EECS 563 Fall 2014

Review Test 1

Drivers

- CPU ↑
- Link Rates ↑
- # Users ↑
- Economic
- Policy

Value of Net ↑
Issues in Networking

- Sharing
- Protocols
- Distributed Network Elements (NE)
 - Imperfect Knowledge
 - “Real time”
- Cooperation among competing entities (network of networks)

Components

- Transmission
 - TDM, TDMA, TDD
 - FDM, FDMA, FDD
 - Statistical multiplexing
- Switching
- Signaling
 - SS7
 - SIP
- Structure
 - Tier i
 - ISP
 - NAP
Network Evolution, Standards, and Layered Architectures

- Standards
 - IETF
 - IEEE
 - ITU
 - The good and bad of standards

- Layers provide a way to
 - Describe networks
 - Organize functionality
 - Enable flexibility

- Layered Architecture (OSI)
 - PHY, DLC, Network, Transport, Session, Presentation, Application

- Internet Architecture
 - PHY, Access Network, Internetwork, Transport, Application
Network Evolution, Standards, and Layered Architectures

- Role of packet headers
 - Add headers as data goes from upper-to-lower layers
 - Consume headers as data goes from lower-to-upper layers
- Role of encapsulation
- Common Protocol Functions

Network Switching Technologies, Impairments, and Metrics

- Circuit Switching
- Packet Switching
 - Statistical multiplexing
- Virtual circuit packet switching
- Datagram
- Connection oriented

Trade-offs and attributes
Network Switching Technologies, Impairments, and Metrics

- Impairments
 - Delay
 - # bits in RTT
 - # packets in RTT
 - LAN, MAN, WAN
 - Errors
 - Random
 - Bursty
 - Time between errors

Network Switching Technologies, Impairments, and Metrics

- Metrics
 - Response Time
 - Throughput
 - \(S_{\text{min}} \)
 - \(S_{\text{Max}} \)
 - Utilization
 - Channel Efficiency
 - Loss/blocking
 - Reliability
 - Fairness

- Network Performance Guarantees
 - QoS
 - CoS
Internet Protocols

- IPv4 - packet header
 - Source/Destination Address-32 bits
 - TTL
 - ToS
 - Header check
 - Fragmentation/reassembly

Internet Protocols

- Addressing IPv4
 - Net_Id, Host_Id
 - a.b.c.d format
 - /X
 - Subnetwork mask
 - Address range/network
 - # hosts/network
 - Subnetworks
Internet Protocols

- Header check sum Not equal 0 → drop packet
- TTL=1 and when decrement TTL= 0 then → drop packet & send ICMP packet to source
- Forwarding → Router actions upon arriving packet

<table>
<thead>
<tr>
<th>Dest Network</th>
<th>Next Hop</th>
<th>Interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>192.1.1.0/24</td>
<td>Router 7</td>
<td>Fiber1</td>
</tr>
<tr>
<td>237.5.0.0/16</td>
<td>Router 9</td>
<td>Eth3</td>
</tr>
<tr>
<td>Default</td>
<td>Router 8</td>
<td>Fiber2</td>
</tr>
</tbody>
</table>

Internet Protocols

- ICMP
- DHCP
- DNS
- ARP
- Tunneling
Internet Protocols

- Routing → gather information and build the forwarding tables
 - Issues
 - How to learn the network topology?
 - How to share information?
 - How to define “distance”?
 - What shortest path algorithm to use?
 - How to respond to failures?
 - How to respond to congestion?

- Exhaustive Search

Internet Protocols

- Routing hierarchy
 - AS & between AS’s
 - Within one AS uses IGP, example OSPF
 - Between AS’s uses EGP, example BGP
 - ASN (32 bits)
 - EGP’s need to consider cooperation among competing entities, BGP policies are based on business relationships

- Source Routing
Internet Protocols

- IPv6
 - Addresses → 128 bits
 - Header
 - TTL becomes a Hop Limit
 - No header checksum
 - No Fragmentation
 - Flow label
 - Transition
 - Dual stacks
 - Tunneling

At the conclusion of this class the students are expected to:

- Understand the basics of multiplexing
- Understand the layered structure of protocols
- Understand the importance of standards and who sets them
- Understand the basics of network protocols, including:
 - Datagram/virtual circuit switching
 - Statistical Multiplexing
 - Forwarding
 - IP & supporting protocols
 - Routing
- Be fluent in the language of communication networks, i.e., understand the meaning of networking terms and abbreviations
- Use network analysis tools, e.g., traceroute and ping