
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Queue Management: FIFO Queueing

� All packet flows share the same buffer
� Transmission Discipline:  First-In, First-Out
� Buffering Discipline:  Discard arriving packets if buffer is full
� Called  Tail dropping 
� Alternatives:  

 Random discard; 
 Pushout head-of-line, i.e. oldest, packet

Packet buffer

Transmission
link

Arriving
packets

Packet discard
when full

(Tail dropping)

Modified from: Communication Networks: 
Fundamentals Concepts and Key Architectures
Authors: A. Leon-Garcia and I. Widjaja
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FIFO Queueing

� Cannot provide differential CoS to different packet flows
 Different packet flows interact strongly

� Difficult to determine performance delivered
� Finite buffer determines a maximum possible delay
� Buffer size determines loss probability

 But depends on arrival & packet length statistics
� Variation:  packet enqueueing based on queue thresholds

 some packet flows encounter blocking before others
 higher loss, lower delay

Modified from: Communication Networks: 
Fundamentals Concepts and Key Architectures
Authors: A. Leon-Garcia and I. Widjaja
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Bufferbloat
� Buffers are good, they are needed to queue packets.
� Too much of a good thing can be bad.
� Very large high speed buffers are now economically feasible. 
� TCP has a congestion control function, 

 TCP packets from the source to the destination can be excessively delayed in a large buffer at 
congested (bottleneck) interface.

 Then TCP then does not “learn” about the congestion in time and continues to transmit at 
the same rate. 

� TCP Acks can be delayed by large buffers in the reverse path,
 The source rate maybe reduced for lack of an ACK.
 If delay is too long, TCP may see that as a loss. 
 But TCP congestion control, i.e., slowing down, does not help relieve congestion in the 

reverse path.  
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Congestion Management:
Possible solutions (AQM)
� Routers set the Explicit Congestion Notification (E) bit in the 

TCP header
� Random Early Detection (RED) – more later
� ColDel (Controlled Delay)

 Packet arrives at buffer, timer started for this packet.
 When packet timer exceeds threshold, the packet is dropped.  (The 

time in the buffer is called sojourn time)
 A dropped packet tells TCP to slow down, mitigating  congestion at 

the bottlenecked link.
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Congestion Management:
Possible solutions (AQM)
� Proportional Integral controller Enhanced (PIE) 

 When a packet  arrives, the packet maybe droped.
 The drop probability is updated periodically based on how far the 

current latency is away from the target value and whether the 
queuing latency is currently trending up or down. 

 Implemented in DOCSIS 3.1

Modified from: Proportional Integral Controller Enhanced (PIE):
A Lightweight Control Scheme to Address the Bufferbloat Problem, Internet Engineering Task Force, RFC 8033  

Approaches towards congestion control

datadata
ACKs

ACKs

explicit congestion info

Network‐assisted congestion 
control:
 routers provide direct feedback 
to sending/receiving hosts with 
flows passing through congested 
router

 may indicate congestion level or 
explicitly set sending rate

Transport Layer: 3‐62Modified from: 8th edition Jim Kurose, Keith Ross Pearson, 2020



source

application
TCP

network
link

physical

destination

application
TCP

network
link

physical

Explicit congestion notification (ECN)
TCP deployments often implement network‐assisted congestion control:
 two bits in IP header (ToS field) marked by network router to indicate congestion

• policy to determine marking chosen by network operator

 congestion indication carried to destination
 destination sets E bit on ACK segment to notify sender of congestion

 involves both IP (IP header ECN bit marking) and TCP (TCP header C,E bit marking)

ECN=10 ECN=11

ECE=1

IP datagram

TCP ACK segment

Modified from: 8th edition Jim Kurose, Keith Ross Pearson, 2020

 TCP ECN, ATM, DECbit protocols not commonly deployed

64Transport Layer...

Active Queue Management: 
Random Early Detection 

� A Congestion Control Method for the Internet
� Implemented in routers
� Random Early Detection (RED)

 RED is an example of Active Queue Management (AQM)
 Monitor average ROUTER queue length 
 If average ROUTER queue length > threshold then Drop 

arriving packet with some probability p, (p=drop 
probability)

� This implicitly notifies the TCP source that there is 
congestion and the source then backs off 

� In the Internet “Random Early Detection” (RED) 
gateways use this basic concept with some added 
complexity
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Early or Overloaded Drop

Random early detection:
� Drop packets if short-term average of queue length 

exceeds threshold
� Packet drop probability increases linearly with queue 

length
� Option to just mark offending packets (DE)  
� Improves performance of cooperating TCP sources
� Increases loss probability of misbehaving sources

Modified from: Communication Networks: 
Fundamentals Concepts and Key Architectures
Authors: A. Leon-Garcia and I. Widjaja
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Random Early Detection (RED)
� Packets produced by TCP will reduce input rate in response 

to network congestion
� Early drop:  discard packets before buffers are full
� Random drop causes some sources to reduce rate before 

others, causing gradual reduction in aggregate input rate

Algorithm:
� Maintain running average of queue length, Qavg

� If Qavg < minthreshold, do nothing
� If Qavg > maxthreshold, drop packet
� If in between, drop packet according to probability
� Flows that send more packets are more likely to have packets 

dropped

Modified from: Communication Networks: 
Fundamentals Concepts and Key Architectures
Authors: A. Leon-Garcia and I. Widjaja

Packet Drop Profile in RED

Qavg
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Traffic Engineering – Directing Traffic
� MultiProtocol Label Switching (MPLS)
� Software-Defined Networking (SDN)

68Transport Layer...

MPLS Why?

� Provide a form a virtual circuit switching in the Internet for 
aggregates of flows not for individual hosts

� Label switching enables routing flexibility
� Virtual circuit switching enables QoS on aggregates of flows 
� Enables traffic engineering 

 Moving the traffic to where the bandwidth is
 Establish separate paths to meet different performance requirements 

of aggregated traffic flows
 Uses explicit routes for better load balancing.
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MPLS: Why?
� Improve IP forwarding performance - faster look-up 

using a fixed length identifier
� Decouple routing and forwarding components of IP
 Routing - to build and maintain forwarding tables
 Forwarding - directs packet from input interface to output 

interface, based on forwarding table look-up
MPLS can use different routing protocols for flow aggerates.

� Keeps IP addressing 

70Transport Layer...

MPLS: Why?
� Circuits are good (sometimes)

 Conventional IP routing selects one path, does not provide 
choice of route

 Label switching enables routing flexibility
 Survivability 

� Virtual Private Networks:  establish tunnels between 
user nodes
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MPLS: Why

� MPLS provides a tunneling mechanism to interconnect VPN 
sites

� MPLS can be generalized to provide
 Control plane for optical cross-connects
 Automatic protection switching, without SONET overheads
 Generalized MPLS (GMPLS)

– Time Slot Label
– Wavelength  Label
– MPLS (IP)  Label
– All can use the same infrastructure

72Transport Layer...

MPLS concepts- How?
� Just like Virtual Circuit Switching (but with different terms)
� Forwarding Equivalence Class (FEC) - group (Aggregate) of IP packets (range of IP 

addresses) that are forwarded in the same manner
� Label - assigned per FEC (like Virtual circuit ID)
� Label Switch Router (LSR) –

Here a routers acts Like a VC switch

� Edge (Ingress/Egress) LSRs assign/remove labels, can perform packet classification
� Core LSRs switch packets based on label value
� Existing IP routing protocols used to exchange routing info
� All LSRs use some kind of label distribution protocol (LDP) 

a signaling protocol
� Label Switched Path (LSP) - sequence of LSRs through which labeled packets go 

through to reach the egress LSR

Section 10.3
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MPLS Concepts-How?

Ingress LSR

Egress LSR

IGP domain, with a label 
distribution protocol

• LSP’s are unidirectional

•Route selection can use:

•Hop-by-hop routing 
(using IGP and a label distribution protocol)

•Explicit routing (ER) - ingress LSR specifies all LSR nodes that are in 
the path: statically (like source routing), or using link-state topology 
information)

•May be signaled using RSVP-TE or CR-LDP

•May be different from IGP-shortest path

•Explicit routing useful for traffic engineering

LSP

ER-LSP

Core LSR

MPLS forwarding tables

Link Layer: 6‐74

in         out                 out
label     label   dest    interface

6        - A       0

in         out                 out
label     label   dest    interface

10      6      A       1

12      9      D       0

in         out                 out
label     label   dest    interface

8        6      A       0

in         out                 out
label     label   dest    interface

10      A       0

12      D       0
8      A       1

R2

D

R3
R5

A

R6

R4

R1

0

1

00

1

0
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Forwarding Equivalence Class (FEC) 

� FEC: set of packets that are forwarded in the same manner
 Over the same path, with the same forwarding treatment
 Packets in an FEC have same next-hop router
 Packets in same FEC may have different network layer header
 Each FEC requires a single entry in the forwarding table

– Coarse Granularity FEC:  packets for all networks whose destination address matches a 
given address prefix

– Fine Granularity FEC: packets that belong to a particular application running between a 
pair of computers

IP
2 L

1
IP
2

IP
2

LER LERLSRLSR L
2

IP
2

L
3

IP
2L

1
IP
1

L
2

IP
1

L
3

IP
1

IP
1

IP
1

IP1

IP2

Modified from: Communication Networks: 
Fundamentals Concepts and Key Architectures
Authors: A. Leon-Garcia and I. Widjaja
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Label
• Value to determine next hop of the packet

Experimental (EXP)
• Used as CoS field - Limited QoS parameters, derived from IP header, diffserv, 
etc.

Bottom of Stack (S)
• Set to 1 if bottom of  label stack, otherwise 0

Time to Live (TTL)
• Eliminates loops and prevents packets from remaining in the network 
indefinitely 

MPLS Concepts- How?: 
Packet Header

PPP or Ethernet 
header IP header Remainder of PacketMPLS header

label Exp S TTL

20 3 1 5

Modified from: Computer Networking: A Top Down Approach 
4th edition.  Jim Kurose, Keith Ross
Addison-Wesley, July 2007.

-- Bits
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A B F G

Push

Swap and Push Pop and Swap

Pop

C D E

Swap

3 22 27 26 8 5 4IP IP

Label Stacking

� MPLS allows multiple labels to be stacked
 Ingress LSR performs label push (S=1 in label)
 Egress LSR performs label pop
 Intermediate LSRs can perform additional pushes & pops (S=0 in label) 

to create tunnels 
 Above figure has tunnel between A & G;  tunnel between B&F
 All flows in a tunnel share the same outer MPLS label

Modified from: Communication Networks: 
Fundamentals Concepts and Key Architectures
Authors: A. Leon-Garcia and I. Widjaja
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LSR 1 LSR 2

Label request for 10.5/16

(10.5/16, 8)

Label Distribution (Example)
� Label Distribution Protocols distribute label bindings 

between LSRs
upstream

downstream

Downstream-on-Demand Mode
 LSR1 becomes aware LSR2 is next-hop in an FEC
 LSR1 requests a label from LSR2 for given FEC
 LSR2 checks that it has next-hop for FEC, responds with 

label
Modified from: Communication Networks: 
Fundamentals Concepts and Key Architectures
Authors: A. Leon-Garcia and I. Widjaja
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MPLS Survivability

� IP routing recovers from faults in seconds to minutes
� Synchronous Optical Network (SONET) recovers in 50 ms
� MPLS targets in-between path recovery times
� Basic approaches:

 Restoration:  slower, but less capacity overhead
 Protection:  faster, but more protection capacity

� Repair methods:
 Global repair:  node that performs recovery (usually ingress node) may be 

far from fault, depends on failure notification message
 Local repair:  local node performs recovery (usually upstream from fault);  

does not require failure notification

Modified from: Communication Networks: 
Fundamentals Concepts and Key Architectures
Authors: A. Leon-Garcia and I. Widjaja
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MPLS Restoration

� No protection link capacity 
allocated prior to fault

� New paths are established 
after a failure occurs

� Traffic is rerouted onto the 
new paths

Normal operation

1

2 43

8

5 76

1

2 43

8

5 76

1

2 43

8

5 76

Failure occurs and is detected

Alternate path is established, and
traffic is re-routed

Modified from: Communication Networks: 
Fundamentals Concepts and Key Architectures
Authors: A. Leon-Garcia and I. Widjaja
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MPLS Protection
� Protection paths are setup as 

backups for working paths
 1+1:  working path has dedicated 

protection path
 1:1:  working path shares protection 

path

� Protection paths selected so that 
they are disjoint from working path

� Faster recovery than restoration

Traffic carried on working path

1

2 43

8

5 76

1

2 43

8

5 76

1

2 43

8

5 76

Failure on working path is detected

Traffic is switched to the protection path

Working path

Protection
path

Modified from: Communication Networks: 
Fundamentals Concepts and Key Architectures
Authors: A. Leon-Garcia and I. Widjaja
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FEBA IGDC JH

LightpathTDM circuit

TDM circuit -Slot

Virtual circuit Virtual circuit

Lambda cross-connect
TDM switch LSR

GMPLS & Hierarchical LSPs

� GMPLS allows node with multiple switching technologies to be 
controlled by one control component

� Notion of “label” generalized:
 TDM slot, WDM wavelength, optical fiber port

� LSP Hierarchy extended to generalized labels”
 MPLS LSP over SONET circuit over wavelength path over fiber

Modified from: Communication Networks: 
Fundamentals Concepts and Key Architectures
Authors: A. Leon-Garcia and I. Widjaja



 Internet network layer: historically implemented via 
distributed, per‐router control approach:
• monolithic router contains switching hardware, runs proprietary 
implementation of Internet standard protocols (IP, RIP, IS‐IS, OSPF, 
BGP) in proprietary router OS (e.g., Cisco IOS)

• different “middleboxes” for different network layer functions: 
firewalls, load balancers, NAT boxes, ..

 ~2005: renewed interest in rethinking network control plane

Software defined networking (SDN)

Network Layer: 5‐83Modified from: 8th edition Jim Kurose, Keith Ross Pearson, 2020

Per‐router control plane
Individual routing algorithm components in each and every router 
interact in the control plane to computer forwarding tables

Routing
Algorithm

data
plane

control
plane

1

2

0111

values in arriving 
packet header

3

Network Layer: 4‐84Modified from: 8th edition Jim Kurose, Keith Ross Pearson, 2020



Software‐Defined Networking (SDN) control plane
Remote controller computes, installs forwarding tables in routers

data
plane

control
plane

Remote Controller

CA

CA CA CA CA

1

2

0111

3

values in arriving 
packet header

Network Layer: 4‐85

CA=control agent

Modified from: 8th edition Jim Kurose, Keith Ross Pearson, 2020

Why a logically centralized control plane?

 easier network management: avoid router misconfigurations, 
greater flexibility of traffic flows

 table‐based forwarding allows “programming” routers
• centralized “programming” easier: compute tables centrally and distribute

• distributed “programming” more difficult: compute tables as result of 
distributed algorithm (protocol) implemented in each‐and‐every router 

 open (non‐proprietary) implementation of control plane
• foster innovation: let 1000 flowers bloom

Software defined networking (SDN)

Network Layer: 5‐86Modified from: 8th edition Jim Kurose, Keith Ross Pearson, 2020
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Traffic engineering: difficult with traditional routing

Network Layer: 5‐87

Q: what if network operator wants u‐to‐z traffic to flow along 
uvwz, rather than uxyz?

A: need to re‐define link weights so traffic routing algorithm 
computes routes accordingly (or need a new routing algorithm)!

link weights are only control “knobs”: not much control!
Modified from: 8th edition Jim Kurose, Keith Ross Pearson, 2020
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Traffic engineering: difficult with traditional routing

Network Layer: 5‐88

Q: what if network operator wants to split  u‐to‐z 
traffic along uvwz and uxyz (load balancing)?
A: can’t do it (or need a new routing algorithm)

Modified from: 8th edition Jim Kurose, Keith Ross Pearson, 2020



Traffic engineering: difficult with traditional routing

Network Layer: 5‐89

Q: what if w wants to route blue and red traffic differently from w to z?

A: can’t do it (with destination‐based forwarding, and LS, DV routing)

2

2

1
3

1

1

2

5
3

5

v w

u z

yx

Generalized forwarding can be used to achieve any routing 
desired

Modified from: 8th edition Jim Kurose, Keith Ross Pearson, 2020
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OpenFlow
� OpenFlow is a communication protocol that enables the centralized 

control of network switches and routers by external software 
known as a controller. It decouples the control plane (decision-
making) from the data plane (forwarding of traffic) in network 
devices.

� Key components of OpenFlow include:
 Flow Table: generalized forwarding: |Match|Action|Counters|
 Controller: The controller is responsible for managing the flow tables in network 

devices. It communicates with these devices using the OpenFlow protocol to install, 
update, and remove flow entries based on network policies and conditions.

� Enables software-defined networking (SDN) 

Modified from: Computer Networking: A Top Down Approach 
8th edition.  Jim Kurose, Keith Ross



Software defined networking (SDN)

Network Layer: 5‐91

data
plane

control
plane

Remote Controller

CA

CA CA CA CA

1: generalized “flow‐based” 
forwarding (e.g., OpenFlow) 

2. control, data 
plane separation

3. control plane functions 
external to data‐plane 
switches

…routing access 
control

load
balance4. programmable 

control 
applications

Flow table

match action

Software defined networking (SDN)

Network Layer: 5‐92

Data‐plane switches:
 fast, simple, commodity switches 

implementing generalized data‐plane 
forwarding in hardware

 flow (forwarding) table computed, 
installed under controller supervision

 API for table‐based switch control 
defines what is controllable, what is not

 protocol for communicating with 
controller  data

plane

control
plane

SDN Controller
(network operating system)

…
routing

access 
control

load
balance

southbound API

northbound API

SDN-controlled switches

network-control applications



Software defined networking (SDN)

Network Layer: 5‐93

SDN controller (network OS): 
 maintain network state 
information

 interacts with network control 
applications “above” via 
northbound API

 interacts with network switches 
“below” via southbound API

 implemented as distributed system 
for performance, scalability, fault‐
tolerance, robustness

data
plane

control
plane

SDN Controller
(network operating system)

…
routing

access 
control

load
balance

southbound API

northbound API

SDN-controlled switches

network-control applications

Software defined networking (SDN)

Network Layer: 5‐94

network‐control apps:

 “brains” of control:  
implement control functions 
using lower‐level services, API 
provided by SDN controller

 unbundled: can be provided by 
3rd party: distinct from routing 
vendor, or SDN controller

data
plane

control
plane

SDN Controller
(network operating system)

…
routing

access 
control

load
balance

southbound API

northbound API

SDN-controlled switches

network-control applications

Modified from: 8th edition Jim Kurose, Keith Ross Pearson, 2020



Components of SDN controller

Network Layer: 5‐95

Network-wide distributed, robust  state management

Communication to/from controlled devices

Link-state info switch infohost info

statistics flow tables…  

…  

OpenFlow SNMP…  

network 
graph intent

RESTful
API

…  
Interface, abstractions for network control apps

SDN
controller

routing access 
control

load
balance

communication: communicate 
between SDN controller and 
controlled switches

network‐wide state 
management : state of 
networks links, switches, 
services: a distributed database

interface layer to network 
control apps: abstractions API

Modified from: 8th edition Jim Kurose, Keith Ross Pearson, 2020

SDN: control/data plane interaction example

Network Layer: 5‐96

Link-state info switch infohost info

statistics flow tables
…  

…  

OpenFlow SNMP
…  

network 
graph intent

RESTful
API

…  

Dijkstra’s link-state 
routing

s1
s2

s3
s4

S1, experiencing link failure uses 
OpenFlow port status message to 
notify controller

1

SDN controller receives OpenFlow 
message, updates link status info

2

Dijkstra’s routing algorithm 
application has previously registered 
to be called when ever link status 
changes.  It is called.

3

Dijkstra’s routing algorithm 
access network graph info, link 
state info in controller,  computes 
new routes

4
1

2

3

4

Modified from: 8th edition Jim Kurose, Keith Ross Pearson, 2020



SDN: control/data plane interaction example

Network Layer: 5‐97

Link-state info switch infohost info

statistics flow tables
…  

…  

OpenFlow SNMP
…  

network 
graph intent

RESTful
API

…  

Dijkstra’s link-state 
routing

s1
s2

s3
s4

link state routing app interacts 
with flow‐table‐computation 
component in SDN controller, 
which computes new flow tables 
needed

5

controller uses OpenFlow to 
install new tables in switches 
that need updating

6

5

1

2

3

4

Modified from: 8th edition Jim Kurose, Keith Ross Pearson, 2020

 hardening the control plane: dependable, reliable, performance‐scalable, 
secure distributed system
• robustness to failures: leverage strong theory of reliable distributed system for 
control plane

• dependability, security: “baked in” from day one? 

 networks, protocols meeting mission‐specific requirements
• e.g., real‐time, ultra‐reliable, ultra‐secure

 Internet‐scaling: beyond a single AS

 SDN maybe critical in 5G and beyond cellular networks by providing 
necessary flexibility, programmability, and control for network operators to 
efficiently deploy and manage the complex and diverse requirements of 5G 
and beyond networks.

SDN:  selected challenges

Network Layer: 5‐98Modified from: 8th edition Jim Kurose, Keith Ross Pearson, 2020



 SDN‐computed versus router‐computer forwarding tables:
• just one example of logically‐centralized‐computed versus protocol 
computed

 one could imagine SDN‐computed congestion control: 
• controller sets sender rates based on router‐reported (to 
controller) congestion levels 

SDN and the future of traditional network protocols

Network Layer: 5‐99

How will implementation of 
network functionality (SDN 
versus protocols) evolve?

Modified from: 8th edition Jim Kurose, Keith Ross Pearson, 2020

100Transport Layer...

Synthesis: a day in the life of a web request

� Putting-it-all-together: synthesis!
 goal: identify, review, understand protocols (at 

all layers) involved in seemingly simple 
scenario: requesting www page

 scenario: student attaches laptop to campus 
network, requests/receives www.google.com 

Modified from: Computer Networking: A Top Down Approach 
8th edition.  Jim Kurose, Keith Ross
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A day in the life: scenario

Comcast network 
68.80.0.0/13

Google’s network 
64.233.160.0/19 64.233.169.105

web server

DNS server

school network 
68.80.2.0/24

web page

browser

Modified from: Computer Networking: A Top Down Approach 
8th edition.  Jim Kurose, Keith Ross
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router
(runs DHCP)

A day in the life… connecting to the Internet

� connecting laptop needs to 
get its own IP address, addr 
of first-hop router, addr of 
DNS server: use DHCP

DHCP
UDP

IP
Eth
Phy

DHCP

DHCP

DHCP

DHCP

DHCP

DHCP
UDP

IP
Eth
Phy

DHCP

DHCP

DHCP

DHCPDHCP

 DHCP request encapsulated 
in UDP, encapsulated in IP, 
encapsulated in 802.3 
Ethernet
 Ethernet frame broadcast 

(dest: FFFFFFFFFFFF) on LAN, 
received at router running 
DHCP server

 Ethernet demuxed to IP 
demuxed, UDP demuxed to 
DHCP 

Modified from: Computer Networking: A Top Down Approach 
8th edition.  Jim Kurose, Keith Ross
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router
(runs DHCP)

� DHCP server formulates 
DHCP ACK containing client’s 
IP address, IP address of 
first-hop router for client, 
name & IP address of DNS 
server

DHCP
UDP

IP
Eth
Phy

DHCP

DHCP

DHCP

DHCP

DHCP
UDP

IP
Eth
Phy

DHCP

DHCP

DHCP

DHCP

DHCP

 encapsulation at DHCP 
server, frame forwarded 
(switch learning) through 
LAN, demultiplexing at client

Client now has IP address, knows name & addr of DNS 
server, IP address of its first-hop router

 DHCP client receives DHCP 
ACK reply

A day in the life… connecting to the Internet

Modified from: Computer Networking: A Top Down Approach 
8th edition.  Jim Kurose, Keith Ross
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router
(runs DHCP)

A day in the life… ARP (before DNS, before HTTP)

� before sending HTTP request, need IP 
address of www.google.com:  DNSDNS

UDP
IP

Eth
Phy

DNS

DNS

DNS

 DNS query created, encapsulated in 
UDP, encapsulated in IP, encapsulated in 
Eth.  To send frame to router, need 
MAC address of router interface: ARP

 ARP query broadcast, received by 
router, which replies with ARP reply 
giving MAC address of router 
interface

 client now knows MAC address of 
first hop router, so can now send 
frame containing DNS query 

ARP query

Eth
Phy

ARP

ARP

ARP reply

Modified from: Computer Networking: A Top Down Approach 
8th edition.  Jim Kurose, Keith Ross
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router
(runs DHCP)

DNS
UDP

IP
Eth
Phy

DNS

DNS

DNS

DNS

DNS

 IP datagram containing DNS 
query forwarded via LAN 
switch from client to 1st hop 
router

 IP datagram forwarded from campus 
network into Comcast network, routed 
(tables created by RIP, OSPF, IS-IS and/or 
BGP routing protocols) to DNS server

 demuxed to DNS server
 DNS server replies to client with IP 

address of www.google.com 

Comcast network 
68.80.0.0/13

DNS server

DNS
UDP

IP
Eth
Phy

DNS

DNS

DNS

DNS

A day in the life… using DNS

Modified from: Computer Networking: A Top Down Approach 
8th edition.  Jim Kurose, Keith Ross
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router
(runs DHCP)

A day in the life…TCP connection carrying HTTP

HTTP
TCP
IP

Eth
Phy

HTTP

 to send HTTP request, 
client first opens TCP 
socket to web server

 TCP SYN segment (step 1 in 3-
way handshake) inter-domain 
routed to web server

 TCP connection established!64.233.169.105

web server

SYN

SYN

SYN

SYN

TCP
IP

Eth
Phy

SYN

SYN

SYN

SYNACK

SYNACK

SYNACK

SYNACK

SYNACK

SYNACK

SYNACK  web server responds with TCP 
SYNACK (step 2 in 3-way 
handshake)
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router
(runs DHCP)

A day in the life… HTTP request/reply 

HTTP
TCP
IP

Eth
Phy

HTTP

 HTTP request sent into 
TCP socket

 IP datagram containing HTTP 
request routed to 
www.google.com

 IP datagram containing HTTP 
reply routed back to client64.233.169.105

web server

HTTP
TCP
IP

Eth
Phy

 web server responds with 
HTTP reply (containing web 
page)

HTTP

HTTP

HTTPHTTP

HTTP

HTTP

HTTP

HTTP

HTTP

HTTP

HTTP

HTTP

HTTP

 web page finally (!!!) displayed

Modified from: Computer Networking: A Top Down Approach 
8th edition.  Jim Kurose, Keith Ross
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Internet Architecture: Revisited

Three cornerstone beliefs:
 simple connectivity
 IP protocol: that narrow waist
 intelligence, complexity at network 

edge

Modified from: 8th edition Jim Kurose, Keith Ross Pearson, 2020
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IP Hourglass Architecture: Revisited

Modified from: Steve Deering
http://www.iab.org/Documents/hourglass-london-ietf.pdf

New protocols require more 
functionality from underlying 
networks

1) Doubles number
of service interfaces
2) Requires changes
above & below
3) Creates interop problems

Someday??

Modified from: 8th edition Jim Kurose, Keith Ross Pearson, 2020

The end‐end argument
 some network functionality (e.g., reliable data transfer, congestion) 
can be implemented in network, or at network edge

end‐end implementation of reliable data transferapplication
transport
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data link
physical

application
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application
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application
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link

physical
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physical

network
link

physical

network
link

physical

hop‐by‐hop (in‐network) implementation of reliable data transfer
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Where’s the intelligence?

20th century phone net:
• intelligence/computing at 

network switches

Internet (pre‐2005)
• intelligence, computing at 

edge

Internet (post‐2005)
• programmable network devices
• intelligence, computing, massive 
application‐level infrastructure at edge
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Challenges 

� Challenges
 Trust
 Network and configuration management
 Scalability and control of system complexity
 Predictable performance
 Performance evaluation and comparison of different 

architectures

� Approaches and mechanisms are now being 
woven together into coherent, overarching 
candidate designs for a future Internet. 


