EECS 863
Homework

1. A leaky bucket flow control scheme works at the entry point of the network to regulate the offered traffic. Packets arriving to the leaky bucket must wait in a queue for a permit before entering the network. Permits are generated independently from the offered traffic. Thus upon arrival a packet will be sent if a permit is available otherwise it waits in the buffer for the arrival of a permit. Permits arriving to a system with no packets ready for transmission will be saved in a queue. The permit queue is limited to W permits. A permit is discarded if it arrives when the permit queue is full. For this problem assume that packets arrive to the system according to a Poisson process at a rate λ. Also assume that the permits arrive according to a Poisson process at a rate μ. Let $W=4$ for this problem.
 a) Find the steady-state probability mass function for the number of packets waiting to be transmitted.
 b) Find the steady-state probability mass function for the number of permits.
 [Hint: use a M/M/1 formulation with a careful definition of the states.]

2. A Markovian queueing system with discouraged arrival can be modeled with the following state dependent arrival and departure rates:

 \[\mu(n) = \mu \]
 \[\lambda(n) = \frac{\lambda}{n + 1} \]

 a) Draw the state transition diagram.
 b) Write the state probabilities, $p(n)$ as a function of μ, λ, and $p(0)$.
 c) Find a closed form solution for $p(0)$.
