EECS 563 Fall 2021

Review Test 2

Network traffic

Packet Voice

- > Constraint \rightarrow limit on end-to-end delay
- > Packetization time (ms/packet)
- > Role of the Jitter buffer
 - Compensate for random network delays
 - Jitter buffer size in bytes (or bits) or ms
 - Too small \rightarrow lose packets
 - Too large \rightarrow increase delay

Performance Analysis

Given

- > Traffic
- > QoS

Design system

- ≻ For M/M/1 → Find R
- > For M/M/1/K \rightarrow Find R and/or System size=K
- > For For M/M/K/K \rightarrow Find Number of Servers

Assumptions

- Service time ~ Exponentially distributed
- > Interarrival time ~ Exponentially distributed

MAC

Random Access

Collision process

- Time vulnerable to collision
 - Time vulnerable to collision \uparrow then $S_{max} \downarrow$
- Detecting Collisions

≻ Time

- Unslotted
- Slotted
- > Role of backoff process

Review Test 2

9

MAC

Collision Free Protocols

Centralized Reservation Systems

- > In upstream send requests to transmit
 - Use part of cycle time (contention slots) to send requests
 - Use random access to share contention slots
- > Receive grants to transmitt in the downstream
- > No contention in downstream
- If no grant in downstream then assume collision for the request, backoff and resend request in upstream
- > Vulnerable to collision ~cycle time

	1		
Network Elemen	ts		
Repeater Bridge Switch Router	Layer 2 Switch Layer 3 Switch Layer 4 Switch Layer "Any" Switch		
		Review Test 2	14

Wireless Networks

Issues

≻ Noise

Signal Fading

> Hidden terminal

RTS/CTS

Review Test 2 15

Cable Networks

DOCSIS

Access protocol > Centralized Reservation Systems CM, Headend, CMTS

DLC

Goal \rightarrow point-to-point error free link

Functions

- ≻ Framing → Flags & bit stuffing
- Error recovery
- Flow control

DLC

Sliding window flow control

- > n bits/SN in packet header
- > Max window \rightarrow N= 2ⁿ-1
- > N=1 \rightarrow Stop and Wait
- > When to retransmit?
 - Timeout
 - RNR (NACK)
- > What to retransmit?
 - Uses SN
 - Go-back-N
 - Selective Repeat

DLC

Piggybacking Frame structure Components of the packet overhead HDLC

Transport Layer

Port & sockets

UDP

TCP

- > Error free end-to-end communications
- Connection oriented
- > Header checksum \rightarrow covers data and header
- > SN and advertised window in **Bytes**

MPLS		
Internet mechanism to support VC for aggregate flows		
Language of MPLS		
> Label		
> FEC		
> LDP		
> LSR		
> LSP		
Enables		
 Traffic Engineering 		
> QoS for FEC		
GMPLS		
	Review Test 2	

At the conclusion of this class the students are expected to:

Understand the basics of network protocols, including,

- > MAC
- > Data link control,
- Transport protocols

Understand the nature of network traffic

Understand the tradeoffs involved in network design in a variety of environments - LAN and WAN, diverse link rates, and varied error and delay conditions

Perform simple analytic performance and design trade-off studies

Be fluent in the language of communication networks, i.e., understand the meaning of networking terms and abbreviations