EECS 388: Embedded Systems

10. Timing Analysis
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Execution time analysis

WCET, BCET, ACET

Static analysis methods
Measurement based methods
Modern computer architecture



Execution Time Analysis

* Will my brake-by-wire system actuate the
brakes within one millisecond?

 Will my camera based steer-by-wire system
identify a bicycler crossing within 100ms
(10Hz)?

* Will my drone be able to finish computing
control commands within 10ms (100Hz)?

THE UNIVERSITY OF



Execution Time

* Worst-Case Execution Time (WCET)

e Best-Case Execution Time (BCET)

* Average-Case Execution Time (ACET)

THE UNIVERSITY OF



Execution Time

é‘ worst-case performance >
= worst-case guarantee
o
5 The actual WCET
= Minimal must be found or Maximal
é It‘ig;"ivﬁr BCET Observed upper bounded observed  \veET i‘lﬁﬁfr
7 boungcli execuhon execution boun%
© time l \ wl] time
IIIN I m M‘“‘m i | | >
0 <——— measured execution times —— time
possible execution times

timing predictability
Image source: [Wilhelm et al., 2008]

Real-time scheduling theory is based on the
assumption of known WCETSs of real-time tasks
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The WCET Problem

* For a given code of a task and the platform
(OS & hardware), determine the WCET of the

task.

while(1) {
read from sensors(); Loops w/ finite bounds
compute(); 4 No recursion
Run uninterrupted

write_to_actuators();
wait_till_next_period();



Computing WCET

e Static analysis

— Input: program code, architecture model
— output: WCET

— Problem: architecture model is hard and
pessimistic

* Measurement

— No guarantee on true worst-case
— But, widely used in practice
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Static Timing Analysis

ENTRY
* Analyze code
Bl i=1
B2 [j=1 * Split basic blocks
tl = 10":i
g * Find longest path

B3 t4 =t3-88

alt4] = 0.0
i=i+1

if j <= 10 goto B3

— consider loop bounds

—  Compute per-block WCET
B4 i1 <= 10 goto 52 — use abstract CPU model

BS |i=1

 Compute task WCET

5 [t6 = 6015 ) — by summing up the WCETSs of the
alte] = 1.0 longest path

EXIT
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Static Timing Analysis
@ Legend:
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Timing Compositionality

« Consider a task T with two parts A and B
composed in sequence: T=A; B

- Is WCET(T) = WCET(A) + WCET(B) ?

* Not always
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WCET and Caches

* How to determine the WCET of a task?

* The longest execution path of the task?

— Problem: the longest path can take less time to finish
than shorter paths if your system has a cache(s)!

 Example
— Path1: 1000 instructions, O cache misses
— Path?2: 500 instructions, 100 cache misses
— Cache hit: 1 cycle, Cache miss: 100 cycles
— Path 2 takes much longer
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Processor Behavior Analysis: Cache
Effects

float dot_product (float *x, float =y, int n) {
float result = 0.0
int i;
for (i=0; i < n; i++) {
result += x[1] * yI[i];
}

return result;

}

.
r

o~ O . ks Wk

Suppose:
1. 32-bit processor
2. Direct-mapped cache holds two sets
O 4 floats per set
O x andy stored contiguously
starting at address 0x0

What happens
when n=27

Slide source: Edward A. Lee and Prabal Dutta (UCB)



. 1 valid bit ttag bits B = 2° bytes per block
Direct-Mapped
Set 0 Valid Tag Block
Cache
A “set” consists of one “line”
v
» Set 1 Valid Tag Block
t bits s bits b bits
Tag Set index | Block offset
-1
" Address 0
If the tag of the address Set g| | Valid Tag Block
matches the tag of the line, then
we have a “cache hit.”
Otherwise, the fetch goes to
rﬁ?in memory, updating the line. CACHE

KANSAS Slide source: Edward A. Lee and Prabal Dutta (UCB)



Th IS Pa rt | C u |a r 1valid bit  ttag bits B = 2b bytes per block
Direct-Mappe d seto| [Vaid | [ Tag Block
Cache
v
» Set 1 Valid Tag Block
Four floats per
t =27 bits s=1bhits b =4 bits block, four bytes
_ per float, means 16
Tag | Setindex | Block offset bytes, so b = 4
m-1 0
Address = 32 bits
KU CACHE

RANSAS Slide source: Edward A. Lee and Prabal Dutta (UCB)



Processor Behavior Analysis: Cache
Effects

float dot_product (float *x, float =y, int n) {
float result = 0.0
int i;
for (i=0; i < n; i++) {
result += x[1] * yI[i];

} What happens

return result;

.
r

o~ O . ks Wk

} when n=27
Suppose: -
1. 32-bit processor X[0] will miss,
2. Direct-mapped cache holds two sets  Pulling x[0], x[1],
O 4 floats per set y[0] and y[1] into
O x and y stored contiguously the set 0. All but
starting at address 0x0 one access will

be a cache hit.
Slide source: Edward A. Lee and Prabal Dutta (UCB)



Processor Behavior Analysis: Cache
Effects

float dot_product (float *x, float =y, int n) { What happenS
0

float result = 0.

1

2 H —

 imt s when n=8?

4 for(i=0; 1 < n; 1i++) { ) .

5 result += x[1i] * y[i]; X[O] W|” MISS,

6 } . .

7 return result; puulng X[O_B] |nt0

s ) the set 0. Then
O] will miss,

Suppose: VIO]

pulling y[0-3] into
the same set,
evicting x[0-3].
Every access will
be a miss!

1. 32-bit processor
2. Direct-mapped cache holds two sets
O 4 floats per set
O x andy stored contiguously
starting at address 0x0

Slide source: Edward A. Lee and Prabal Dutta (UCB)



Timing Anomalies

* Locally faster != globally faster

Branch Condition
Evaluated

|
|
Cache Hit ( A %Prefetch IC - Miss due to Prefetch)
|
|
|
Cache Miss ( A I C )
|

P Image source: [Wilhelm et al., 2008]



Timing Anomalies

* Locally faster != globally faster

Resource 1 ( A D % E )
Resource 2 ( C B J

Resource 1 D /f = )
Resource 2 B I C

KU Image source: [Wilhelm et al., 2008]
KANSAS




“Problematic” CPU Features

* Architectures are optimized to reduce average
performance

 WCET estimation is hard because of
— Pipelining
— TLBs/Caches
— Super-scalar
— QOut-of-order scheduling
— Branch predictors
— Hardware prefetchers
— Basically anything that affect processor state

THE UNIVERSITY OF
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Measurement

Measurement Based Timing Analysis (MBTA)

Do a lots of measurement under worst-case
scenarios (e.g., heavy load)

Take the maximum + safety margin as WCET

Commonly practiced in industry



Real-Time DNN Control

10 neurons.
S0 neurons
100 neurons

" 3x3 ice.mel

V

'\

5xS kernel

1 ﬁ

L~

.

&~

V

3x3 kcrncl_

5x5 kernel

™ 5x5 kernel

output: steering angle

fca: fully-connected layer
fc3: fully-connected layer
fc2: fully-connected layer
fc1: fully-connected layer

convs: 64@1x18
convolutional layer

convd: 64@3x20
convolutional layer

conv3: 48@5x22
convolutional layer

conv2: 36@14x47
convolutional layer

convl: 24@31x98
convolutional layer

input: 200x66 RGB pixels

~27M floating point multiplication and additions
— Per image frame (deadline: 50ms)

KU M. Bechtel. E. McEllhiney, M Kim, H. Yun. “DeepPicar: A Low-cost Deep Neural Network-based

21

RANRAS Autonomous Car.” In RTCSA, 2018



First Attempt

* 1000 samples (minus the first sample. Why?)

___________ CFs(nice=0)

Mean 23.8
Max 47.9 &= \Why?
99pct 47.4
Min 20.7
Median 20.9
Stdev. 7.7

EEEEEEEEEEEEE
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#
#
#
#

DVFS

Dynamic voltage and frequency scaling (DVFS)

Lower frequency/voltage saves power

Vary clock speed depending on the load

Cause timing variations
* Disabling DVFS

echo performance
echo performance
echo performance
echo performance

>
>
>
>

/sys/devices/system/cpu/cpu@/cpufreq/scaling governor
/sys/devices/system/cpu/cpul/cpufreq/scaling governor
/sys/devices/system/cpu/cpu2/cpufreq/scaling governor
/sys/devices/system/cpu/cpu3/cpufreq/scaling governor



Second Attempt (No DVFS)

| CFS(nice=0) _
Mean 21.0
Max 22.4
99pct 21.8
Min 20.7
Median 20.9
Stdev. 0.3

 What if there are other tasks in the system?

KU
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Third Attempt (Under Load)

| CFs(nice=0) _
Mean 31.1
Max 47.7
99pct 41.6
Min 21.6
Median 31.7
Stdev. 3.1

* 4x cpuhog compete the cpu time with the DNN

uuuuuuuuuuuuu



Recall: kernel/sched/fair.c (CFS)

* Priority to CFS weight conversion table
— Priority (Nice value): -20 (highest) ~ +19 (lowest)
— kernel/sched/core.c

const int sched prio to weight[40] = ({

/* =20 */ 88761, 71755, 56483, 46273, 36291,
/* =15 */ 29154, 23254, 18705, 14949, 11916e,
/* =10 */ 9548, 7620, 6100, 4904, 3906,
/* =5 %/ 3121, 2501, 1991, 1586, 1277,
/* 0 */ 1024, 820, 655, 526, 423,
/* 5 %/ 335, 272, 215, 172, 137,
/* 10 */ 110, 87, 70, 56, 45,

/* 15 */ 36, 29, 23, 18, 15,

THE UNIVERSITY OF



Fourth Attempt (Use Priority)

CFS CFS CFS
(nice=0) (nice=-2) | (nice=-5)

Mean 31.1 27.2 21.4
Max 47.7 44.9

99pct 41.6 40.8 22.4
Min 21.6 21.6 21.1

Median 31.7 22.1 21.3
Stdev. 3.1 5.8 0.4

e Effect may vary depending on the workloads
KU

THE UNIVERSITY OF 2 7
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Fifth Attempt (Use RT Scheduler)

CFS CFS CFS
(nice=0) | (nice=-2) | (nice=-5)

Mean

Max

99pct

Min

Median
Stdev.

e Are we done?

31.1
47.7
41.6
21.6
31.7
3.1

27.2
44.9
40.8
21.6
22.1
5.8

21.4

22.4

21.1

21.3
0.4

21.4
22.0
21.8
21.1
21.4
0.1



BwRead

#tdefine MEM_SIZE (4*1024*1024)
char ptr[MEM SIZE];
while(1)
{
for(int i = ©0; 1 < MEM SIZE; i += 64) {
sum += ptr[i];
}

e Use this instead of the ‘cpuhog’ as background tasks

* Everything else is the same.

* Will there be any differences? If so, why?

THE UNIVERSITY OF



Sixth Attempt (Use BwRead)
| Solo | w/BwRead

CFS CFS CFS FIFO
(nice=0) (nice=0) (nice=-5)
Mean 21.0 /5.8 52.3 50.2
Max 22.4 123.0 80.1 51.7
99pct 21.8 107.8 72.4 51.3
Min 20.7 40.6 40.9 38.3
Median 20.9 81.0 50.1 50.6
Stdev. 0.3 17.7 6.1 1.9

e ~2.5X (fifo) WCET increase! Why?
KU
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BwWrite

#tdefine MEM_SIZE (4*1024*1024)
char ptr[MEM SIZE];
while(1)
{
for(int i = ©0; 1 < MEM SIZE; i += 64) {
ptr[i] = Oxff;
}

e Use this background tasks instead
* Everything else is the same.

* Will there be any differences? If so, why?

THE UNIVERSITY OF



Seventh Attempt (Use BwWrite)
| Solo | w/BwWrite

CFS CFS CFS FIFO

(nice=0) (nice=0) (nice=-5)
Mean 21.0 101.2 89.7 92.6
Max 22.4 194.0 137.2 99.7
99pct 21.8 172.4 119.8 97.1

Min 20.7 89.0 71.8 78.7
Median 20.9 93.0 87.5 92.5
Stdev. 0.3 22.8 7.7 1.0

e ~4.7X (fifo) WCET increase! Why?
w 32

KANSAS



Shared Memory Hierarchy

* Memory performance varies widely due to
interference

e Task WCET can be extremely pessimistic

Task 2 Task 4

Lur | Lewrn

o o

Shared Cache

Task 1 Task 3

y

Memory Controller (MC)

BLVAY

EEEEEEEEEEEEE



Effect of Memory Interference

12
Solo 3
10 . Corun [m
o
£
T 8
DNN BwWrite 2
(@)
i IA 2
X
Core3jjCore4 L
o
| Lc | o 4 r
DRAM 'c_é
5 2 [
zZ Ll ______
0

DNN (Core 0,1) BwWrite (Core 2,3)
* DNN control task suffers >10X slowdown
— When co-scheduling different tasks on on idle cores.

RANEAS Wagqar Ali and Heechul Yun. “RT-Gang: Real-Time Gang Scheduling Framework for Safety-Critical Systems.” RTAS, 2019



Challenges: Shared Memory Hierarchy

Memory Hierarchy Memory Hierarchy

Unicore Multicore

Performance Impact

KANSAS



Shared Memory Hierarchy

. 4 . 4 . 4 . 4

Shared Last Level Cache (LLC)

Memory Controller (MC)

DRAM

* Cache space
* Memory bus bandwidth
* Memory controller queues

KANSAS
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gﬁ& Choice of RAM
- '
More powerful 4 d
processor > .
& 49 S
P > &
<

ARM® Cortex®-A72

ARMvV8-A
32b/64b CPU

 Your Pi4:1 MB shared L2 cache, 2GB DRAM

f

37



Cache Architecture

 Some terminologies
— Cache-line
— Cache tag, index, and offset
— Direct map cache
— Set-associative cache, cache ways

THE UNIVERSITY OF
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Direct Map Cache

Physical address

tags index offset

S L

cache-line (L)

e Cache-linesize =2t

e # of cache-sets = 2°
Cache

e Cache size = 2

S1oS 9yde)
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Set-associative Cache

Physical address

tags index offset

S L

cache-line (L)

Cache-line size = 2t
# of cache-sets = 2°
# of ways =W

Cache size = W x 215

Your Pi 4: 16 way 1MB L2 (64KB/way, 64B line)
— W=16,L=6,5=10

Cache

40

S1as 9yde)



DRAM Organization

Memory Controller (MC)

DRAM DIMM

Have multiple banks

Different banks can be
accessed in parallel

~

J




Best-case

MemI)ry Controllei (MC)

I l I DRAM DIMM

\4 \4 \4 \4

Bank Bank Bank
p) 3 4

Fast

Peak = 10.6 GB/s
— DDR3 1333Mhz



Best-case

N

Fast

* Peak=10.6 GB/s
— DDR3 1333Mhz

e Qut-of-order processors

KANSAS



Most-cases

A VM7 \,?

Mess

e Performance =77

KANSAS



Worst-case

’

DRAM DIMM SIOW

e 1lbankb/w

— Less than peak b/w
— How much?

KANSAS



DRAM Controller

Bruce Jacob et al, “Memory Systems: Cache, DRAM, Disk” Fig 13.1.

DRAM memory controleér

queue bank / DRAM
cpu pool manage%\ / 5
Bank 0 %
. DRAM
cpu arbiter —=
Bank 1 > ————=
= -_-_-_-_-_-_'_'—‘—‘—-—-
/O T e %
request c o \% —= DRAM
streams D€ -
Bank 2 5 %
5 DRAM
\- M ~
B e -
transaction electrical DRAM
scheduling schedulin signalling access

* Request queue
— Buffer read/write requests from CPU cores
— Unpredictable queuing delay due to reordering

THE UNIVERSITY OF
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Request Reordering

Initial Queue

Corel: READ Row 1, Col 1
Core2: READ Row 2, Col 1
Corel: READ Row 1, Col 2

Reordered Queue

>

~~

Corel: READ Row 1, Col 1
Corel: READ Row 1, Col 2
Core2: READ Row 2, Col 1

DRAM

~~Z

2 Row Switch

DRAM

N

) 2

|4

1 Row Switch

Improve row hit ratio and throughput
Unpredictable queuing delay




How to Improve Predictability?

* Partitioning
— Reserve resources (cache space, bank) to tasks
* Throttling

— Limit access rates to the shared resources

e Scheduling
— Schedule tasks in ways to avoid contention

THE UNIVERSITY OF



Cache Partitioning

* Divide cache space among cores/tasks
* To improve throughput and isolation

— Protect “useful” cache-lines from being evicted
can improve throughput

— Prevent “unwanted” evictions to improve isolation

THE UNIVERSITY OF



Cache Partitioning

* Way-partitioning
— Requires h/w support
* Set-partitioning
— Can be done in s/w as long as there’s MMU.
 MMU: virtual -> physical address translation h/w

* Page table: translation table managed by the OS
* Most (but not all) processors support MMU

— Page-coloring

THE UNIVERSITY OF
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Way Partitioning

* H/W support is needed cache-line (L)
— E.g., Freescale P4080, Intel

Cache

S1oS 9yde)
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Intel CAT

e Cache Allocation Technology (CAT)
— Intel’s way partitioning mechanism
— Thread/VM -2 logical id = resource (cache)
partition
e Part of intel’s platform QoS techniques
— CAT: cache allocation technology
— CMT: cache monitoring technology
— MBM: memory bandwidth monitoring
— CDP: code/data prioritization

THE UNIVERSITY OF
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No QoS: Thread Contention

Full Contention (No QoS): CPU2006 29x29

Low-Priority Applications
(3identical instances):

High Priority Application

45
s ——\
o 4 Example on Haswell Client |
c . =f==3star
?: - SPI_EC Pairs + | dembzip2
p Linux OS =He=calculix
: 3 C . | ====gamess
S . Cache/Memory Contention | __ . ..o
_g 25 ={ll=gromacs
3 = i mmer
% 2 leslie3d
o s mcf
g' 15 namd
perlbench
. "y sieng
" _ — S sphinx3
2 o g N3G 4&“§§°§:€§§§“8Q§§ zeusmp
w ©n g 5‘ g 3 a © E x § a = n =
~< O 3

Data on Haswell Client (3GHz, 4 cores, 8MB cache, DDR3-1333, SPEC* CPU2006)

== bwaves
s c3 ctusADM
=0=dealll
S—
==f=o0bmk
e h264ref
=== |bm
=== |ibquantum
milc
omnetpp
povray
soplex
tonto
xalancbmk

s x| v ceamar

Full Contention 4.37x 1.37x 1.31x

Resource contention causes up to 4X slowdown in performance
(Need ability to monitor and enforce cache/memory resource usage)

Slide source: C. Peng, “Achieving QoS in Server Virtualization,” 2016
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https://events.static.linuxfound.org/sites/events/files/slides/Achieving QoS in Server Virtualization.pdf

With CAT applied: Reduced Thread Contention

CAT Applied: 6MB Dedicated to HP App, LP Apps share 2MB

' N
v 4 CAT Significantly reduces |
- .
o contention
< 35 [
c 3 Remaining contention due | -
2 to memory bandwidth
-g 2.5 M )
Q -/‘-‘
o - F '
o / \ /H
<< 15 //...—J‘t \"Ers .
—mx. A =)
BN S <N e — — T
1 - 1 T T 1 T = el N T T 1 T 1 T k; _I -I- -T ul
w o W O Zmwm T X 0 £ O o N =24 0 0 T omom I Woo s IO
3522338550858 228888¢8cR583¢8
=} < © M 3o mmﬂgmo::gam-‘mmamm
x ™ X o+ n W 1 = o w ° <
w n g g JD> 3 a o 3 3 Q - »

High Priority Application

Low-Priority Applications
(3identical instances):

=f==astar == bwaves
e hzip2 el cactusADM
== calculix === dealll
—j—CaMess — O
w=GemsFDTD ==#==gobmk
=== gromacs ==le=h264ref

== hmmer = | hm
leslie3d el | bquantum
i f milc
namd omnetpp
perlbench povray
sjeng soplex
sphinx3 tonto
wrf xalancbmk
zeusmp

Full Contention 4.37x 1.37x 1.31x

[ Previous Contention Reduced Substantially! ] [EE—— T [ —

HP Mask:
Important Thread=6MB isolated,

LPO Mask: HEEEEEEEEEER

3 Low-Priority threads share 2MB LP1 Mask: HNNEEENNNEEEN
LP2 Mask: INNENNENEEED

THE UNIVERSITY OF
KANSAS

Slide source: C. Peng, “Achieving QoS in Server Virtualization,” 2016
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https://events.static.linuxfound.org/sites/events/files/slides/Achieving QoS in Server Virtualization.pdf

KANSAS

Set Partitioning

4

)
N
e(\e\“ 2
1

3

: he-line (L)
e Can be doneinS/W —
— Page coloring: control
physical address (cache
index) of pages

S1oS 9yde)
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Page Coloring

* Cache can be divided into page colors

e Assign certain colors to
certain CPU cores

)
N
€¢5$ 2
1

3

cache-line (L)

S1oS 9yde)
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Page Coloring on Cortex-A15

s 12 6

'\.'\'\'\.'\.'\.'\.'\.'\.'\'\'\.'\.'\.'\.I\'\."\."\.'\.'\.'\.'\.'\.'\.'\.'\.'\'\'\.'\.'\.'\.'\.'\.'\'\'\'\'\.'\.'\.'\."\.\\\\\\\\\\\\\\\\\\\\\\\\
'\.'\'\'\.'\.'\.'\.'\.'\.'\'\'\.'\.'\.'\.:\'\."\."\.'\.'\.'\.'\.'\.'\.'\.'\.'\'\'\.'\.'\.'\.'\.'\.'\'\'\'\'\.'\.'\.'\."\.\\\\\\\\\\\\\\\\\\\\\\\\
o T o T e T e e P P
\\\\\\\\\\\\\\\L\\\\\\ S AR RS < R T
'\."\."\.'\.\\\\\\\\\\\}.\\\\\\S@t\lﬁ éx\\\\\\\\\\\\\\\\\\\\\\\
'\.'\'\'\.'\.'\.'\.'\.'\.'\'\'\.'\.'\.'\.I\'\."\."\.'\.'\.'\.'\.'\.'\.'\.'\.'\'\'\.'\.'\.'\.'\.'\.'\'\'\'\'\.'\.'\.'\."\.\\\\\\\\\\\\\\\\\\\\\\\\
B T o T o T e e P S
'\.'\'\'\.'\.'\.'\.'\.'\.'\'\'\.'\.'\.'\.k'\."\."\.'\.'\.'\.'\.'\.'\.'\.'\.'\'\'\.'\.'\.'\.'\.'\.'\'\'\'\'\.'\.'\.'\."\.\\\\\\\\\\\\\\\\\\\\\\\\

31
L2 Cache
(shared)|

14 12 6

o T o T e P S D P
T T o T T T P
T T P T P
SR AT AR R T T
e AN & R AL
e
T o T T P T P
e

L1 Cachel
(private)

12 &

Physical
Address

16 14
- 5
OS controlled bits for L2 partitioning

* OS controls the color (bit 14, 15, 16) of allocated
memory block to partition the cache

THE UNIVERSITY OF



PALLOC: DRAM Bank-Aware Memory
Allocator for Performance Isolation on
Multicore Platforms

Heechul Yun*, Renato Mancuso*, Zheng-Pei Wu#, Rodolfo Pellizzoni*
*University of Kansas, *University of lllinois , #*University of Waterloo

IEEE Real-Time and Embedded Technology and Applications Symposium
(RTAS), 2014
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Problem

SMP 0OS

PP7P?

DRAM DIMM

e (OSdoes NOT know
DRAM banks

* OS memory pages are
spread all over multiple
banks

N

Unpredictable
memory
performance

59
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PALLOC

MemI)ry Controllei (MC)

I l I DRAM DIMM

\4 \4 \4 \4

Bank Bank Bank
p) 3 4

* Private banking

— Allocate pages
on certain
exclusively
assigned banks

N

Eliminate
Inter-core bank
conflicts

60



Real-Time Performance

16
140 -
120 4
= 100
3 50
& 60 4
4an
20
0 T T T T T
] 10 12 14 16
Latency(ms)
Buddy(solo)

160

140 1
120~
100~

160

140
120

100 4

Latency(ms)

Buddy

e Setup: HRT = Core0, X-server = Corel

* Buddy: no bank control (use all Bank 0-15)

8

10

'|‘.

Latency(ms)

e Diffbank: Core0 = Bank0-7, Corel = Bank8-15

KU

THE UNIVERSITY OF

14

16

PALLOC(diffbank)

18



Performance Isolation on 4 Cores

® buddy mPB mPB+PC

7.00

6.00

5.00 -

4.00 -

3.00 -

2.00 -

1.00 -

Slowdown ratio

0.00 -

e Setup: Core0: X-axis, Corel-3:470.lbm x 3 (interference)

* PB: DRAM bank partitioning only;

 PB+PC: DRAM bank and Cache partitioning

* Finding: bank (and cache) partitioning improves isolation, but far from ideal

w 62
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Taming Non-blocking Caches to
Improve Isolation in Multicore Real-
Time Systems

Prathap Kumar Valsan, Heechul Yun, Farzad Farshchi
University of Kansas

IEEE Real-Time and Embedded Technology and
Applications Symposium (RTAS), 2016

Best Paper Award
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Non-blocking Cache

stall only when
result is needed

il

| Miss penalty |

Cpu Multiple outstanding misses

| Miss penalty |

e Can serve cache hits under multiple cache misses
— Essential for an out-of-order core and any multicore

* Miss-Status-Holding Registers (MSHRSs)
— On a miss, allocate a MSHR entry to track the req.
— On receiving the data, clear the MSHR entry

KU (*) D. Kroft. “Lockup-free instruction fetch/prefetch cache organization,” ISCA’81
KANSAS
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Cache Interference Experiments

subject  co-runner(s)

LLC

DRAM

 Measure the performance of the ‘subject’

— (1) alone, (2) with co-runners
— LLC is partitioned (equal partition) using PALLOC (*)
* Q: Does cache partitioning provide isolation?

(*) Heechul Yun, Renato Mancuso, Zheng-Pei Wu, Rodolfo Pellizzoni. “PALLOC: DRAM Bank-Aware Memory Allocator for
Performance Isolation on Multicore Platforms.” RTAS 14
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IsolBench: Synthetic Workloads

Experiment Subject Co-runner(s)
Exp. 1 Latency(LLC) BwRead(DRAM)
Exp. 2 | BwRead(LLC) BwRead(DRAM)
Exp. 3 | BwRead(LLC) BwRead(LLC)
Exp. 4 Latency(LLC) | BwWrite(DRAM)
Exp. 5 |[BwRead(LLC) | BwWrite(DRAM)
Exp. 6 | BwRead(LLC) | BwWrite(LLC)
N i
Working-set size: (LLC) < % LLC = cache-hits, (DRAM) > 2X LLC = cache misses
* Latency
— A linked-list traversal, data dependency, one outstanding miss
* Bandwidth

— An array reads or writes, no data dependency, multiple misses

Subject benchmarks: LLC partition fitting

THE UNIVERSITY OF



THE UNIVERSITY OF
KANSAS

Latency(LLC) vs. BwRead(DRAM)
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* No interference on Cortex-A7 and Nehalem
* On Cortex-A15, Latency(LLC) suffers 3.8X slowdown
— despite partitioned LLC

67



THE UNIVERSITY OF

BwRead(LLC) vs. BwRead(DRAM)

solo X1 +2 co-runners 1A
+1 co-runner E= +3 co-runners 3
o l0
.E 10.6
c 8 -
©
-
o 6
@
%
(NN
- 4
@
N
T 2
g ™
s, W K £ .

Cortex-A7 Cortex-A9 Cortex-Al5 Nehalem

* Up to 10.6X slowdown on Cortex-A15

e Cache partitioning != performance isolation
— On all tested out-of-order cores (A9, A15, Nehalem)
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BwRead(LLC) vs. BwWrite(DRAM)

solo X1 +2 co-runners 1A
+1 co-runner E= +3 co-runners 3
o l0
£ 15.6 21.4
|_
c 8
©
-
o 6
@
%
(NN
- 4
@
N
e B
3 W |
S, K &

Cortex-A7 Cortex-A9 Cortex-Al5 Nehalem

 Upto 21X slowdown on Cortex-A15

* Writes generally cause more slowdowns
— Due to write-backs
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Denial-of-Service Attacks on Shared
Cache in Multicore: Analysis and
Prevention

Michael Garrett Bechtel and Heechul Yun
University of Kansas

IEEE Real-Time and Embedded Technology and Applications
Symposium (RTAS), 2019 g

Outstanding Paper Award
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Effects of Cache DoS Attacks
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* Observed worst-case: >300X (times) slowdown
— On popular in-order multicore processors
— Due to contention in cache write-back buffer
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Miss Status Holding
Registers!
e Track outstanding
cache misses.

Non-Blocking Cache

| Writeback Buffer?
e Holds evicted dirty
lines (writebacks).
e Prevents cache refills
from waiting.

Core Core Core Core

El| [o] ][ [r][o] III| [D] E| [D]
L2 cache
Tag array Data array /
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address/respond bus data bus

e We identified cache internal structures that
are potential DoS attack vectors

w 1P, K. Valsan, H. Yun, F. Farshchi. “Taming Non-blocking Caches to Improve Isolation in Multicore Real-Time Systems.” In RTAS, 2016
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How to Improve Predictability?

* Partitioning
— Reserve resources (cache space, bank) to tasks

* Throttling
— Limit access rates to the shared resources

e Scheduling
— Schedule tasks in ways to avoid contention
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MemGuard: Memory Bandwidth Reservation
System for Efficient Performance Isolation in
Multi-core Platforms

Heechul Yun*, Gang Yao*, Rodolfo Pellizzoni’,
Marco Caccamo?, Lui Sha*

*University of Illinois, “University of Waterloo

IEEE Real-Time and Embedded Technology and
Applications Symposium (RTAS), 2013
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MemGuard

Reclaim Manager Operating System

PMC

Corel

PMC

Core2

PMC

Core3

PMC
Core4

Memory Controller

Multicore Processor

DRAM DIMM

* Memory bandwidth management system
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Memory Bandwidth Throttling

* |dea

— OS monitor and enforce each core’s memory bandwidth usage

Engueue tasks

Budget 3

Core
activity

0 Ims 2ms T
Dequeue tasks Dequeue tasks

_ computation _memory fetch
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Evaluation Results

Foreground (462.libquantum)
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Reservation provides performance isolation
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How to Improve Predictability?

* Partitioning
— Reserve resources (cache space, bank) to tasks
* Throttling

— Limit access rates to the shared resources

* Scheduling
— Schedule tasks in ways to avoid contention
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RT-Gang: Real-Time Gang
Scheduling Framework for Safety-

Critical Systems

Wagqar Ali and Heechul Yun
University of Kansas

IEEE Real-Time and Embedded Technology
and Applications Symposium (RTAS), 2019
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RT-Gang

Core 1

1 release

Core 2 T completion

222 Idle or best-effort
Core 3

real-time

1
priority: t,<t, <t
Core 4 1S LS

4 t t, 4 4 4

* One (parallel) real-time task---a gang---at a time
— Eliminate inter-task interference by construction

* Schedule best-effort tasks during slacks w/ throttling
— Improve utilization with bounded impacts on the RT tasks
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Implementation

 Modified Linux’s RT scheduler

— Implemented as a “feature” of SCHED_ FIFO
(sched/rt.c)

e Best-effort task throttling
— Based on BWLOCK++"

w *W. Ali and H. Yun., “Protecting Real-Time GPU Kernels on Integrated CPU-GPU SoC Platforms.” In ECRTS, 2018
KANSAS
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Experiment Setup

- DNN control task of DeepPicar (real-world RT)
solBench BwWrite benchmark (synthetic RT)
. Parboil benchmarks (real-world BE)

Parboil cutcp & Ibm

Task WCET Period # Threads
(C ms) (P ms)

17t 34 100 2
dnn

1t 220 340 2
bww
b

tcfttcp o N/A 4

tbe oo N/A 4

Ibm
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Execution Time Distribution

= Solo == CoSched =—— RT-Gang

1.0 +———-- d

What does this look like in the real world?

0-0 1

0 50 100 150 200 250
Job Execution Time (msec)

 RT-Gang achieves deterministic timing
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CoSched (w/o RT-Gang)

pi@raspberrypi:~/Documents/DeepPicar-v2 $ ./drive.sh
DNN is on

Initilize camera.

start camera thread

camera init completed.

Load TF

pi@raspberrypi:~/Documents/DeepPicar-v2 $ ./attack.shfj

https://youtu.be/Jm6KSDqlqiU



https://youtu.be/Jm6KSDqlqiU

fipi@raspberrypi:~/Documents/DeepPicar-v2 $ ./drive.sh
DNN is on
M Initilize camera.
’start camera thread
S lcamera init completed.
8 oad TF

pi@raspberrypi:~/Documents/DeepPicar-v2 $ ./attack.sh

e
https://youtu.be/pk0j063cUAs
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https://youtu.be/pk0j063cUAs

Summary

* Real-time != Real-fast
— Real-time: about predictability
— Real-fast: about average performance

* Real-fast chips are often bad for real-time

* Because timing is highly unpredictable on most
real-fast chips.

* Traditional real-time systems use simple micro-
controllers (like HiFivel), which are predictable

* But, they cannot run complex stuff (e.g., Al)
* Increasingly, we need both: real-time & real-fast
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