
EECS 388: Embedded Systems

10. Timing Analysis

Heechul Yun

1

Agenda

• Execution time analysis

• Static timing analysis

• Measurement based timing analysis

2

Execution Time Analysis

• Will my brake-by-wire system actuate the
brakes within one millisecond?

• Will my camera based steer-by-wire system
identify a bicycler crossing within 100ms
(10Hz)?

• Will my drone be able to finish computing
control commands within 10ms (100Hz)?

3

Execution Time

• Worst-Case Execution Time (WCET)

• Best-Case Execution Time (BCET)

• Average-Case Execution Time (ACET)

4

Execution Time

• Real-time scheduling theory is based on the
assumption of known WCETs of real-time tasks

5

Image source: [Wilhelm et al., 2008]

The WCET Problem

• For a given code of a task and the platform
(OS & hardware), determine the WCET of the
task.

6

while(1) {

read_from_sensors();

compute();

write_to_actuators();

wait_till_next_period();

}

Loops w/ finite bounds
No recursion
Run uninterrupted

Timing Analysis

• Static timing analysis

– Input: code, arch. model; output: WCET

• Measurement based timing analysis

– Based on lots of measurements. Statistical.

7

Static Timing Analysis

• Analyze code

• Split basic blocks

• Find longest path
– consider loop bounds

• Compute per-block WCET
– use abstract CPU model

• Compute task WCET
– by summing up the WCETs of the

longest path

8

WCET and Caches

• How to determine the WCET of a task?

• The longest execution path of the task?

– Problem: the longest path can take less time to finish
than shorter paths if your system has a cache(s)!

• Example

– Path1: 1000 instructions, 0 cache misses

– Path2: 500 instructions, 100 cache misses

– Cache hit: 1 cycle, Cache miss: 100 cycles

– Path 2 takes much longer

9

Recall: Memory Hierarchy

10

Fast,
Expensive

Slow,
Inexpensive

Volatile
memory

Non-volatile
memory

SiFive FE310

11

CPU: 32 bit RISC-V
Clock: 320 MHz
SRAM: 16 (D) + 16 (I) KB
Flash: 4MB

32 bit data bus

Raspberry Pi 4: Broadcom BCM2711

12

(Bild: ct.de/Maik Merten (CC BY SA 4.0))

Image source: PC Watch.

CPU: 4x Cortex-A72@1.5GHz
L2 cache (shared): 1MB
GPU: VideoCore IV@500Mhz
DRAM: 1/2/4 GB LPDDR4-3200
Storage: micro-SD

https://creativecommons.org/licenses/by-sa/4.0/legalcode

Processor Behavior Analysis: Cache

Effects

Suppose:

1. 32-bit processor

2. Direct-mapped cache holds two sets

 4 floats per set

 x and y stored contiguously

starting at address 0x0

What happens

when n=2?

Slide source: Edward A. Lee and Prabal Dutta (UCB)

Direct-Mapped
Cache

Valid Tag Block

Valid Tag Block

Valid Tag Block

.
.
.

Set 0

Set 1

Set S

Tag Set index Block offset

m-1 0

s bitst bits b bits

Address

1 valid bit t tag bits B = 2b bytes per block

CACHE

A “set” consists of one “line”

If the tag of the address

matches the tag of the line, then

we have a “cache hit.”

Otherwise, the fetch goes to

main memory, updating the line.

Slide source: Edward A. Lee and Prabal Dutta (UCB)

This Particular
Direct-Mapped

Cache

Valid Tag Block

Valid Tag Block

Set 0

Set 1

Tag Set index Block offset

m-1 0

s = 1 bitst = 27 bits b = 4 bits

Address = 32 bits

1 valid bit t tag bits B = 2b bytes per block

CACHE

Four floats per

block, four bytes

per float, means 16

bytes, so b = 4

Slide source: Edward A. Lee and Prabal Dutta (UCB)

Processor Behavior Analysis: Cache

Effects

Suppose:

1. 32-bit processor

2. Direct-mapped cache holds two sets

 4 floats per set

 x and y stored contiguously

starting at address 0x0

What happens

when n=2?

x[0] will miss,

pulling x[0], x[1],

y[0] and y[1] into

the set 0. All but

one access will

be a cache hit.

Slide source: Edward A. Lee and Prabal Dutta (UCB)

Processor Behavior Analysis: Cache

Effects

Suppose:

1. 32-bit processor

2. Direct-mapped cache holds two sets

 4 floats per set

 x and y stored contiguously

starting at address 0x0

What happens

when n=8?

x[0] will miss,

pulling x[0-3] into

the set 0. Then

y[0] will miss,

pulling y[0-3] into

the same set,

evicting x[0-3].

Every access will

be a miss!

Slide source: Edward A. Lee and Prabal Dutta (UCB)

Measurement Based Timing Analysis

• Measurement Based Timing Analysis (MBTA)

• Do a lots of measurement under worst-case
scenarios (e.g., heavy load)

• Take the maximum + safety margin as WCET

• No need for detailed architecture models

• Commonly practiced in industry

18

Real-Time DNN Control

• ~27M floating point multiplication and additions
– Per image frame (deadline: 50ms)

19
M. Bechtel. E. McEllhiney, M Kim, H. Yun. “DeepPicar: A Low-cost Deep Neural Network-based
Autonomous Car.” In RTCSA, 2018

First Attempt

• 1000 samples (minus the first sample. Why?)

20

CFS (nice=0)

Mean 23.8

Max 47.9

99pct 47.4

Min 20.7

Median 20.9

Stdev. 7.7

Why?

DVFS

• Dynamic voltage and frequency scaling (DVFS)

• Lower frequency/voltage saves power

• Vary clock speed depending on the load

• Cause timing variations

• Disabling DVFS

21

echo performance > /sys/devices/system/cpu/cpu0/cpufreq/scaling_governor
echo performance > /sys/devices/system/cpu/cpu1/cpufreq/scaling_governor
echo performance > /sys/devices/system/cpu/cpu2/cpufreq/scaling_governor
echo performance > /sys/devices/system/cpu/cpu3/cpufreq/scaling_governor

Second Attempt (No DVFS)

• What if there are other tasks in the system?

22

CFS (nice=0)

Mean 21.0

Max 22.4

99pct 21.8

Min 20.7

Median 20.9

Stdev. 0.3

Third Attempt (Under Load)

• 4x cpuhog compete the cpu time with the DNN

23

CFS (nice=0)

Mean 31.1

Max 47.7

99pct 41.6

Min 21.6

Median 31.7

Stdev. 3.1

Recall: kernel/sched/fair.c (CFS)

• Priority to CFS weight conversion table

– Priority (Nice value): -20 (highest) ~ +19 (lowest)

– kernel/sched/core.c

24

const int sched_prio_to_weight[40] = {

/* -20 */ 88761, 71755, 56483, 46273, 36291,

/* -15 */ 29154, 23254, 18705, 14949, 11916,

/* -10 */ 9548, 7620, 6100, 4904, 3906,

/* -5 */ 3121, 2501, 1991, 1586, 1277,

/* 0 */ 1024, 820, 655, 526, 423,

/* 5 */ 335, 272, 215, 172, 137,

/* 10 */ 110, 87, 70, 56, 45,

/* 15 */ 36, 29, 23, 18, 15,

};

Fourth Attempt (Use Priority)

• Effect may vary depending on the workloads

25

CFS
(nice=0)

CFS
(nice=-2)

CFS
(nice=-5)

Mean 31.1 27.2 21.4

Max 47.7 44.9 31.3

99pct 41.6 40.8 22.4

Min 21.6 21.6 21.1

Median 31.7 22.1 21.3

Stdev. 3.1 5.8 0.4

Fifth Attempt (Use RT Scheduler)

• Are we done?

26

CFS
(nice=0)

CFS
(nice=-2)

CFS
(nice=-5)

FIFO

Mean 31.1 27.2 21.4 21.4

Max 47.7 44.9 31.3 22.0

99pct 41.6 40.8 22.4 21.8

Min 21.6 21.6 21.1 21.1

Median 31.7 22.1 21.3 21.4

Stdev. 3.1 5.8 0.4 0.1

BwRead

• Use this instead of the ‘cpuhog’ as background tasks

• Everything else is the same.

• Will there be any differences? If so, why?

27

#define MEM_SIZE (4*1024*1024)
char ptr[MEM_SIZE];
while(1)
{

for(int i = 0; i < MEM_SIZE; i += 64) {
sum += ptr[i];

}
}

Sixth Attempt (Use BwRead)

• ~2.5X (fifo) WCET increase! Why?
28

Solo w/ BwRead

CFS
(nice=0)

CFS
(nice=0)

CFS
(nice=-5)

FIFO

Mean 21.0 75.8 52.3 50.2

Max 22.4 123.0 80.1 51.7

99pct 21.8 107.8 72.4 51.3

Min 20.7 40.6 40.9 38.3

Median 20.9 81.0 50.1 50.6

Stdev. 0.3 17.7 6.1 1.9

BwWrite

• Use this background tasks instead

• Everything else is the same.

• Will there be any differences? If so, why?

29

#define MEM_SIZE (4*1024*1024)
char ptr[MEM_SIZE];
while(1)
{

for(int i = 0; i < MEM_SIZE; i += 64) {
ptr[i] = 0xff;

}
}

Seventh Attempt (Use BwWrite)

• ~4.7X (fifo) WCET increase! Why?
30

Solo w/ BwWrite

CFS
(nice=0)

CFS
(nice=0)

CFS
(nice=-5)

FIFO

Mean 21.0 101.2 89.7 92.6

Max 22.4 194.0 137.2 99.7

99pct 21.8 172.4 119.8 97.1

Min 20.7 89.0 71.8 78.7

Median 20.9 93.0 87.5 92.5

Stdev. 0.3 22.8 7.7 1.0

4xARM Cotex-A72

• Your Pi 4: 1 MB shared L2 cache, 2GB DRAM

31

Shared Memory Hierarchy

• Cache space
• Memory bus bandwidth
• Memory controller queues
• …

32

Core1 Core2 Core3 Core4

DRAM

Memory Controller (MC)

Shared Last Level Cache (LLC)

Shared Memory Hierarchy

33

• Memory performance varies widely due to
interference

• Task WCET can be extremely pessimistic

Core1 Core2 Core3 Core4

Memory Controller (MC)

Shared Cache

DRAM

Task 1 Task 2 Task 3 Task 4

I D I D I D I D

Multicore and Memory Hierarchy

34

CPU

Memory Hierarchy

Unicore

T1 T2

Core
1

Memory Hierarchy

Core
2

Core
3

Core
4

Multicore

T
1

T
2

T
3

T
4

T
5

T
6

T
7

T
8

Performance Impact

Effect of Memory Interference

• DNN control task suffers >10X slowdown

– When co-scheduling different tasks on on idle cores.

35

 0

 2

 4

 6

 8

 10

 12

DNN (Core 0,1) BwWrite (Core 2,3)

N
o
rm

a
liz

e
d
 E

x
e
u
c
ti
o
n
 T

im
e

Solo
Corun

DRAM

LLC

Core1 Core2 Core3 Core4

DNN BwWrite

Waqar Ali and Heechul Yun. “RT-Gang: Real-Time Gang Scheduling Framework for Safety-Critical Systems.” RTAS, 2019

Effect of Memory Interference

36
https://youtu.be/Jm6KSDqlqiU

https://youtu.be/Jm6KSDqlqiU

Summary

• Timing analysis is important for time sensitive,
safety-critical real-time applications

• Static timing analysis
++ Strong analytic guarantee

--- Architecture model is hard and pessimistic

• Measurement based timing analysis
++ Practical, no need for architecture model

--- No guarantee on true worst-case

• Multicore is difficult to handle

37

