EECS 563 Spring 2024

Review Test 2

Review Test 2

1

Internet Protocols

IPv4 – packet header

- > Source/Destination Address-32 bits
- > TTL
- > ToS
- > Header check
- > Fragmentation/reassembly

2

Internet Protocols

Addressing IPv4

- > Net_Id, Host_Id
- > a.b.c.d format
- >/X
 - Subnetwork mask
 - Address range/network
 - # hosts/network
- > Subnetworks

Review Test 2

3

Internet Protocols

Header check sum Not equal 0→ drop packet

TTL=1 and when decrement TTL= 0 then → drop packet & send ICMP packet to source

Forwarding→ Router actions upon arriving packet

Using the forwarding table: Longest Prefix Match

Dest Network	Next Hop	Interface
192.1.1.0/24	Router 7	Fiber1
237.5.0.0/16	Router 9	Eth3
Default	Router 8	Fiber2

Internet Protocols

ICMP

DHCP

DNS

ARP (PHY/Layer 2/MAC and IP Addresses)

Tunneling

NAT

Review Test 2

5

Internet Protocols

Routing → gather information and build the forwarding tables

- > Issues
 - How to learn the network topology?
 - How to share information?
 - How to define "distance"?
 - What shortest path algorithm to use?
 - How to respond to failures?
 - How to respond to congestion?

Exhaustive Search

Internet Protocols

Routing hierarchy

- > AS & between AS's
 - Within one AS uses IGP, example OSPF
 - Between AS's uses EGP, example BGP
- > ASN (32 bits)
- > EGP's need to consider cooperation among competing entities, BGP policies are based on business relationships

Source Routing

Review Test 2

7

Internet Protocols

IPv6

- ➤ Addresses → 128 bits
 - 4BF5:AA12:0216:FEBC:BA5F:039A:BE9A:2176
- > Header
 - TTL becomes a Hop Limit
 - No header checksum
 - No Fragmentation
 - Flow label
 - Traffic Class
- > Transition IPv4 to IPv6
 - Dual stacks
 - Tunneling

MAC

Scaling & trade-offs WRT:

- > rate (b/s),
- > number of users, and
- > size (km)

Deterministic (Polling)

- > Operation (why called deterministic)
- > MTHT
- > Calculate effective rate & efficiency

Review Test 2

9

MAC

Random Access

- > Collision process
 - Time vulnerable to collision

Time vulnerable to collision \uparrow then $S_{max} \downarrow$

- Detecting Collisions
- > Time
 - Unslotted
 - Slotted
- > Role of backoff process

MAC (Random Access-continued)

Types (all can be slotted/unslotted)

- > ALOHA (for unslotted S_{max} =18%, for slotted S_{max} = 36%)
 - Vulnerable to collision \sim L/R sec (not function of τ)
- > CSMA
 - Vulnerable to collision ~τ sec
 - p-persistent (1-persistent)
 - Non-persistentCSMA/CD

$$a = \frac{\tau}{\frac{L}{R}}$$
 where $\tau = \text{End-to-End Propagation Time}$

As
$$a \uparrow S_{Max} \downarrow$$
 and as $a \rightarrow 1, S_{Max} \rightarrow ALOHA$

Leads to specification of Min/Max Packet size

Review Test 2

11

MAC

Collision Free Protocols

Centralized Reservation Systems

- > In upstream send requests to transmit
 - Use part of cycle time (contention slots) to send requests
 - Use random access to share contention slots
- > Receive grants to transmit in the downstream
- > No contention in downstream
- If no grant in downstream then assume collision for the request, backoff and resend request in upstream
- > Vulnerable to collision ~ contention slot time

MAC

Maximum Throughput for Centralized Reservation Systems (No contention for reservation slots)

$$S_{\text{max}} = \frac{1}{1 + \frac{\mathsf{V}}{\mathsf{X} \mathsf{k}}}$$

$$R = \text{Link rate (b/s)}$$

$$L = \text{packet size (bits) assume fixed length }$$

$$v = \text{minislot size (sec)}$$

$$M = \text{Number of stations}$$

$$X = L/R \text{ (sec)} = \text{clocking time }$$

$$k = \text{number of packet transmissions}$$

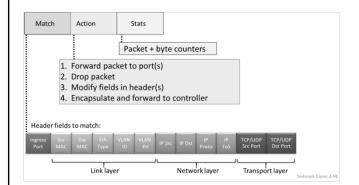
$$reserved \text{ with ONE reservation message}$$

reserved with ONE reservation message

Maximum Throughput for Centralized Reservation Systems (Using Aloha for access to reservation slots)

$$S_{\text{max}} = \frac{1}{1 + \frac{2.7 \text{ V}}{X}}$$

Review Test 2


13

Ethernet

IEEE 802.3

- > Evolution
 - Bus
 - Hub
 - Switch
 - $-10 \text{ Mb/s} \rightarrow 100 \text{ Gb/s}$
- > Role of CSMA/CD its use when there is a collision domain **VLANs**

Generalized Forwarding Flow table match action

Actions include:

- Send packet to selected output port (physical)
- Drop the packet
- Modifying a field in the header (there are restrictions)

Action is based on any fields in the packet header Generalized forwarding is used in Software Defined Networks (SDNs)

Review Test 2

15

Network Elements

Repeater

Bridge

Switch

Router

Layer 2 Switch

Layer 3 Switch

Layer 4 Switch

Layer "Any" Switch

Wireless Networks

Issues

- > Noise
- ➤ Signal Fading
- > Hidden terminal

IEEE 802.11

- > RTS/CTS
- > Infrastructure mode
- > Ad hoc mode

Review Test 2

17

4G/5G cellular networks

UE

Base Station (eNode B)

Address in SIM (Subscriber Identity Module)

All IP

MAC: request/grant reservation "like" protocol

Handoff

Mobility: visiting other networks

Cable Networks

Cable Networks

- > DOCSIS
- > Access protocol
 - Centralized Reservation Systems
- > CM, Headend, CMTS

Satellite Networks

- > GEO
- > LEO

Review Test 2

19

DLC

Goal → point-to-point error free link

Functions

- > Framing→ Flags & bit stuffing
- > Error recovery (ARQ)
- > Flow control

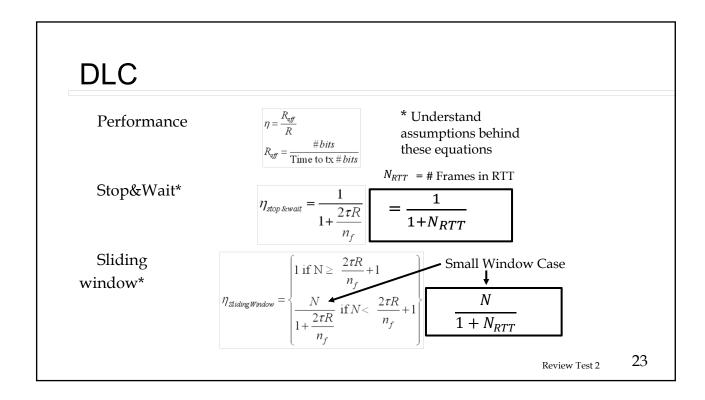
DLC

Sliding window flow control

- > n bits/SN in packet header
- > Max window \rightarrow N= 2ⁿ-1
- > N=1 \rightarrow Stop and Wait
- > When to retransmit?
 - Timeout
 - NAK
- > What to retransmit?
 - Uses SN
 - Go-back-N
 - Selective Repeat

Review Test 2

21


DLC

Piggybacking, ACKs in the reverse path

Frame structure

- > Building up fields in the header
- > Components of the packet header

HDLC & PPP

DLC

Control the source rate by limiting the window size Open Loop Control

- > DE bit
- > Token bucket
 - Average rate
 - Maximum burst size

Transport Layer

Port & sockets

UDP

TCP

- > Error free end-to-end communications
- > Connection oriented
- ➤ Header checksum → covers data and header
- > SN and advertised window in **Bytes**

Review Test 2

25

Transport Layer - TCP continued

- > Session setup/teardown
- > Estimate RTT → set time out
- > Window management for flow control
- > Adaptive window for congestion control
 - Assumes loss due to congestion
 - Action on loss (timeout or duplicate ACKS)
 - Phases

Slow start

Congestion avoidance

Threshold between the slow start and congestion avoidance phases

> AQM and RED

MPLS

Internet mechanism to support VC for aggregate flows

Language of MPLS

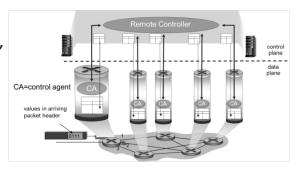
- > Label
- > FEC
- > LDP
- > LSR
- > LSP

Enables

- > Traffic Engineering
- > QoS for FEC

Restoration and Protection

Review Test 2


27

Software defined networking (SDN)

Control plane functions external to data-plane switches

Programmable control applications, e.g., routing and load balancing in the "remote controller"

Flow table loaded from "remote controller" using OpenFlow protocols and standard API's

At the conclusion of this class the students are expected to:

Understand the basics of network protocols,

- > Datagram/virtual circuit switching,
- > Access control (MAC),
 - (Including DOCSIS, IEEE 802.11, 4G/5G)
- > Data link control,
- > IP (including forwarding, generalized forwarding, and supporting protocols),
- > Routing,
- > Transport protocols
- > Resulting in an understanding of how the Internet works.
 - (Including AQM, MPLS, SDN's)

,