
1Transport Layer...

Transport Protocols and
Network Control #8

2Transport Layer...

Outline
� Goals:

 Understand principles behind transport layer services
 Multiplexing/demultiplexing (Ports/Sockets)

� Examples of Transport Protocols
 UDP
 TCP

 Note there are other transport layer protocols
� Network control

 Active Queue Management
 MPLS
 SDN

3Transport Layer...

Transport services and protocols
� Provide logical communication

between app processes running
on different hosts

� Transport protocols run in end
systems
 send side: breaks app

messages into segments,
passes to network layer

 rcv side: reassembles
segments into messages,
passes to app layer

� More than one transport
protocol available to apps
 Internet: TCP, RTP, UDP

and others

application
transport
network
data link
physical

application
transport
network
data link
physical

Modified from: Computer Networking: A Top Down Approach
4th edition. Jim Kurose, Keith Ross
Addison-Wesley, July 2007.

Transport layer packet=segment

4Transport Layer...

Sockets

� A socket is programming
interface that allows
communication between
applications running on
different computers or
devices.

� A socket is identified by an
IP address and a port
number (which identifies a
specific application or
service running on that
device). The combination of
an IP address and port
number is used to establish
a unique endpoint for
communication.

5Transport Layer...

How multiplexing works
� IP datagrams

 each datagram has source
IP address, destination IP
address

 each datagram carries 1
transport-layer segment

 each segment has a:
– source port number
– destination port number

� host uses IP addresses & port
numbers to direct segment to
appropriate socket

source port # dest port #

32 bits

application
data
(message)

other header fields

TCP/UDP segment format

From: Computer Networking: A Top Down Approach
4th edition. Jim Kurose, Keith Ross
Addison-Wesley, July 2007.

6Transport Layer...

Ports & Sockets: Multiplexing

Modified from: Computer and Communication Networks.
Nader F. Mir Prentice Hall.

7Transport Layer...

Ports
� Port address
� Ports are 16 bits
� The port address is internal to the host (indicates application)
� A socket address is unique in the Internet
� Once an application creates a socket and TCP connection then a write is

used to send to the network and a read used to receive from the
network.

8Transport Layer...

Ports
� Ports are 16 bits
� Well Known Ports are those from

0 through 1023.
� The Registered Ports are those

from 1024 through 49151
� The Dynamic and/or Private Ports

are those from 49152 through 65535

� There are some common port numbers
 Example:

– File data transfer (21)
– TELNET (23)
– Simple Mail Transfer Protocol (SMTP)(25)
– Remote Procedure Call [RPC] (111)
– Web servers listens on port 80

http://www.iana.org/assignments/port-numbers

9Transport Layer...

Transport Layer: UDP
� UDP

 Connectionless
 No congestion control
 No acknowledgments
 Packets may be

– lost
– delivered out of order to app

 No handshaking between UDP sender,
receiver

 Each UDP segment handled
independently of others

 UDP checksum covers header and data
 optional, but commonly used

Modified from: Computer Networks, 3rd
Edition, A.S. Tanenbaum. Prentice Hall, 1996

Modified from: Computer and Communication Networks.
Nader F. Mir Prentice Hall.

10Transport Layer...

Ports and UDP

 UDP socket, must specify
 destination IP address
 destination port #

 When receiving host receives UDP segment:
 Checks destination port # in segment
 Directs UDP segment to socket with that port #
 IP/UDP datagrams with same dest. port #, but different source

IP addresses and/or source port numbers will be directed to
same socket at receiving host

Modified from: 8th edition Jim Kurose, Keith Ross Pearson, 2020

11Transport Layer...

UDP Use Cases
� Streaming multimedia apps
 loss tolerant
 rate sensitive

� DNS
� Simple Network Management

Protocol(SNMP)
� Reliable transfer over UDP: add

reliability at application layer
application-specific error recovery!

Modified from: Computer Networking: A Top Down Approach
4th edition. Jim Kurose, Keith Ross
Addison-Wesley, July 2007.

UDP

 “no frills” protocol:
• segments may be lost, delivered out of order

• best effort service: “send and hope for the best”

 UDP has its plusses:
• no setup/handshaking needed (no RTT incurred)

• can function when network service is compromised

• checksum on covers the header and data

 build additional functionality on top of UDP in application layer
(e.g., HTTP/3)

Modified from: 8th edition Jim Kurose, Keith Ross Pearson, 2020

13Transport Layer...

Transport Layer: TCP
� TCP provides for assured delivery of PDU’s
� TCP Services
Connection oriented (end-to-end)

– Need call processing (in end points)
(not inside the network)

– Information on the status of each
connection is available

Reliable data transfer
– Uses acknowledgments
– Uses sequence numbers

TCP: overview RFCs: 793,1122, 2018, 5681, 7323

 cumulative ACKs

 pipelining:
• TCP congestion and flow control
set window size

 connection‐oriented:
• handshaking (exchange of control
messages) initializes sender,
receiver state before data exchange

 flow controlled:
• sender will not overwhelm receiver

 point‐to‐point:
• one sender, one receiver

 reliable, in‐order byte
steam:
• no “message boundaries"

 full duplex data:
• bi‐directional data flow in
same connection

• MSS: maximum segment size

Transport Layer: 3‐14
Modified from: 8th edition Jim Kurose, Keith Ross Pearson, 2020

Connection‐oriented demultiplexing

 TCP socket identified by
4‐tuple:
• source IP address
• source port number

• dest IP address
• dest port number

 server may support many
simultaneous TCP sockets:
• each socket identified by its
own 4‐tuple

• each socket associated with
a different connecting client

 demux: receiver uses all
four values (4‐tuple) to
direct segment to
appropriate socket

Transport Layer: 3‐15
Modified from: 8th edition Jim Kurose, Keith Ross Pearson, 2020

16Transport Layer...

Connection management

� Connection management allocates, synchronizes, and
deallocates states while allowing the communicating
parties to negotiate their operation modes and
resources needed for their association.

TCP header

source port # dest port #

32 bits

not
used receive window flow control: # bytes

receiver willing to accept

sequence number
segment seq #: counting
bytes of data into bytestream (not
segments or packets like in DLC!)

application
data

(variable length)

data sent by
application into
TCP socket

A

acknowledgement number

ACK: seq # of next expected
byte; A bit: this is an ACK

options (variable length)

TCP options

head
lenlength (of TCP header)

checksumInternet checksum
Covers: Header and Data

RST, SYN, FIN: connection
management

FSR

Urg data pointer

PUC E

C, E: congestion notification

Modified from: 8th edition Jim Kurose, Keith Ross Pearson, 2020

TCP sequence numbers, ACKs

Sequence numbers:

• byte stream “number” of
first byte in segment’s data

source port # dest port #

sequence number

acknowledgement number

checksum

rwnd

urg pointer

outgoing segment from receiver

A

sent
ACKed

sent, not-
yet ACKed
(“in-flight”)

usable
but not
yet sent

not
usable

window size(Bytes)
N

sender sequence number space

source port # dest port #

sequence number

acknowledgement number

checksum

rwnd

urg pointer

outgoing segment from sender

Acknowledgements:

• seq # of next byte expected
from other side

• cumulative ACK

Q: how receiver handles out‐of‐order
segments

• A: TCP spec doesn’t say, ‐ up to
implementor (common to use “Selective Repeat”)

Modified from: 8th edition Jim Kurose, Keith Ross Pearson, 2020

19Transport Layer...

TCP Header

� Source/Destination identify local end points
� Window size (in Bytes) used to dynamically

control source rate into the network
� Checksum, checks the header and data

20Transport Layer...

TCP
� Stream-oriented

 TCP collect user bytes and forms segments to be
passed on to the IP layer

 Sequence number based on byte counts
� Push

 Upper layer protocol send Push message to TCP
to force it to send all the bytes collected in a
segment

� Resequencing
 IP may deliver information out of order, TCP

must put it back together

21Transport Layer...

TCP Header

From: “Computer Networks, 3rd Edition, A.S.
Tanenbaum. Prentice Hall, 1996

Modified from: Computer and Communication Networks.
Nader F. Mir Prentice Hall.

Urgent data pointer is used when a sender
wants to send data that requires immediate
attention at the receiver's end, it can mark that
data as "urgent."

The urgent data could be used, for example,
to send time-critical control messages or
notifications.

The urgent data mechanism in TCP is
optional and not commonly used.

22Transport Layer...

TCP
� Inclusive Acknowledgment

 Acknowledgment number, acknowledges all
received bytes prior to the one specified

� Flow control
 Window size is in bytes
 Transmit N-bytes and the must wait for

acknowledgment
 Window size is dynamic, i.e., it changes based on

“knowledge” of availability of buffer space in
receiver and network congestion

23Transport Layer...

TCP
� Multiplexing
Allows multiple sessions within one host

to be transmitted over an IP path
(ports/sockets)

� Full duplex
� Graceful close
All traffic in flow is acknowledged before

the session is ended.

24Transport Layer...From: “Computer Networks, 3rd Edition, A.S. Tanenbaum.
Prentice Hall, 1996

TCP
Session
Processing

TCP Connection
Management:
Finite State
Machine

25Transport Layer...

Host A Host B

From: Communications Networks, Garcia and
Widaja, McGraw Hill, 2000

TCP Connection Setup: Three-way Handshake

26Transport Layer...

tcpdump
http connection set up

� Output columns are Time SourceIP.SourcePort > DestIP.DestPort Flags ...
� 11:13:38.524046 x.x.x.x.3600 > 64.233.167.104.80: S

2021815674:2021815674(0) win 64240 <mss 1460,nop,nop,sackOK> (DF)
 First packet is from client host x.x.x.x.
 Client host is using 3600 as a source port.
 Destination host is 64.233.167.104 on port 80 (that’s Google's webserver).
 The packet with flag S is a TCP SYN packet, means in words "i'd like to

open a TCP connection with you“
 Client host will have a temporarily opened port (3600) in order to receive

data back from the server.
� 11:13:38.558668 64.233.167.104.80 > x.x.x.x.3600: S

3132749891:3132749891(0) ack 2021815675 win 8190 <mss 1460>
 Second packet is sent from Google webserver. This packet comes from

64.233.167.104 source port 80, and contains SYN/ACK
 TCP flags sent to client port 3600, means "ok you may open a connection

with me".
� 11:13:38.559105 x.x.x.x.3600 > 64.233.167.104.80: . ack 1 win 64240 (DF)

 Third packet is the client host sending a last ACK packet, which means "ok
we are now connected". Source and dest ports must stay the same here.

27Transport Layer...

Example
Wireshark Trace-Session Establishment (Set-up)

Wireshark Trace-Session Close (Tear-down)

Modified from: Basic TCP analysis with Wireshark, by Waleed Tageldeen:
https://codeburst.io/basic-tcp-analysis-with-wireshark-b99ed54fa499

There are other Session Close (or Connection Termination) sequences

Session
Establishment

28Transport Layer...

Wireshark traces: Open/Close
� From Basic TCP analysis with Wireshark, by Waleed

Tageldeen: https://codeburst.io/basic-tcp-analysis-
with-wireshark-b99ed54fa499

� Connection Establishment:
 https://github.com/chrissanders/packets/blob/master/tc

p_handshake.pcapng

� Connection Close
 https://github.com/chrissanders/packets/blob/master/tc

p_teardown.pcapng

29Transport Layer...

Example:
A http TCP Session: Start-to-Finish

Wireshark Trace

30Transport Layer...From: “Computer Networks, 3rd Edition, A.S.
Tanenbaum. Prentice Hall, 1996

TCP Window Management
Flow Control

Called Window
Advertisement

2K sent to
Application

Initial Receiver State

2048 Bytes available

31Transport Layer...

TCP Animation:
TCP Window Management

� http://www.ccs-
labs.org/teaching/rn/animations/flow/

32Transport Layer...

Silly Window Syndrome
� Situation:

 Transmitter sends large amount of data
 Receiver buffer depleted slowly, so buffer fills
 Every time a few bytes read from buffer, a new

advertisement to transmitter is generated
 Sender immediately sends data & fills buffer
 Many small, inefficient segments are transmitted

� Solution:
 Receiver does not advertize window until window is at

least ½ of receiver buffer or maximum segment size
 Transmitter refrains from sending small segments

From: Communication Networks:
Fundamentals Concepts and Key Architectures
Authors: A. Leon-Garcia and I. Widjaja

33Transport Layer...

Delay-BW Product & Advertised Window Size
� Suppose RTT=100 ms, R=2.4 Gbps

 # bits in pipe = 30 Mbytes

� If single TCP process occupies pipe, then
required advertised window size is
 RTT x Bit rate = 30 Mbytes
 Normal maximum window size is 65535 bytes
 With normal max window efficiency ~ 0.2%

� Solution: Window Scale Option
 Window size up to 65535 x 214 = 1 Gbyte allowed
 Requested in SYN segment
 Uses options Fields

From: Communication Networks:
Fundamentals Concepts and Key Architectures
Authors: A. Leon-Garcia and I. Widjaja

34Transport Layer...

TCP: Retransmission Procedures

� TCP uses a positive acknowledgment
� Selecting timeout timer value
Delay unknown a-priori
Segments may be lost making

measurements of the round-trip time
(RTT) difficult, i.e., measurement of RTT
can have a large variance

TCP round trip time, timeout

Q: how to set TCP timeout
value?

 longer than RTT, but RTT varies!

 too short: premature timeout,
unnecessary retransmissions

 too long: slow reaction to
segment loss

Q: how to estimate RTT?
SampleRTT:measured time
from segment transmission until
ACK receipt
• ignore retransmissions

SampleRTT will vary, want
estimated RTT “smoother”
• average several recent
measurements, not just current
SampleRTT

Modified from: 8th edition Jim Kurose, Keith Ross Pearson, 2020

TCP round trip time, timeout
EstimatedRTT = (1-)*EstimatedRTT + *SampleRTT

 exponential weighted moving average (EWMA)

 influence of past sample decreases exponentially fast

 typical value: = 0.125

RT
T

(m
illi

se
co

nd
s)

RTT: gaia.cs.umass.edu to fantasia.eurecom.fr

sampleRTT
EstimatedRTT

time (seconds)
Modified from: 8th edition Jim Kurose, Keith Ross Pearson, 2020

Note: first order infinite
impulse response
(recursive) filter
y[n]=(1-)y[n-1]+x[n]

TCP round trip time, timeout

 timeout interval: EstimatedRTT plus “safety margin”

• large variation in EstimatedRTT: want a larger safety margin

TimeoutInterval = EstimatedRTT + 4*DevRTT

estimated RTT “safety margin”

* Check out the online interactive exercises for more examples: http://gaia.cs.umass.edu/kurose_ross/interactive/

DevRTT = (1-)*DevRTT + *|SampleRTT-EstimatedRTT|

(typically, = 0.25)

DevRTT: EWMA of SampleRTT deviation from EstimatedRTT:

Modified from: 8th edition Jim Kurose, Keith Ross Pearson, 2020

Congestion:

 informally: “too many sources sending too
much data too fast for network to handle”

manifestations:

• long delays (queueing in router buffers)
• packet loss (buffer overflow at routers)

 different from flow control!

Principles of congestion control

congestion control (global):
too many senders, sending too fast for network

flow control (local):
one sender too fast for one
receiver

 a top‐10 problem!

Modified from: 8th edition Jim Kurose, Keith Ross Pearson, 2020

End‐end congestion control:

 no explicit feedback from
network

 congestion inferred from
observed loss, delay

Approaches towards congestion control

datadata
ACKs

ACKs

 approach taken by TCP

Transport Layer: 3‐39Modified from: 8th edition Jim Kurose, Keith Ross Pearson, 2020

40Transport Layer...

TCP:
Adaptive Congestion Control

� If time out TCP assumes congestion caused loss
� If the network is congested then want to slow the

source down to reduce congestion
� When the network congestion disappears then

want to allow the source to send faster

41Transport Layer...

TCP: Adaptive Congestion Control

� Turn efficiency calculation of data link
control algorithms around

� Use window size to control the flow of
traffic into the network

42Transport Layer...

TCP: Adaptive Congestion Control
� Increase algorithm

 If acknowledgement
received then increase
the window size by one
segment, i.e.,

 new_window =
old_window + 1
segment

 This is called the slow
start phase

 Initial rate is slow, but
ramps up exponentially
fast

Host A

R
T

T

Host B

time

Modified from: Computer Networking: A Top Down Approach
4th edition. Jim Kurose, Keith Ross
Addison-Wesley, July 2007.

43Transport Layer...

TCP: Adaptive Congestion Control

� If every packet is acknowledged in slow start then the
window (and rate) doubles every RTT, Exponential increase.

� After the window reaches a threshold, it enters the congestion
avoidance phase.

� In the congestion avoidance phase, upon receipt of an Ack it
is increased by 1 segment every RTT, Linear increase

44Transport Layer...

TCP: Adaptive Congestion Control

� Decrease Algorithm
 If loss then set

– new_threshold = (1/2)current window
– Redo Slow Start from CWND = 1 Segment

� Congestion Window (CWND): CWND is a parameter that dynamically adjusts the
amount of unacknowledged data a sender can have in flight at any given time. It acts
as a throttle to prevent sending data faster than the network can handle.

� This is a distributed, asynchronous algorithm – has been shown to:
 optimize congested flow rates network wide!
 have desirable stability properties

45Transport Layer...

TCP Congestion Control:
Congestion

� Congestion is detected upon
timeout or receipt of duplicate
ACKs

� Assume current cwnd
corresponds to available
bottleneck link capacity

� Adjust congestion threshold =
½ x current cwnd

� Reset cwnd to 1 (TCP Tahoe)
� Go back to slow-start
� Over several cycles expect to

converge to congestion
threshold equal to about ½ the
available bottleneck link
capacity

C
on

ge
st

io
n

w
in

do
w

(c
w

nd
)

10

5

15

20

0

Round-trip times

Slow
start

Congestion
avoidance

Time-out

Threshold

Modified from: Communication Networks:
Fundamentals Concepts and Key Architectures
Authors: A. Leon-Garcia and I. Widjaja

TCP: from slow start to congestion avoidance

Q: when should the exponential
increase switch to linear?

A: when cwnd gets to 1/2 of its
value before timeout.

Implementation:
 variable ssthresh

 on loss event, ssthresh is set to
1/2 of cwnd just before loss event

* Check out the online interactive exercises for more examples: http://gaia.cs.umass.edu/kurose_ross/interactive/

X

Transport Layer: 3‐46Modified from: 8th edition Jim Kurose, Keith Ross Pearson, 2020

47Transport Layer...

Variation of TCP Algorithms: Intertwined algorithms
used commonly in TCP implementations

� TCP can use Go-Back-N or Selective Acknowledgements
(SACK); SACK is most common

� Slow Start - Every ack increases the sender’s window (cwnd)
size by 1

� Congestion Avoidance - Reducing sender’s window size by
half at experience of loss, and increase the sender’s window at
the rate of about one packet per RTT (NOTE: not per ack)

� Fast Retransmit - Don’t wait for retransmit timer to go off, loss
event is when 3 duplicate acks received

� Fast Recovery - Since duplicate ack came through, one packet
has left the wire. Perform congestion avoidance, don’t jump down
to slow start

Modified from : Paul D. Amer, University of Delaware
www.cis.udel.edu/~amer/856/tcpvariations-Amer.ppt

48Transport Layer...

TCP Animation:
TCP Congestion Control

� https://media.pearsoncmg.com/aw/ecs_kurose_com
pnetwork_7/cw/content/interactiveanimations/tcp-
congestion/index.html

49Transport Layer...

Approximate TCP (Reno) performance

Example 1: MSS = 1500 bytes, RTT=10ms, segment loss rate = 10-6

RTCP=1.8x 108 Bytes/sec = 1.4 Gb/s

MSS=Maximum Segment Size=largest amount of data can be received in a single TCP segment
PL=packet loss probability

Example 2: Large DBP network: MSS = 1500 bytes, RTT=100ms, segment loss rate = 10-10

RTCP=1.8 109 Bytes/sec = 14.64 Gb/s

To achieve very high throughputs requires a very small segment loss probability,
spurring on development of new TCPs for high speed environment

With PL = (#bits in segment)*BER
PL = 10-6 and 1500B segment

BER= ~8*10-10

Example 3: Large DBP network: MSS = 1500 bytes, RTT=100ms, BER= 10-7 & segment loss rate = 1.2*10-3

RTCP=520kBytes/sec = ~4.64 Mb/s

See Average Throughput of TCP Connection for TCP Reno

50Transport Layer...

Approximate TCP performance
 For losses due to transmission (bit) errors an

approach to reducing the packet loss rate at the transport layer

 Recover errored packets at the link layer
• Error control at the link layer increases the delay
• Error control at the link layer “hides” loss from the transport layer
• Trade-off delay for loss
• Cannot hide all losses

51Transport Layer...

Flavors of TCP
� TCP is end-to-end so many variations can co-exist in

the Internet.
 TCP-Tahoe
 TCP-Reno (most commonly deployed variant)
 TCP-Vegas
 TCP-NewReno
 Fast TCP (FastTCP)
 BIC TCP (Binary Increase Congestion control)
 CUBIC TCP
 HighSpeed TCP (HSTCP)
 Compound TCP (CTCP)

– Microsoft algorithm that was introduced as part of the Windows Vista
and Window Server 2008 TCP stack.

52Transport Layer...

Congestion Control

� Global Issue
� Demand for network resources must be

controlled.

53Transport Layer...

Traffic and network engineering
� Network Engineering: Network engineering involves the design,

implementation, and maintenance of computer networks. It focuses on the
overall architecture, topology, and infrastructure of a network, including
hardware, protocols, and connectivity. Network engineering involves network
planning, device configuration, network optimization, security, and scalability.

� Network engineering involves long-term planning and design activities that
are typically performed during the initial network design, deployment, or
major upgrades. Network engineering builda foundation for the network
infrastructure, considering factors like scalability, redundancy, and future
growth.

� The goal of Network Engineering is to design and maintain a robust and
scalable network infrastructure that meets the organization's requirements.

54Transport Layer...

Traffic and network engineering
� Traffic Engineering is a subset of network engineering that specifically deals

with the management and optimization of network traffic flows. It focuses on
controlling and directing network traffic to improve performance, efficiency,
and resource utilization. Traffic engineering involves modifying traffic
patterns, implementings traffic management techniques, optimizings routing
protocols.

� Traffic engineering mechanisms are implemented at the packet level and are
dynamic and responsive, addressing real-time or near-real-time conditions
within the network.

� The goal of traffic engineering is to prevent congestion and optimize the flow
of network traffic to achieve specific performance objectives.

� TCP uses Adaptive Congestion Control
� Other mechanisms will be discusses next.

55Transport Layer...

Congestion Control-Objective
Desired performance

Offered Load

Carried
Load or
Throughput

Offered Load

Carried
Load or
Throughput Possible performance

1. Light traffic
Arrival Rate << R
Low delay
Can accommodate more

2. Knee (congestion onset)
Arrival rate approaches R
Delay increases rapidly
Throughput begins to saturate

3. Congestion collapse
Arrival rate > R
Large delays, packet loss
Useful application
throughput drops

56Transport Layer...

Congestion Control

� Preventative
Call Admission Control (CAC)
VC switching

� Reactive
Packet Dropping
TCP is reactive End-to-End

57Transport Layer...

Queue Management: FIFO Queueing

� All packet flows share the same buffer
� Transmission Discipline: First-In, First-Out
� Buffering Discipline: Discard arriving packets if buffer is full
� Called Tail dropping
� Alternatives:

 Random discard;
 Pushout head-of-line, i.e. oldest, packet

Packet buffer

Transmission
link

Arriving
packets

Packet discard
when full

(Tail dropping)

Modified from: Communication Networks:
Fundamentals Concepts and Key Architectures
Authors: A. Leon-Garcia and I. Widjaja

58Transport Layer...

FIFO Queueing

� Cannot provide differential CoS to different packet flows
 Different packet flows interact strongly

� Difficult to determine performance delivered
� Finite buffer determines a maximum possible delay
� Buffer size determines loss probability

 But depends on arrival & packet length statistics
� Variation: packet enqueueing based on queue thresholds

 some packet flows encounter blocking before others
 higher loss, lower delay

Modified from: Communication Networks:
Fundamentals Concepts and Key Architectures
Authors: A. Leon-Garcia and I. Widjaja

59Transport Layer...

Bufferbloat
� Buffers are good, they are needed to queue packets.
� Too much of a good thing can be bad.
� Very large high speed buffers are now economically feasible.
� TCP has a congestion control function,

 TCP packets from the source to the destination can be excessively delayed in a large buffer at
congested (bottleneck) interface.

 Then TCP then does not “learn” about the congestion in time and continues to transmit at
the same rate.

� TCP Acks can be delayed by large buffers in the reverse path,
 The source rate maybe reduced for lack of an ACK.
 If delay is too long, TCP may see that as a loss.
 But TCP congestion control, i.e., slowing down, does not help relieve congestion in the

reverse path.

60Transport Layer...

Congestion Management:
Possible solutions (AQM)
� Routers set the Explicit Congestion Notification (E) bit in the

TCP header
� Random Early Detection (RED) – more later
� ColDel (Controlled Delay)

 Packet arrives at buffer, timer started for this packet.
 When packet timer exceeds threshold, the packet is dropped. (The

time in the buffer is called sojourn time)
 A dropped packet tells TCP to slow down, mitigating congestion at

the bottlenecked link.

61Transport Layer...

Congestion Management:
Possible solutions (AQM)
� Proportional Integral controller Enhanced (PIE)

 When a packet arrives, the packet maybe droped.
 The drop probability is updated periodically based on how far the

current latency is away from the target value and whether the
queuing latency is currently trending up or down.

 Implemented in DOCSIS 3.1

Modified from: Proportional Integral Controller Enhanced (PIE):
A Lightweight Control Scheme to Address the Bufferbloat Problem, Internet Engineering Task Force, RFC 8033

Approaches towards congestion control

datadata
ACKs

ACKs

explicit congestion info

Network‐assisted congestion
control:
 routers provide direct feedback
to sending/receiving hosts with
flows passing through congested
router

 may indicate congestion level or
explicitly set sending rate

Transport Layer: 3‐62Modified from: 8th edition Jim Kurose, Keith Ross Pearson, 2020

source

application
TCP

network
link

physical

destination

application
TCP

network
link

physical

Explicit congestion notification (ECN)
TCP deployments often implement network‐assisted congestion control:
 two bits in IP header (ToS field) marked by network router to indicate congestion

• policy to determine marking chosen by network operator

 congestion indication carried to destination
 destination sets E bit on ACK segment to notify sender of congestion

 involves both IP (IP header ECN bit marking) and TCP (TCP header C,E bit marking)

ECN=10 ECN=11

ECE=1

IP datagram

TCP ACK segment

Modified from: 8th edition Jim Kurose, Keith Ross Pearson, 2020

 TCP ECN, ATM, DECbit protocols not commonly deployed

64Transport Layer...

Active Queue Management:
Random Early Detection

� A Congestion Control Method for the Internet
� Implemented in routers
� Random Early Detection (RED)

 RED is an example of Active Queue Management (AQM)
 Monitor average ROUTER queue length
 If average ROUTER queue length > threshold then Drop

arriving packet with some probability p, (p=drop
probability)

� This implicitly notifies the TCP source that there is
congestion and the source then backs off

� In the Internet “Random Early Detection” (RED)
gateways use this basic concept with some added
complexity

65Transport Layer...

Early or Overloaded Drop

Random early detection:
� Drop packets if short-term average of queue length

exceeds threshold
� Packet drop probability increases linearly with queue

length
� Option to just mark offending packets (DE)
� Improves performance of cooperating TCP sources
� Increases loss probability of misbehaving sources

Modified from: Communication Networks:
Fundamentals Concepts and Key Architectures
Authors: A. Leon-Garcia and I. Widjaja

66Transport Layer...

Random Early Detection (RED)
� Packets produced by TCP will reduce input rate in response

to network congestion
� Early drop: discard packets before buffers are full
� Random drop causes some sources to reduce rate before

others, causing gradual reduction in aggregate input rate

Algorithm:
� Maintain running average of queue length, Qavg

� If Qavg < minthreshold, do nothing
� If Qavg > maxthreshold, drop packet
� If in between, drop packet according to probability
� Flows that send more packets are more likely to have packets

dropped

Modified from: Communication Networks:
Fundamentals Concepts and Key Architectures
Authors: A. Leon-Garcia and I. Widjaja

Packet Drop Profile in RED

Qavg

67Transport Layer...

Traffic Engineering – Directing Traffic
� MultiProtocol Label Switching (MPLS)
� Software-Defined Networking (SDN)

68Transport Layer...

MPLS Why?

� Provide a form a virtual circuit switching in the Internet for
aggregates of flows not for individual hosts

� Label switching enables routing flexibility
� Virtual circuit switching enables QoS on aggregates of flows
� Enables traffic engineering

 Moving the traffic to where the bandwidth is
 Establish separate paths to meet different performance requirements

of aggregated traffic flows
 Uses explicit routes for better load balancing.

69Transport Layer...

MPLS: Why?
� Improve IP forwarding performance - faster look-up

using a fixed length identifier
� Decouple routing and forwarding components of IP
 Routing - to build and maintain forwarding tables
 Forwarding - directs packet from input interface to output

interface, based on forwarding table look-up
MPLS can use different routing protocols for flow aggerates.

� Keeps IP addressing

70Transport Layer...

MPLS: Why?
� Circuits are good (sometimes)

 Conventional IP routing selects one path, does not provide
choice of route

 Label switching enables routing flexibility
 Survivability

� Virtual Private Networks: establish tunnels between
user nodes

71Transport Layer...

MPLS: Why

� MPLS provides a tunneling mechanism to interconnect VPN
sites

� MPLS can be generalized to provide
 Control plane for optical cross-connects
 Automatic protection switching, without SONET overheads
 Generalized MPLS (GMPLS)

– Time Slot Label
– Wavelength Label
– MPLS (IP) Label
– All can use the same infrastructure

72Transport Layer...

MPLS concepts- How?
� Just like Virtual Circuit Switching (but with different terms)
� Forwarding Equivalence Class (FEC) - group (Aggregate) of IP packets (range of IP

addresses) that are forwarded in the same manner
� Label - assigned per FEC (like Virtual circuit ID)
� Label Switch Router (LSR) –

Here a routers acts Like a VC switch

� Edge (Ingress/Egress) LSRs assign/remove labels, can perform packet classification
� Core LSRs switch packets based on label value
� Existing IP routing protocols used to exchange routing info
� All LSRs use some kind of label distribution protocol (LDP)

a signaling protocol
� Label Switched Path (LSP) - sequence of LSRs through which labeled packets go

through to reach the egress LSR

Section 10.3

73Transport Layer...

MPLS Concepts-How?

Ingress LSR

Egress LSR

IGP domain, with a label
distribution protocol

• LSP’s are unidirectional

•Route selection can use:

•Hop-by-hop routing
(using IGP and a label distribution protocol)

•Explicit routing (ER) - ingress LSR specifies all LSR nodes that are in
the path: statically (like source routing), or using link-state topology
information)

•May be signaled using RSVP-TE or CR-LDP

•May be different from IGP-shortest path

•Explicit routing useful for traffic engineering

LSP

ER-LSP

Core LSR

MPLS forwarding tables

Link Layer: 6‐74

in out out
label label dest interface

6 - A 0

in out out
label label dest interface

10 6 A 1

12 9 D 0

in out out
label label dest interface

8 6 A 0

in out out
label label dest interface

10 A 0

12 D 0
8 A 1

R2

D

R3
R5

A

R6

R4

R1

0

1

00

1

0

Modified from: 8th edition Jim Kurose, Keith Ross Pearson, 2020

75Transport Layer...

Forwarding Equivalence Class (FEC)

� FEC: set of packets that are forwarded in the same manner
 Over the same path, with the same forwarding treatment
 Packets in an FEC have same next-hop router
 Packets in same FEC may have different network layer header
 Each FEC requires a single entry in the forwarding table

– Coarse Granularity FEC: packets for all networks whose destination address matches a
given address prefix

– Fine Granularity FEC: packets that belong to a particular application running between a
pair of computers

IP
2 L

1
IP
2

IP
2

LER LERLSRLSR L
2

IP
2

L
3

IP
2L

1
IP
1

L
2

IP
1

L
3

IP
1

IP
1

IP
1

IP1

IP2

Modified from: Communication Networks:
Fundamentals Concepts and Key Architectures
Authors: A. Leon-Garcia and I. Widjaja

76Transport Layer...

Label
• Value to determine next hop of the packet

Experimental (EXP)
• Used as CoS field - Limited QoS parameters, derived from IP header, diffserv,
etc.

Bottom of Stack (S)
• Set to 1 if bottom of label stack, otherwise 0

Time to Live (TTL)
• Eliminates loops and prevents packets from remaining in the network
indefinitely

MPLS Concepts- How?:
Packet Header

PPP or Ethernet
header IP header Remainder of PacketMPLS header

label Exp S TTL

20 3 1 5

Modified from: Computer Networking: A Top Down Approach
4th edition. Jim Kurose, Keith Ross
Addison-Wesley, July 2007.

-- Bits

77Transport Layer...

A B F G

Push

Swap and Push Pop and Swap

Pop

C D E

Swap

3 22 27 26 8 5 4IP IP

Label Stacking

� MPLS allows multiple labels to be stacked
 Ingress LSR performs label push (S=1 in label)
 Egress LSR performs label pop
 Intermediate LSRs can perform additional pushes & pops (S=0 in label)

to create tunnels
 Above figure has tunnel between A & G; tunnel between B&F
 All flows in a tunnel share the same outer MPLS label

Modified from: Communication Networks:
Fundamentals Concepts and Key Architectures
Authors: A. Leon-Garcia and I. Widjaja

78Transport Layer...

LSR 1 LSR 2

Label request for 10.5/16

(10.5/16, 8)

Label Distribution (Example)
� Label Distribution Protocols distribute label bindings

between LSRs
upstream

downstream

Downstream-on-Demand Mode
 LSR1 becomes aware LSR2 is next-hop in an FEC
 LSR1 requests a label from LSR2 for given FEC
 LSR2 checks that it has next-hop for FEC, responds with

label
Modified from: Communication Networks:
Fundamentals Concepts and Key Architectures
Authors: A. Leon-Garcia and I. Widjaja

79Transport Layer...

MPLS Survivability

� IP routing recovers from faults in seconds to minutes
� Synchronous Optical Network (SONET) recovers in 50 ms
� MPLS targets in-between path recovery times
� Basic approaches:

 Restoration: slower, but less capacity overhead
 Protection: faster, but more protection capacity

� Repair methods:
 Global repair: node that performs recovery (usually ingress node) may be

far from fault, depends on failure notification message
 Local repair: local node performs recovery (usually upstream from fault);

does not require failure notification

Modified from: Communication Networks:
Fundamentals Concepts and Key Architectures
Authors: A. Leon-Garcia and I. Widjaja

80Transport Layer...

MPLS Restoration

� No protection link capacity
allocated prior to fault

� New paths are established
after a failure occurs

� Traffic is rerouted onto the
new paths

Normal operation

1

2 43

8

5 76

1

2 43

8

5 76

1

2 43

8

5 76

Failure occurs and is detected

Alternate path is established, and
traffic is re-routed

Modified from: Communication Networks:
Fundamentals Concepts and Key Architectures
Authors: A. Leon-Garcia and I. Widjaja

81Transport Layer...

MPLS Protection
� Protection paths are setup as

backups for working paths
 1+1: working path has dedicated

protection path
 1:1: working path shares protection

path

� Protection paths selected so that
they are disjoint from working path

� Faster recovery than restoration

Traffic carried on working path

1

2 43

8

5 76

1

2 43

8

5 76

1

2 43

8

5 76

Failure on working path is detected

Traffic is switched to the protection path

Working path

Protection
path

Modified from: Communication Networks:
Fundamentals Concepts and Key Architectures
Authors: A. Leon-Garcia and I. Widjaja

82Transport Layer...

FEBA IGDC JH

LightpathTDM circuit

TDM circuit -Slot

Virtual circuit Virtual circuit

Lambda cross-connect
TDM switch LSR

GMPLS & Hierarchical LSPs

� GMPLS allows node with multiple switching technologies to be
controlled by one control component

� Notion of “label” generalized:
 TDM slot, WDM wavelength, optical fiber port

� LSP Hierarchy extended to generalized labels”
 MPLS LSP over SONET circuit over wavelength path over fiber

Modified from: Communication Networks:
Fundamentals Concepts and Key Architectures
Authors: A. Leon-Garcia and I. Widjaja

 Internet network layer: historically implemented via
distributed, per‐router control approach:
• monolithic router contains switching hardware, runs proprietary
implementation of Internet standard protocols (IP, RIP, IS‐IS, OSPF,
BGP) in proprietary router OS (e.g., Cisco IOS)

• different “middleboxes” for different network layer functions:
firewalls, load balancers, NAT boxes, ..

 ~2005: renewed interest in rethinking network control plane

Software defined networking (SDN)

Network Layer: 5‐83Modified from: 8th edition Jim Kurose, Keith Ross Pearson, 2020

Per‐router control plane
Individual routing algorithm components in each and every router
interact in the control plane to computer forwarding tables

Routing
Algorithm

data
plane

control
plane

1

2

0111

values in arriving
packet header

3

Network Layer: 4‐84Modified from: 8th edition Jim Kurose, Keith Ross Pearson, 2020

Software‐Defined Networking (SDN) control plane
Remote controller computes, installs forwarding tables in routers

data
plane

control
plane

Remote Controller

CA

CA CA CA CA

1

2

0111

3

values in arriving
packet header

Network Layer: 4‐85

CA=control agent

Modified from: 8th edition Jim Kurose, Keith Ross Pearson, 2020

Why a logically centralized control plane?

 easier network management: avoid router misconfigurations,
greater flexibility of traffic flows

 table‐based forwarding allows “programming” routers
• centralized “programming” easier: compute tables centrally and distribute

• distributed “programming” more difficult: compute tables as result of
distributed algorithm (protocol) implemented in each‐and‐every router

 open (non‐proprietary) implementation of control plane
• foster innovation: let 1000 flowers bloom

Software defined networking (SDN)

Network Layer: 5‐86Modified from: 8th edition Jim Kurose, Keith Ross Pearson, 2020

2

2

1
3

1

1

2

5
3

5

v w

u z

yx

Traffic engineering: difficult with traditional routing

Network Layer: 5‐87

Q: what if network operator wants u‐to‐z traffic to flow along
uvwz, rather than uxyz?

A: need to re‐define link weights so traffic routing algorithm
computes routes accordingly (or need a new routing algorithm)!

link weights are only control “knobs”: not much control!
Modified from: 8th edition Jim Kurose, Keith Ross Pearson, 2020

2

2

1
3

1

1

2

5
3

5

v w

u z

yx

Traffic engineering: difficult with traditional routing

Network Layer: 5‐88

Q: what if network operator wants to split u‐to‐z
traffic along uvwz and uxyz (load balancing)?
A: can’t do it (or need a new routing algorithm)

Modified from: 8th edition Jim Kurose, Keith Ross Pearson, 2020

Traffic engineering: difficult with traditional routing

Network Layer: 5‐89

Q: what if w wants to route blue and red traffic differently from w to z?

A: can’t do it (with destination‐based forwarding, and LS, DV routing)

2

2

1
3

1

1

2

5
3

5

v w

u z

yx

Generalized forwarding can be used to achieve any routing
desired

Modified from: 8th edition Jim Kurose, Keith Ross Pearson, 2020

90Transport Layer...

OpenFlow
� OpenFlow is a communication protocol that enables the centralized

control of network switches and routers by external software
known as a controller. It decouples the control plane (decision-
making) from the data plane (forwarding of traffic) in network
devices.

� Key components of OpenFlow include:
 Flow Table: generalized forwarding: |Match|Action|Counters|
 Controller: The controller is responsible for managing the flow tables in network

devices. It communicates with these devices using the OpenFlow protocol to install,
update, and remove flow entries based on network policies and conditions.

� Enables software-defined networking (SDN)

Modified from: Computer Networking: A Top Down Approach
8th edition. Jim Kurose, Keith Ross

Software defined networking (SDN)

Network Layer: 5‐91

data
plane

control
plane

Remote Controller

CA

CA CA CA CA

1: generalized “flow‐based”
forwarding (e.g., OpenFlow)

2. control, data
plane separation

3. control plane functions
external to data‐plane
switches

…routing access
control

load
balance4. programmable

control
applications

Flow table

match action

Software defined networking (SDN)

Network Layer: 5‐92

Data‐plane switches:
 fast, simple, commodity switches

implementing generalized data‐plane
forwarding in hardware

 flow (forwarding) table computed,
installed under controller supervision

 API for table‐based switch control
defines what is controllable, what is not

 protocol for communicating with
controller data

plane

control
plane

SDN Controller
(network operating system)

…
routing

access
control

load
balance

southbound API

northbound API

SDN-controlled switches

network-control applications

Software defined networking (SDN)

Network Layer: 5‐93

SDN controller (network OS):
 maintain network state
information

 interacts with network control
applications “above” via
northbound API

 interacts with network switches
“below” via southbound API

 implemented as distributed system
for performance, scalability, fault‐
tolerance, robustness

data
plane

control
plane

SDN Controller
(network operating system)

…
routing

access
control

load
balance

southbound API

northbound API

SDN-controlled switches

network-control applications

Software defined networking (SDN)

Network Layer: 5‐94

network‐control apps:

 “brains” of control:
implement control functions
using lower‐level services, API
provided by SDN controller

 unbundled: can be provided by
3rd party: distinct from routing
vendor, or SDN controller

data
plane

control
plane

SDN Controller
(network operating system)

…
routing

access
control

load
balance

southbound API

northbound API

SDN-controlled switches

network-control applications

Modified from: 8th edition Jim Kurose, Keith Ross Pearson, 2020

Components of SDN controller

Network Layer: 5‐95

Network-wide distributed, robust state management

Communication to/from controlled devices

Link-state info switch infohost info

statistics flow tables…

…

OpenFlow SNMP…

network
graph intent

RESTful
API

…
Interface, abstractions for network control apps

SDN
controller

routing access
control

load
balance

communication: communicate
between SDN controller and
controlled switches

network‐wide state
management : state of
networks links, switches,
services: a distributed database

interface layer to network
control apps: abstractions API

Modified from: 8th edition Jim Kurose, Keith Ross Pearson, 2020

SDN: control/data plane interaction example

Network Layer: 5‐96

Link-state info switch infohost info

statistics flow tables
…

…

OpenFlow SNMP
…

network
graph intent

RESTful
API

…

Dijkstra’s link-state
routing

s1
s2

s3
s4

S1, experiencing link failure uses
OpenFlow port status message to
notify controller

1

SDN controller receives OpenFlow
message, updates link status info

2

Dijkstra’s routing algorithm
application has previously registered
to be called when ever link status
changes. It is called.

3

Dijkstra’s routing algorithm
access network graph info, link
state info in controller, computes
new routes

4
1

2

3

4

Modified from: 8th edition Jim Kurose, Keith Ross Pearson, 2020

SDN: control/data plane interaction example

Network Layer: 5‐97

Link-state info switch infohost info

statistics flow tables
…

…

OpenFlow SNMP
…

network
graph intent

RESTful
API

…

Dijkstra’s link-state
routing

s1
s2

s3
s4

link state routing app interacts
with flow‐table‐computation
component in SDN controller,
which computes new flow tables
needed

5

controller uses OpenFlow to
install new tables in switches
that need updating

6

5

1

2

3

4

Modified from: 8th edition Jim Kurose, Keith Ross Pearson, 2020

 hardening the control plane: dependable, reliable, performance‐scalable,
secure distributed system
• robustness to failures: leverage strong theory of reliable distributed system for
control plane

• dependability, security: “baked in” from day one?

 networks, protocols meeting mission‐specific requirements
• e.g., real‐time, ultra‐reliable, ultra‐secure

 Internet‐scaling: beyond a single AS

 SDN maybe critical in 5G and beyond cellular networks by providing
necessary flexibility, programmability, and control for network operators to
efficiently deploy and manage the complex and diverse requirements of 5G
and beyond networks.

SDN: selected challenges

Network Layer: 5‐98Modified from: 8th edition Jim Kurose, Keith Ross Pearson, 2020

 SDN‐computed versus router‐computer forwarding tables:
• just one example of logically‐centralized‐computed versus protocol
computed

 one could imagine SDN‐computed congestion control:
• controller sets sender rates based on router‐reported (to
controller) congestion levels

SDN and the future of traditional network protocols

Network Layer: 5‐99

How will implementation of
network functionality (SDN
versus protocols) evolve?

Modified from: 8th edition Jim Kurose, Keith Ross Pearson, 2020

100Transport Layer...

Synthesis: a day in the life of a web request

� Putting-it-all-together: synthesis!
 goal: identify, review, understand protocols (at

all layers) involved in seemingly simple
scenario: requesting www page

 scenario: student attaches laptop to campus
network, requests/receives www.google.com

Modified from: Computer Networking: A Top Down Approach
8th edition. Jim Kurose, Keith Ross

101Transport Layer...

A day in the life: scenario

Comcast network
68.80.0.0/13

Google’s network
64.233.160.0/19 64.233.169.105

web server

DNS server

school network
68.80.2.0/24

web page

browser

Modified from: Computer Networking: A Top Down Approach
8th edition. Jim Kurose, Keith Ross

102Transport Layer...

router
(runs DHCP)

A day in the life… connecting to the Internet

� connecting laptop needs to
get its own IP address, addr
of first-hop router, addr of
DNS server: use DHCP

DHCP
UDP

IP
Eth
Phy

DHCP

DHCP

DHCP

DHCP

DHCP

DHCP
UDP

IP
Eth
Phy

DHCP

DHCP

DHCP

DHCPDHCP

 DHCP request encapsulated
in UDP, encapsulated in IP,
encapsulated in 802.3
Ethernet
 Ethernet frame broadcast

(dest: FFFFFFFFFFFF) on LAN,
received at router running
DHCP server

 Ethernet demuxed to IP
demuxed, UDP demuxed to
DHCP

Modified from: Computer Networking: A Top Down Approach
8th edition. Jim Kurose, Keith Ross

103Transport Layer...

router
(runs DHCP)

� DHCP server formulates
DHCP ACK containing client’s
IP address, IP address of
first-hop router for client,
name & IP address of DNS
server

DHCP
UDP

IP
Eth
Phy

DHCP

DHCP

DHCP

DHCP

DHCP
UDP

IP
Eth
Phy

DHCP

DHCP

DHCP

DHCP

DHCP

 encapsulation at DHCP
server, frame forwarded
(switch learning) through
LAN, demultiplexing at client

Client now has IP address, knows name & addr of DNS
server, IP address of its first-hop router

 DHCP client receives DHCP
ACK reply

A day in the life… connecting to the Internet

Modified from: Computer Networking: A Top Down Approach
8th edition. Jim Kurose, Keith Ross

104Transport Layer...

router
(runs DHCP)

A day in the life… ARP (before DNS, before HTTP)

� before sending HTTP request, need IP
address of www.google.com: DNSDNS

UDP
IP

Eth
Phy

DNS

DNS

DNS

 DNS query created, encapsulated in
UDP, encapsulated in IP, encapsulated in
Eth. To send frame to router, need
MAC address of router interface: ARP

 ARP query broadcast, received by
router, which replies with ARP reply
giving MAC address of router
interface

 client now knows MAC address of
first hop router, so can now send
frame containing DNS query

ARP query

Eth
Phy

ARP

ARP

ARP reply

Modified from: Computer Networking: A Top Down Approach
8th edition. Jim Kurose, Keith Ross

105Transport Layer...

router
(runs DHCP)

DNS
UDP

IP
Eth
Phy

DNS

DNS

DNS

DNS

DNS

 IP datagram containing DNS
query forwarded via LAN
switch from client to 1st hop
router

 IP datagram forwarded from campus
network into Comcast network, routed
(tables created by RIP, OSPF, IS-IS and/or
BGP routing protocols) to DNS server

 demuxed to DNS server
 DNS server replies to client with IP

address of www.google.com

Comcast network
68.80.0.0/13

DNS server

DNS
UDP

IP
Eth
Phy

DNS

DNS

DNS

DNS

A day in the life… using DNS

Modified from: Computer Networking: A Top Down Approach
8th edition. Jim Kurose, Keith Ross

106Transport Layer...

router
(runs DHCP)

A day in the life…TCP connection carrying HTTP

HTTP
TCP
IP

Eth
Phy

HTTP

 to send HTTP request,
client first opens TCP
socket to web server

 TCP SYN segment (step 1 in 3-
way handshake) inter-domain
routed to web server

 TCP connection established!64.233.169.105

web server

SYN

SYN

SYN

SYN

TCP
IP

Eth
Phy

SYN

SYN

SYN

SYNACK

SYNACK

SYNACK

SYNACK

SYNACK

SYNACK

SYNACK web server responds with TCP
SYNACK (step 2 in 3-way
handshake)

107Transport Layer...

router
(runs DHCP)

A day in the life… HTTP request/reply

HTTP
TCP
IP

Eth
Phy

HTTP

 HTTP request sent into
TCP socket

 IP datagram containing HTTP
request routed to
www.google.com

 IP datagram containing HTTP
reply routed back to client64.233.169.105

web server

HTTP
TCP
IP

Eth
Phy

 web server responds with
HTTP reply (containing web
page)

HTTP

HTTP

HTTPHTTP

HTTP

HTTP

HTTP

HTTP

HTTP

HTTP

HTTP

HTTP

HTTP

 web page finally (!!!) displayed

Modified from: Computer Networking: A Top Down Approach
8th edition. Jim Kurose, Keith Ross

108Transport Layer...

Internet Architecture: Revisited

Three cornerstone beliefs:
 simple connectivity
 IP protocol: that narrow waist
 intelligence, complexity at network

edge

Modified from: 8th edition Jim Kurose, Keith Ross Pearson, 2020

109Transport Layer...

IP Hourglass Architecture: Revisited

Modified from: Steve Deering
http://www.iab.org/Documents/hourglass-london-ietf.pdf

New protocols require more
functionality from underlying
networks

1) Doubles number
of service interfaces
2) Requires changes
above & below
3) Creates interop problems

Someday??

Modified from: 8th edition Jim Kurose, Keith Ross Pearson, 2020

The end‐end argument
 some network functionality (e.g., reliable data transfer, congestion)
can be implemented in network, or at network edge

end‐end implementation of reliable data transferapplication
transport
network
data link
physical

application
transport
network
data link
physical

application
transport
network
data link
physical

application
transport
network
data link
physical

network
link

physical

network
link

physical

network
link

physical

network
link

physical

network
link

physical

network
link

physical

hop‐by‐hop (in‐network) implementation of reliable data transfer

Modified from: 8th edition Jim Kurose, Keith Ross Pearson, 2020

Where’s the intelligence?

20th century phone net:
• intelligence/computing at

network switches

Internet (pre‐2005)
• intelligence, computing at

edge

Internet (post‐2005)
• programmable network devices
• intelligence, computing, massive
application‐level infrastructure at edge

Modified from: 8th edition Jim Kurose, Keith Ross Pearson, 2020

112Transport Layer...

Challenges

� Challenges
 Trust
 Network and configuration management
 Scalability and control of system complexity
 Predictable performance
 Performance evaluation and comparison of different

architectures

� Approaches and mechanisms are now being
woven together into coherent, overarching
candidate designs for a future Internet.

