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Abstract—In packet networks, congestion events tend In the early 1990s, researchers with Bellcore observed
to persist, producing large delays and long bursts of the phenomena of self-similarity and long-range depen-
consecutive packet loss resulting in perceived performance dence in LAN traffic [8], which roughly means that the
degradations. The length and rate of these events have a - . . .
significant effect on network quality of service(QoS). The traffic IOOK,S similar under different time scales and.
packet delay resulting from these congestion events also the correlation between packets decays very slowly. This
influences QoS. In this paper a technique for predicting observation is inconsistent with the short dependence
these properties of congestion events in the presence ofassumption in traditional traffic models, such as the
fractional Brownian motion (fBm) traffic is developed. Poisson process and other Markov models. Subsequent

Index Terms—Networks, Quality of Service, Internet, studies [9], [10] showed that the traditional models seem
Network Congestion inadequate for data networks. Since then, many other

traffic models have been proposed, such as fractal point
|. INTRODUCTION processes [11] and multifractal models [12]. In 1994,

ONGESTION events in communication networks' °' 0> [13] proposed a_fluid queueing model With a
cause packet losses, and it is well known th Eactlonal Brovv_man r_nonon (fBm) as |r_1put. _A fluid

these losses occur in bursts [1] [2]. Furthermore tﬁgoge:, Whr?,sﬁ mpug IS not kpacketlzed ISI swtart])Ie forl
frequency and the duration of these congestion everEYlgjr € |n% I?‘I %pee dnletwor SI. For;xamp " HO netal.
significantly influence the perceived network perfor ] used a flui rrf\o efto angysle Igl —precllcsur)]n router
mance [3] [4]. The Internet Engineering Task Forcfieasurement. A fBm for suitable values o t N H_“'@
has defined measurement-based QoS metrics [5] amﬂﬂameter process has the properties .Of self-smll_anty
at characterizing packet loss patterns. Measured pac?@ I(_Jng-re_mge dependence. By analyzing the origin of
traces [1] [6] have been used to create models foF f-_S|m.|Iar|ty and Iong_—range dependence in net_vyork
the temporal dependence of packet loss. These mod 'C’f I _Iwasf ihown in [15] (t)hl\?/tochlS suf[?_erpoytlon
assume a specific packet loss process, e.g., one i hamly O'I g%o,\?eneguSFF . dtra |_chsources
transits between different states, such as a no-loss stite!. "€avy taile O and L perioas, wit proper
and a loss state. However, transforming network traffﬁ:ca“ng' converges in d|str|.b.ut|on to a.me plus a linear
parameters directly into predictions of the properties 5P.”‘F(’j°”e”:]- The supkerp03|t|onh9fhtr|i1ﬁ|c .;ources dIS V\;e”.'
congestion events will aid network design and providesé"tle to the n;m;:lr colre,hw ;)C asbt ousgmhs cl) St
useful indication of QoS. The properties to be consideréd" tangous tga IC TIOWS. thas ee?cr)] sc;rvekbt at onf%-
here include the rate, the duration, and the magnituder@inge ependence s a property of the bac one traffic
the delay induced by congestion events. An approa 6]'_ Rec_(_ent network mea_surt_aments [17]. also justify the
for determining the rate of congestion events for son?eOp“?f?b'“tydOfI ? fBm, which ('js a Gaulfsmr;rproc;]ass, as
standard traffic models was presented in [7]. In this pap raffic model for aggregated network traffic. T us we
the approach is extended in two directions: (1) to focus on the Norros model to study the characteristics
fluid queueing model with a self-similar input and (2)01E congestion events.

to include additional properties of congestion events. The primary contribu_tion of this paper is the devel-
opment of methodologies for predicting the expected
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fractional Brownian motion, and the Poisson clumpingvariant underP. Let t}()” denote the beginning of the
approximation are given. In Section Ill, an approxii-th congestion event, such thatoo < ... < t[()—l) <
mation for a congestion event is proposed to simpli%ﬂ) <0< tl()l) < tz(>2) < ... < oco. Let tgi) and téi)

the analysis. The properties of congestion events apd the corresponding beginning and end of the busy
approximation methods are discussed in Section IV apgriod in which thei-th congestion event occurs. Let
V. Comparisons between the predictions made by the _ {tl(f),i € Z} denote the set of the beginning times
proposed methodologies and simulations are presenigtongestion events, thefiV, 6, P} forms a stationary

in Section VI. Finally, some conclusions are drawn ifharked point process, in which the paths of congestion
Section VII. events are viewed as marks. LBf; be the associated

Palm probability defined as

1
In this section, a congestion event is defined and

——F / (1ao O‘Q)N(ds)} ,

SELHON E[N(C)] [ c

some preliminaries on the Norros model, a fBm and a ) .

conditioned fBm are given for the future analysis. ~ WhereA € 7, N(C) denotes the number of points in a
Borel setC and1, is an indicator function. We usg

to represent the expectation with respectitpand use

Il. PRELIMINARIES
Py(4) =

A. Congestion Events E° to represent the expectation with respectp.
Let {Q(t),t € R} be a queue length process. A busy The inter-congestion event time between iké and
period fromt; to to is a period such thaQ(¢;) = the (i + 1)-th congestion events is denoted ’qy“) =

Qt2) = 0 but Q(t) > 0 for ¥t € (t1,t2). In-a "™ () we are interested in the properties of an
busy period from¢; to ¢, a congestion event with aarbitrary congestion event. To simplify the notation, we
level b is defined to occur at time, if ¢, is the first omit the superscripts. Then the mean inter-congestion
time that the procesg(t) reaches a fixed level. The event time is E°[r;]. As shown in [7], E°[r,] (or
congestion event ends at timg, i.e. the first time the the rate1/E° [1]) is a useful QoS metric. The other
queue becomes empty aftgr Two congestion events aremetrics of an arbitrary congestion event aé[C ],
shown in Figure 1. Given this definition of congestionhe mean sojourn time th&}(¢) spends above threshold
b in a congestion event®[D.,,4.4], the mean duration

e QM vst of a congestion event, i.e., the time from to ts;
Ao E°[Dg ), the mean duration of a busy period containing
i K % | a congestion event, i.e., the time from to t,; and

E°[Ag.] which is the mean peak queue length of a
congestion event. In a study of high precision router
measurements Hohn et al. [14] demonstrated that the
(Do, Ag,p) pairs can be used to describe a busy period
in which the queue length exceeds a congestion threshold
b. The set of metricsE°[r,], E°[Cqb)s E°[Deong.sl,
E°[Dgs), E°[Ags] can be used to characterize the
nature of congestion events.
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Q(t) (bit)

B. A Queueing Model with Fractional Brownian Traffic

o %0 0 150 200 20 300 As in [13], we use a fBm, which is a self-similar
t(sec) Gaussian process with stationary increments, to model
Fig. 1. Example of workload process and definitions of randorﬂetwork traffic. The definition of a fBm is given as
variables of interest follows.
Definition 2.1: [19] A standard fractional Brown-
the procesg)(t) can reenter the levél multiple times ian motion (fBm) with Hurst parameteff € (0,1),
during one congestion event. The premise of this worlkB*(t),t € R}, is a real-valued Gaussian process such
is that, for a largeh, a congestion event as defined herthat fors, t € R, E[BY(t)] = 0 and E[BY (s) B (t)] =
results in a burst of packet losses. LIsP 4 [¢[2H — |s — t[2H].
Formally as in [18], let(Q2,.#, P) be a probability In this paper, it is assumed thdf < [1/2,1). For
space and); be a measurable flow off2, %) which is H > 1/2, {B¥(t),t € R} has the property of long-




range dependence, that is, if r) — BH(r), given thatB(0) = 0 and BH (r) = d, in
" o " which~ > 0 andd € R are fixed constants.

r(n) = E[BT()(B"(n+1) — B (n))] Proposition 2.3:Let r > 0, d € R and H €
for n = 1,2,..., then>.°°  r(n) = oo. A fluid queue [1/2,1). A conditioned fBm {B*(t;r,d),t > 0} is
with a fBm as input was proposed by Norros [13], Figura Gaussian process. Fdats > 0, let . q(t) =
2. A fBm, B (t), is used to capture the self-similarityE[B (t;r,d)], o,(s,t) = cov(BH (s;r,d), B (t;r,d)),
and the long-range dependence in the input netwoakd letCy (r,t) = L[(t+r)2H —p2H —¢2H] Dy (s, t) =
traffic. Let A(t) = mt + v/aB™ (t) be the cumulated 3[s* + 2/ — |t — s[>HT], then

arrivals up to timet, wherem is the mean input rate Cr(r)

(bps), a stands for the variandei¢?), and B# (¢) is a fra(t) = HQH’ d, 3)

standard fBm with parametel/. For an input traffic " Crt(r,t)Cr (r, 5)
or(s,t) = Dy (s, t) — % ()

A®) H Proof: The covariance matrix oB (r), B (s +
r) — BH(r), BE(t +r) — BH(r), for t,s > 0, is

r2H Cyg(r,s) Cg(rt)
Cy(r,s) s2H Dg(s,t) | .
Fig. 2. A queue with fractional Brownian inputd(t) = mt + Cy(r,t) Dpg(s,t) 21
VaBH(t)

— 0

Conditioned on Bf(r) = d, and using the
modeled byA(t), we say that the input is determinecProperties of multinormal random variables [20],
by (m, a, H). At time ¢, the queue lengtl)),(¢) can E[BY(t;r,d)] = E[B”(t +r) — BY(r)|B(r) = d]
be expressed as, see [13] and the references ther@ig cov(B* (s;r,d), B¥ (t;r,d)) are as given in J)
Qo(t) = A(t) — ut — inf,<;(A(s) — us), where u is and @), respectively. Thus, for fixed, B (t;r,d) is
a fixed service rate inbps). Now Q,(t) can be written @ normal random variable with mean. 4(t), variance

as a2(t) = o.(t,1). ™
Remark 2.4:For H = 1/2, a conditioned fBm
_ H _ =
Qo(t) = VaB™ (t) = (u - m)t BH (t;r,d) reduces to a standard Brownian motion.

—inf (VaB"(s) = (n—=m)s), (1)

in which p — m is the surplus rate. For the stability ofD. Poisson clumping approximation
the queue, it is assumed that- m > 0.

Consider a scaled),(t), which is defined ag)(t) =
Q,(t)/+/a. We can observe that the temporal properti
of the congestion events ¢f,(¢) with a levelb, are the
same as those of the congestion event£)6f) with a
level b = b,/+/a. Therefore to study the properties o
congestion events of a queue with an input, ¢, H)
and a service rateu, it is equivalent to study the
corresponding scaled queue length proa@ss),

Following [7], the Poisson clumping approximation
6[52‘.1] is used to find the inter-congestion event time. For
a threshold, the queue tail distribution? (Q(0) > b),
and the mean sojourn time @J(¢) above the threshold
]jn a congestion eventz°[Cy, ;], are applied to evaluate
the mean inter-congestion event time as

E°[Cqu
P(Q0) = b)
Q(t) = BH(t) — ct — inf(B" (s) — ¢s), (2) Note that for a fBm traffic® (Q(0) > b) can be approxi-
sst mated using the results in [22]. Thus the problem reduces
in which ¢ = (1 —m)//a stands for the scaled surplugo finding £°[Cq, »]. By applying the Poisson clumping
rate. approximation, we assume that the congestion events are
rare and the dependence among the events are small.
. These assumptions are reasonable for the case studied
C. Conditioned fBm here. Wherb is large, the congestion events are rare and
We will use a conditioned fBm with a negative driftfar apart. AlthoughB* () has long range dependence,
to study congestion events, here a conditioned fBm ike dependence among congestion events are small.
defined and some properties are discussed. We validated the Poisson clumping approximation with

Definition 2.2: A conditioned me{BH(t;r, d),t > simulations, some of which is shown in Figure, 770,

0} with parameterst, » andd is defined asB*(t + 7c. These results indicate that the Poisson clumping

E°[ny) ~ )



approximation can be used to evaluate the average inter- ‘ ‘ _QOvst : :
congestion event time. ~—  Busyperiod  —

I1l. Busy PERIODSCONTAINING CONGESTION ) !
EVENTS AN

The busy periods of a queue with a fBm input have |
been discussed in [23], and recently in [24], in which = |
the busy periods are defined as the periods that the STV Y 1
gueue is not empty. In this paper we are interested in 1 b U/ 2

t t t
the periods in which congestion events occur. Note that — Co’ the sojourn time
a busy period hereafter always means a busy period | g;ggg,&;ggysb*gngabusv

containing a congestion event. A busy period from
to to is shown in Figure 8, wheret, is the first time

that the queue reaches a levelin the busy period, Time t
and t, is the first time that the queue returns o (@) A busy period 0fQ(t)
after t,. The timet, separates one busy period into X() vs t

two parts, [t1,t,] and [ty t2]. In order to apply the
Poisson clumping approximation, it is necessary to find I |
E[Cq ], which is the mean time that the queue spends .
above the leveb in a congestion event, Figure.3it will b
be demonstrated next that the problem can be simplified
by approximatingQ(¢) in [ts, t2] with a processX (¢),
which is a conditioned fBm with a negative drift, Figure

IR

X(t)

Proposition 3.1:Let ¢; and ¢, be the end points of I G, .- the scjoun

a busy period. Let, € [t1,t2] be the first time that %iméofx(t)aboveb
rom 0 to Rlj

Q(t) reaches a levdl. Then fort € [t1, 2], Q(t) can be
rewritten as

Q(t) = BH(t) — BH(t1) — c(t — t1),t € [t1, 1)) (B) Time t

Q) =b+ BH(t) — BH(tb) —c(t —ty),t € [ty, t2]. (b) Approximation proces (t)

() Fig.3. Ab iod of2(t) from 1 to ¢, and th imati
Proof: From the conditions, we have th@{(t;) = p'r?,'cegsx(t)usy period 0)(t) from ¢, to ¢z, and the approximation

0, Q(ty) = b andQ(s) > 0 for s € (t1,t2). From (2), it
can be verified that fovt € (¢1,12),

Hooy g Hoo Define a proces{X (t;ry,dy) = b+ BH (t;ry,dy) —

BH(h) = ety = inf (B (s) — cs). ct,t € [0,00)}, where {BH (t;ry,dy),¢ > 0} is a

Then based on (2), fare [t1, ] conditioned fBm with parametetd, r;, d,, and
bH
_ nH _ s H _ —
Q) =B"(t)—ct ?%ft (BY(s) — cs) Ty c1—H) 8)
=BH(t) - BH(t;) — c(t — t1). dp = b+ cry. 9)
Similarly, Q(t) = b+ [BH (t) — B (t;)] — c(t — t;), for For a largeb, the congestion events are rare. Since
t € [ty ta). W ‘rare events occur in the most likely way” and the most

Remark 3.2:In [t1,t], Q(t) increases frond to the probable sample path of)(¢) found in [23] spends
level b. Since Q(t,) = b, from (6), the increment of time bH/c¢(1 — H) increasing from0 to a large fixed
the fBm in [ty,t] is B7(t,) — B¥(t1) = b+ c(t, — level b, we use the constants andd, to represent the
t1). For the period oflt,ts], recall that if ¢, is a time ¢, — t; and the increment of the fBm ifty, ¢;],
constant,{ B¥ (t) — BH(t;),t € [tp,o0)} is equivalent respectively. Att = 0, the processX (t;r,d,) starts
to {BH(t),t € [0,00)} in distribution. This is the at b, i.e., X(0;74,d,) = b. Let R, be the first time
motivation for approximating the peridd,, t2] of Q(¢t) that X (¢;r,dp) returns to0, that is, R, = inf{t >
with a conditioned fBm with a negative drift. 0 : X(t;ry,dp) < 0}. To simplify the exposition, we



sometimes denot& (¢; ry, dp) With X (¢). E[Cxp] (= E°[Cqp)) when H # 1/2. Thus we
The part[ty, t2] of a busy period ofY(¢) is approxi- approximateE|[Cx ;] with Ug,, i.e.,

mated by[0, Rp] of X (¢), Figure 3. LetCx ;, denote the ElC« ~ U 12

sojourn time thatX (¢) spends above the levélin the [Cxp]~ Vg, (12)

period of [0, Ry]. The idea is to approximat&®[C, ] Combining (5), (10) and (12), the mean inter-congestion

with E[Cx ], that is, event time,E°[r,], can be expressed as

E°[Cqp) = E[Cx ). (10) ElCxs] Ug,

Since the procesX (¢) is not related to the point process P(Q0)=0)  P(Q0) 2 b)

N, defined in Section II-A, we usé?[Cy,], which Even though several approximations were applied to

is the expectation with respect tB, to represent the obtain (13), the above analysis successfully predicts

expectation ofCy . trends observed from simulations. The method provides
Remark 3.3:We use|0, R,] of X(t) to approximate better predictions for the inter-congestion event time

the part[ts, t,] of a busy period. This approximation hadghan directly using the reciprocal of the tail probability,

some inherent shortcomings. The parametgendd, of 1/P(Q(0) > b), as will be discussed in Section VI.

X (t) are used to represent— ¢, and the corresponding  In the following we obtain an upper bound féi{ R, ],

increment of the fBm, respectively. However, they canndthich will be used to approximate the mean duration

capture the property tha(¢) is less tharb and strictly time of a congestion evenE°®[D. ). Let

positive in(t1,t), i.e.,0 < Q(t) < b,Vt € (t1,t). And 00 b

for a fixed b, 7, is a constant, but, — ¢; is obviously Un, :/ B (cu —b— ,urb,db(u)> o (14)

a random variable. ThugQ(t),t € (ty,t2)} is not 0 Vor, ()

equivalent to a conditioned fBm. As an approximationg; oo .

X (t) cannot exactly capture all the characteristics onSI_nceE[Rb] N [OH P (R, > u)du and {Ry > u} =

congestion event. However its use simplifies the analysjg*fo<s<u (b + B (5575, dp) = CS) > 0}’ we have

and produces useful results.

Er) = (13)

B[Ry :/ P (Ry > u) du
0
IV. MEAN SOJOURNTIME

. _ . _ g/ P(b+BH(u;rb,db)—cu>O)
The sojourn timeCx , that is, the time thatX(¢) 0
spends abové in [0, R,], can be written as = Ug,.

Remark 4.1:By deriving a lower bound forE[Ry],
it can be illustrated that the relative difference between
Urg, and E[Ry], defined asl%lfb[fm, approache$ as
the levelb increases. Therefore for a large Upr, can
be used as an approximation fB{Ry], i.e.,

Ue, = /Oo o (Ct_“”jdb(t)> dt. (11) E[Rp] =~ Ug,. (15)
0

a7, (t)
_ ’ _ The lower bound folE[Ry] is not presented here, but as
ThenUg, is an upper bound oF[Cy 4], since can be seen from the simulation results;, provides a

00 . good approximation foFZ[R,] (= E°[Dongb))-
E[CX}b] < E/ 1[p,00) (b + BH<t; Ty dp) — Ct) dt ) [ I 2
0

=Ug,. V. MEAN DURATION TIME AND MEAN AMPLITUDE

For H = 1/2, the processX (t) reduces to a stan-A. Mean Duration of Congestion Events

dard Brownian motion with a negative drift. By the As shown in Figurel, a congestion event starts at
dominated convergence theorem, it can be verified thghe ¢, and ends at,. Let Deong.» = t2 — t;, denote the
limy oo E[Cxp] = Ug, (for H = 1/2, Ug, is @ duration time of a congestion event. Since the period
constant which is independent bf. Then for a large, [ty, 2] Of Q(t) is approximated by0, R,] of X (t) and

E[CXJ)] ~ UCb. Although the ||m|t|ng result can Only from (15)’E0 [Dcoan)] can be expressed as
be shown forH = 1/2, the simulation results in Section '

VI demonstrate thal/, is a good approximation for  £°[Deong] = E°[t2 — t] =~ E[Ry] = Ur,. ~ (16)

Ry,
Cp = / Loy (X (£ 74, dy)) dt.
0

Let®(-) = = [~ e~¢°/2d¢ denote the complement of
a standard normal distribution. Let



B. Mean Duration of Busy Periods length which has an input(,a, H) and a service rate

Let Dy, denote the duration of a busy period it the load of the queue ip = m/u. Recall that
which a congestion event occurs. The mean durationfi Properties of a congestion event @f,(¢) with a
E°[Dos) = E°[ts — t1]. From Figure 1,E9(Dg,] can evel b, are equivalent to the congestion event(ft)
be written asE’ (D] = E°[Deongs] + E%[ty — t1]. W|th_a levelb,/+/a. Qn the basis of (2), given a scaled
Recall thatt, — is'approximated with a constanj, Service rate and the input parametersi(a, H), we can

which can be evaluated with (8). Thus, combining (165:onveniently transform the characteristics of congestion
events of)(t) to those of@,(t).

we have
Now we can evaluate the temporal characteristics of
E°[Dqu] = E[Ry] + 16 =~ Ug, + 70. (17) congestion events and the corresponding busy periods.
Evaluations based on the above analysis are compared
C. Mean Amplitude with simulation results. Fractional Brownian motions are

enerated with the algorithm proposed in [25]. Fbre
.5,0.79], 20 traces of fBm are generated, each trace has
4 samples; forf = 0.85, 80 traces are generated, each
ias22? samples'. The parametersl andc are varied to
modify the long-range intensity and the scaled surplus
rate. The relative error of the approximations is reported,
which is defined aé‘”ﬁ%ﬁ”, where z is the simulation
result,z is the corresponding approximation apdl|| is

the Euclidean norm.

In simulations, we use different values fat, the time
between consecutive samples. On one hand, we need to
let At be small so that we can measure the sojourn and
duration times accurately; on the other hand, to collect
enough congestion events, we want the whole traée (
or 222 samples) to represent a time series which is in
B i the order of hours.

For a fixed simulation length when the threshéld
increases, fewer and fewer congestion events occur (the
events become rare). For example, under the conditions

t (sec) | | | H = 0.85, ¢ = 3.5, for b = 0.05, there are over 50000
congestion events, but fér= 0.25, we can only collect
Fig. 4. Triangle approximation of a busy period 600 events over 80 traces. Consequently, fluctuations can

) _be noticed for largé in the simulation results, see Figure
at s; and s;. The mean amplitude of a busy periodg,, 5p 5¢ 9q4.

E%[Ag ), can be approximated with the height of the
triangle A,. Let L, denotes; — s;. Note thatl, is . . 0
the length that the triangle stays above the ldvelve A Mean sojourn time?(Cq ]
use E°[Cq 5], the mean sojourn time of a congestion The comparisons between the predicted and simulated
event, to approximatd,,, that is, L, ~ E°[Cqg,]. The E°[Cq ] are shown in Figure 5 and 6. The approxima-
baseB, is approximated with the mean duration time ofion results follow the trends as a function of the surplus
a busy periodE°[Dg ,]. With simple geometry, it can rate ¢ and the Hurst parametefd, the relative errors
be derived thatd, = b2t— ~ b E°[Dg 1] ~range from10% to 20%. The errors are partly caused
ini " e Paul=E%Carl™ by it is observed that;, overestimatesz®[t, — ¢

Combining (12) and (17), we have y rp. ILIS O b [to — t],

i.e., the time that the queue builds up from 0 &an

The busy periods in a network router have bee
previously modeled by triangles in [14], so we use,
a triangle to approximate a busy period in Figure
The triangle has a base dB,, crosses the leveb

Triangle approximation of a busy period

Q) (bit)

E°[Ags) ~ Ay ~ bM_ (18) a busy period. Fluctuations, which are caused by small
U, + 10— Ug, sample sizes, can be observed for lasgEigure %, 5b,
VI. EVALUATION 1The simulations were performed on a computer with two Intel Xeon

So f h f d led | Processors running at 2.8 GHz with 2GB RAM. The memory capacity
0 lar we have iocused on a scaled queue len bined with the numerical limitation of the algorithm in [25] limited

processQ(t), given by (2). LetQ,(t) denote the queue the sample size ta** for H € [0.5,0.79], and222 for H = 0.85.
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5¢. Similar phenomena have been observed in network
router performance measurements, e.g., Figure 13 in
[14].

B. Inter-congestion event timg°[r;]

The approximation given in (13) is compared with the
simulation results and another approximation method,
1/P(Q(0) > b), the reciprocal of the tail of the queue
fill probability. As shown in Figure 7 and 8, the approx-
imation (13) outperforms/P(Q(0) > b) in most cases.
We notice that for different parameter sef&’[r,] may
increase or decrease with respectHo For example,
whenb = 2.9, ¢ = 1.5, E°[r,] decreases versul as
shown in Figure 8 but for b = 0.95, ¢ = 3, EY[r;]
increases in FiguredIn both cases, our approximation
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results can follow the observed trends. In Figuwe E°[Dygng sl H=0-65, c=4, At=0.5ms
and %, the Poisson clumping approximation, given in  *“[= amuaion ‘ ‘
(5), is validated; both=°[Cq ] and P(Q(0) > b) in (5) [ Approx.rel. em. = 2%

are measured from the simulations.

)
w
5]

C. Mean duration time of congestio2’ [ D .on 5]

It is shown in Figure 9 and 10 that the approximation,
given in (16), is close to the simulation results of
E°[Deong,p), the relative errors are around%. In all
situations, as shown in Figure 4010b, the approxima-
tions follow the trends of the simulation results. ousl

Duration time (sec)

L L L L
0.2 03 0.4 0.8 0.9 1

05 0‘6 0.7
Threshold b
In Figure 11 and 12, the mean durations of busy (@) Duration of congestions Vs
periods observed from simulations are compared with
the approximation (17). We noticed that given in (8), ot ‘ ‘
overestimates the mean time that the queue increase —— Simulafion
0 . . —— Approx.,rel. err. = 1%
from 0 to b. Thus E°[Dg, ;| is overestimated by the ap-
proximation. However, the approximation results follow
the observed trends, the relative errors are fid¥ to
30%.

D. Mean duration time of busy periods®[Dg, ;]

0,
E [Dcong,b

]: H=0.79, c=5, A t=0.5ms

0.14 -

o
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E. Mean amplitude=°[Ag ;)

From the simulation results, it is observed that the
mean amplitude follows a linear trend as a function
of the thresholdb. As shown in Figure 13 and 14,
the approximations underestimaté’[A, ;). Based on . ‘ ‘
(18), the underestimation is caused by the overestimatior o«  °® oo
of E°[Dg ). But again the approximations follow the
simulation trends, the relative errors are arounth.

The errors in the approximations are partly from Eo[Dcongb]: H=0.85, ¢=3.5, A t=1ms
rp, Which overestimates the time th&(¢) increases 0s — ‘ ‘
from O to b. If we have better knowledge af;, the
approximation results can be improved.

To illustrate an application of the proposed method-
ology, suppose that we need to choose a link capac gosr
ity for a conferencing teleservice. The requirement of
an error free interval for audio and video multimedia
conferencing teleservices is given 38 minutes [26],
i.e., the average inter-congestion event tif@[r,] is
1800 seconddpg(E°[r,)) ~ 7.5. Then for a fBm traffic
characterized byn = 100Mbps, a = 10*4bit?, H =
0.75, the proposed method indicates that for a congestior  °r
level of b = 5.5Mb, a link capacity ofl40M bps (traffic 005 ‘ ‘ ‘ ‘ ‘ ‘
load p ~ 0.7) would be required to ensure the average °  °* " Theshodb %
congestion free interval of 30 minutes, and in this case,

EO[CQJ)] ~ 90ms, EO[DCOWL[,} ~ 395ms, EO[DQJ,} ~
800ms, E° [AQ b] ~ 6.2Mb. Fig. 9. Comparison of mean duration of congestion events
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It has been recognized that the frequency and the
duration of congestion events significantly impact user- g,/
perceived performance. Previous efforts have focusec%
on measurement-based approaches to determine the fr.£*’
guency and duration of these events. However, for net- §os
work design, techniques are needed to predict the con
gestion events given the nature of traffic. This paper pro-©
vides new techniques to approximate several propertie:
of congestion events, their rate, duration, and amplitude
given a fBm traffic. The technique to approximate the
rate outperforms the reciprocal of the tail of the queue fill
probability, i.e.,1/P(Q(0) > b), and follows the trends
observed from simulations. As in [7], the approach for
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extended to determine the expected rate of congestiol ozsp
events for an end-to-end flow that passes through sever:
gueues. Congestion events at each queue along a path ¢
be assumed to be independent and rare, so an end-to-elgmi
flow will experience the sum of the congestion events 2
along the path. The inter-congestion event tifg{r;) g .,
(or its rate1/E%[r,]), which can be easily understood <
by network users, is a useful QoS metric for network o
design. The other metrics of congestion events, such a
the sojourn time above a threshold, the duration, and
the amplitude, give additional insights into the nature of
congestion events. o o1 ok 0z om 03 o

Threshold
These results can be extended in several areas. The

. . (c) Amplitude vsb
accuracy of the techniques developed here can be im-
proved. The properties of busy periods whose duratiofig. 13. Comparison of mean amplitude of congestion events
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[17]

are

larger than a fixed’, discussed in [24], [27], are

interesting problems for further study. Other self-similapg
traffic models need to be considered, such as the Levy
processes. To understand fully the impacts of self-simil&€]

traffic on networks, these processes need to be analy%gﬁi

and

(1]

(2]

additional methodologies developed.
[21]
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