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Agenda

• Execution time analysis

• WCET, BCET, ACET

• Static analysis methods

• Measurement based methods

• Modern computer architecture
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Execution Time Analysis

• Will my brake-by-wire system actuate the 
brakes within one millisecond?

• Will my camera based steer-by-wire system 
identify a bicycler crossing within 100ms 
(10Hz)? 

• Will my drone be able to finish computing 
control commands within 10ms (100Hz)? 
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Execution Time

• Worst-Case Execution Time (WCET)

• Best-Case Execution Time (BCET)

• Average-Case Execution Time (ACET)
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Execution Time

• Real-time scheduling theory is based on the 
assumption of known WCETs of real-time tasks
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Image source: [Wilhelm et al., 2008]



The WCET Problem

• For a given code of a task and the platform 
(OS & hardware), determine the WCET of the 
task. 
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while(1) {

read_from_sensors();

compute();              

write_to_actuators();

wait_till_next_period();

}

Loops w/ finite bounds
No recursion
Run uninterrupted



Computing WCET

• Static analysis

– Input: program code, architecture model

– output: WCET

– Problem: architecture model is hard and 
pessimistic 

• Measurement

– No guarantee on true worst-case

– But, widely used in practice
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Static Timing Analysis

• Analyze code

• Split basic blocks

• Find longest path
– consider loop bounds

• Compute per-block WCET
– use abstract CPU model

• Compute task WCET 
– by summing up the WCETs of the 

longest path
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Static Timing Analysis

9
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Fig. 1. Main components of a timing-analysis framework and their
interaction.

A. Timing-Analysis Framework

Over the last several years, a more or less standard archi-

tecture for timing-analysis tools has emerged [11]–[13]. Fig. 1

shows a general view on this architecture. First, one can distin-

guish three major building blocks:

1) control-flow reconstruction and static analyses for control

and data flow;

2) microarchitectural analysis, which computes upper and

lower bounds on execution times of basic blocks;

3) global bound analysis, which computes upper and lower

bounds for the whole program.

The following list presents the individual phases and de-

scribes their objectives and problems. Note that the first four

phases are part of the first building block.

1) Control-flow reconstruction [14] takes a binary exe-

cutable to be analyzed, reconstructs the program’s control

flow, and transforms the program into a suitable interme-

diate representation. Problems encountered are dynami-

cally computed control-flow successors, e.g., stemming

from switch statements, function pointers, etc.

2) Value analysis [15], [16] computes an overapproximation

of the set of possible values in registers and memory loca-

tions by an interval analysis and/or congruence analysis.

This information is, among others, used for a precise data-

cache analysis.

3) Loop bound analysis [17], [18] identifies loops in the

program and tries to determine bounds on the number

of loop iterations, information which is indispensable to

bound the execution time. Problems are the analysis of

arithmetic on loop counters and loop-exit conditions, as

well as dependencies in nested loops.

4) Control-flow analysis [17], [19] narrows down the set

of possible paths through the program by eliminating

infeasible paths or to determine correlations between the

number of executions of different blocks using the results

of value-analysis results. These constraints will tighten

the obtained timing bounds.

5) Microarchitectural analysis [10], [20], [21] determines

bounds on the execution time of basic blocks by per-

forming an abstract interpretation of the program, taking

into account the processor’s pipeline, caches, and spec-

ulation concepts. Static cache analyses determine safe

approximations to the contents of caches at each program

point. Pipeline analysis analyzes how instructions pass

through the pipeline accounting for occupancy of shared

resources like queues, functional units, etc. Ignoring these

average-case-enhancing features would result in impre-

cise bounds.

6) Global bound analysis [22], [23] finally determines

bounds on execution time for the whole program. In-

formation about the execution time of basic blocks is

combined to compute the shortest and the longest paths

through the program. This phase takes into account in-

formation provided by the loop bound and control-flow

analyses.

The commercially available tool ai T by AbsInt, cf.

http://www.absint.de/wcet.htm, implements this architecture.

It is used in the aeronautics and automotive industries and

has been successfully used to determine precise bounds on

execution times of real-time programs [6], [7], [10], [24].

III. PIPELINES

For nonpipelined architectures, one can simply add up the

execution times of individual instructions to obtain a bound

on the execution time of a basic block. Pipelines increase

performance by overlapping the executions of different in-

structions. Hence, a timing analysis cannot consider individual

instructions in isolation. Instead, they have to be considered

collectively—together with their mutual interactions—to obtain

tight timing bounds.

The analysis of a given program for its pipeline behavior is

based on an abstract model of the pipeline. All components

that contribute to the timing of instructions have to be modeled

conservatively. Depending on the employed pipeline features,

the number of states the analysis has to consider varies greatly.

A. Contributions to Complexity

Since most parts of the pipeline state influence timing, the

abstract model needs to closely resemble the concrete hard-

ware. The more performance-enhancing features a pipeline has,

the larger is the search space. Superscalar and out-of-order

executions increase the number of possible interleavings. The

larger the buffers (e.g., fetch buffers, retirement queues, etc.),

the longer the influence of past events lasts. Dynamic branch

prediction, cachelike structures, and branch history tables in-

crease history dependence even more.

All these features influence execution time. To compute a

precise bound on the execution time of a basic block, the analy-

sis needs to exclude as many timing accidents as possible. Such

Authorized licensed use limited to: University of Florida. Downloaded on March 29,2010 at 12:54:04 EDT from IEEE Xplore.  Restrictions apply. 



Timing Compositionality

• Consider a task T with two parts A and B 

composed in sequence:  T = A; B

• Is WCET(T) = WCET(A) + WCET(B)   ?

• Not always
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WCET and Caches

• How to determine the WCET of a task?

• The longest execution path of the task?

– Problem: the longest path can take less time to finish 
than shorter paths if your system has a cache(s)!

• Example

– Path1: 1000 instructions, 0 cache misses

– Path2: 500 instructions, 100 cache misses

– Cache hit: 1 cycle, Cache miss: 100 cycles

– Path 2 takes much longer
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Processor Behavior Analysis: Cache 

Effects

Suppose:

1. 32-bit processor

2. Direct-mapped cache holds two sets

 4 floats per set

 x and y stored contiguously 

starting at address 0x0

What happens 

when n=2?

Slide source: Edward A. Lee and Prabal Dutta (UCB)



Direct-Mapped 
Cache

Valid Tag Block

Valid Tag Block

Valid Tag Block

. 
. 
.

Set 0

Set 1

Set S

Tag Set index Block offset

m-1 0

s bitst bits b bits

Address

1 valid bit t tag bits B = 2b bytes per block

CACHE

A “set” consists of one “line”

If the tag of the address

matches the tag of the line, then 

we have a “cache hit.” 

Otherwise, the fetch goes to 

main memory, updating the line.

Slide source: Edward A. Lee and Prabal Dutta (UCB)



This Particular 
Direct-Mapped 

Cache

Valid Tag Block

Valid Tag Block

Set 0

Set 1

Tag Set index Block offset

m-1 0

s = 1 bitst = 27 bits b = 4 bits

Address = 32 bits

1 valid bit t tag bits B = 2b bytes per block

CACHE

Four floats per 

block, four bytes 

per float, means 16 

bytes, so b = 4

Slide source: Edward A. Lee and Prabal Dutta (UCB)



Processor Behavior Analysis: Cache 

Effects

Suppose:

1. 32-bit processor

2. Direct-mapped cache holds two sets

 4 floats per set

 x and y stored contiguously 

starting at address 0x0

What happens 

when n=2?

x[0] will miss, 

pulling x[0], x[1], 

y[0] and y[1] into 

the set 0. All but 

one access will 

be a cache hit.

Slide source: Edward A. Lee and Prabal Dutta (UCB)



Processor Behavior Analysis: Cache 

Effects

Suppose:

1. 32-bit processor

2. Direct-mapped cache holds two sets

 4 floats per set

 x and y stored contiguously 

starting at address 0x0

What happens 

when n=8?

x[0] will miss, 

pulling x[0-3] into 

the set 0. Then 

y[0] will miss, 

pulling y[0-3] into 

the same set, 

evicting x[0-3]. 

Every access will 

be a miss! 

Slide source: Edward A. Lee and Prabal Dutta (UCB)



Timing Anomalies

• Locally faster != globally faster

17Image source: [Wilhelm et al., 2008]



Timing Anomalies

• Locally faster != globally faster

18Image source: [Wilhelm et al., 2008]



“Problematic” CPU Features

• Architectures are optimized to reduce average 
performance

• WCET estimation is hard because of
– Pipelining

– TLBs/Caches

– Super-scalar

– Out-of-order scheduling

– Branch predictors

– Hardware prefetchers

– Basically anything that affect processor state
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Measurement

• Measurement Based Timing Analysis (MBTA)

• Do a lots of measurement under worst-case 
scenarios (e.g., heavy load)

• Take the maximum + safety margin as WCET

• Commonly practiced in industry

20



Real-Time DNN Control

• ~27M floating point multiplication and additions
– Per image frame (deadline: 50ms)

21
M. Bechtel. E. McEllhiney, M Kim, H. Yun. “DeepPicar: A Low-cost Deep Neural Network-based 
Autonomous Car.” In RTCSA, 2018



First Attempt

• 1000 samples (minus the first sample. Why?)

22

CFS (nice=0)

Mean 23.8

Max 47.9

99pct 47.4

Min 20.7

Median 20.9

Stdev. 7.7

Why?



DVFS

• Dynamic voltage and frequency scaling (DVFS)

• Lower frequency/voltage saves power

• Vary clock speed depending on the load

• Cause timing variations

• Disabling DVFS

23

# echo performance > /sys/devices/system/cpu/cpu0/cpufreq/scaling_governor
# echo performance > /sys/devices/system/cpu/cpu1/cpufreq/scaling_governor
# echo performance > /sys/devices/system/cpu/cpu2/cpufreq/scaling_governor
# echo performance > /sys/devices/system/cpu/cpu3/cpufreq/scaling_governor



Second Attempt (No DVFS)

• What if there are other tasks in the system?

24

CFS (nice=0)

Mean 21.0

Max 22.4

99pct 21.8

Min 20.7

Median 20.9

Stdev. 0.3



Third Attempt (Under Load)

• 4x cpuhog compete the cpu time with the DNN

25

CFS (nice=0)

Mean 31.1

Max 47.7

99pct 41.6

Min 21.6

Median 31.7

Stdev. 3.1



Recall: kernel/sched/fair.c (CFS)

• Priority to CFS weight conversion table

– Priority (Nice value): -20 (highest) ~ +19 (lowest)

– kernel/sched/core.c

26

const int sched_prio_to_weight[40] = {

/* -20 */     88761,     71755,     56483,     46273,     36291,

/* -15 */     29154,     23254,     18705,     14949,     11916,

/* -10 */      9548,      7620,      6100,      4904,      3906,

/*  -5 */      3121,      2501,      1991,      1586, 1277,

/*   0 */      1024,       820,       655,       526,       423,

/*   5 */       335,       272,       215,       172,       137,

/*  10 */       110,        87,        70,        56,        45,

/*  15 */        36,        29,        23,        18,        15,

};



Fourth Attempt (Use Priority)

• Effect may vary depending on the workloads
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CFS 
(nice=0)

CFS 
(nice=-2)

CFS
(nice=-5)

Mean 31.1 27.2 21.4

Max 47.7 44.9 31.3

99pct 41.6 40.8 22.4

Min 21.6 21.6 21.1

Median 31.7 22.1 21.3

Stdev. 3.1 5.8 0.4



Fifth Attempt (Use RT Scheduler)

• Are we done?
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CFS 
(nice=0)

CFS 
(nice=-2)

CFS
(nice=-5)

FIFO

Mean 31.1 27.2 21.4 21.4

Max 47.7 44.9 31.3 22.0

99pct 41.6 40.8 22.4 21.8

Min 21.6 21.6 21.1 21.1

Median 31.7 22.1 21.3 21.4

Stdev. 3.1 5.8 0.4 0.1



BwRead

• Use this instead of the ‘cpuhog’ as background tasks

• Everything else is the same. 

• Will there be any differences? If so, why?
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#define MEM_SIZE (4*1024*1024)
char ptr[MEM_SIZE];
while(1)
{

for(int i = 0; i < MEM_SIZE; i += 64) {
sum += ptr[i];

}
}



Sixth Attempt (Use BwRead)

• ~2.5X (fifo) WCET increase! Why?
30

Solo w/ BwRead

CFS 
(nice=0)

CFS 
(nice=0)

CFS
(nice=-5)

FIFO

Mean 21.0 75.8 52.3 50.2

Max 22.4 123.0 80.1 51.7

99pct 21.8 107.8 72.4 51.3

Min 20.7 40.6 40.9 38.3

Median 20.9 81.0 50.1 50.6

Stdev. 0.3 17.7 6.1 1.9



BwWrite

• Use this background tasks instead

• Everything else is the same. 

• Will there be any differences? If so, why?

31

#define MEM_SIZE (4*1024*1024)
char ptr[MEM_SIZE];
while(1)
{

for(int i = 0; i < MEM_SIZE; i += 64) {
ptr[i] = 0xff;

}
}



Seventh Attempt (Use BwWrite)

• ~4.7X (fifo) WCET increase! Why?
32

Solo w/ BwWrite

CFS 
(nice=0)

CFS 
(nice=0)

CFS
(nice=-5)

FIFO

Mean 21.0 101.2 89.7 92.6

Max 22.4 194.0 137.2 99.7

99pct 21.8 172.4 119.8 97.1

Min 20.7 89.0 71.8 78.7

Median 20.9 93.0 87.5 92.5

Stdev. 0.3 22.8 7.7 1.0



Shared Memory Hierarchy

33

• Memory performance varies widely due to 
interference

• Task WCET can be extremely pessimistic

Core1 Core2 Core3 Core4

Memory Controller (MC)

Shared Cache

DRAM

Task 1 Task 2 Task 3 Task 4

I D I D I D I D



Effect of Memory Interference

• DNN control task suffers >10X slowdown

– When co-scheduling different tasks on on idle cores. 
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Waqar Ali and Heechul Yun. “RT-Gang: Real-Time Gang Scheduling Framework for Safety-Critical Systems.” RTAS, 2019



Challenges: Shared Memory Hierarchy

35

CPU

Memory Hierarchy

Unicore

T1 T2

Core
1

Memory Hierarchy

Core
2

Core
3
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4

Multicore

T
1

T
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T
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T
7

T
8

Performance Impact



Shared Memory Hierarchy

• Cache space 
• Memory bus bandwidth
• Memory controller queues
• …

36

Core1 Core2 Core3 Core4

DRAM

Memory Controller (MC)

Shared Last Level Cache (LLC)



ARM Cotex-A72

• Your Pi 4: 1 MB shared L2 cache, 2GB DRAM

37



• Some terminologies

– Cache-line

– Cache tag, index, and offset

– Direct map cache

– Set-associative cache, cache ways

Cache Architecture

38



Direct Map Cache

• Cache-line size = 2L

• # of cache-sets = 2S

• Cache size = 2L+S

39

tags index offset

Cache

cache-line (L)

Cache

Physical address

C
ach

e sets

S L



Cache
Cache

Cache

Set-associative Cache

• Cache-line size = 2L

• # of cache-sets = 2S

• # of ways = W
• Cache size = W x 2L+S

• Your Pi 4: 16 way 1MB L2 (64KB/way, 64B line)
– W = 16, L = 6, S = 10

40

tags index offset

Cache 

Physical address

C
ach

e sets

Cache

cache-line (L)

S L 2
3

4

1



DRAM Organization

L3

DRAM DIMM

Memory Controller (MC)

Bank
4

Bank
3

Bank
2

Bank
1

Core1 Core2 Core3 Core4

• Have multiple banks

• Different banks can be 
accessed in parallel



Best-case

L3

DRAM DIMM

Memory Controller (MC)

Bank
4

Bank
3

Bank
2

Bank
1

Core1 Core2 Core3 Core4

Fast
• Peak = 10.6 GB/s  

– DDR3 1333Mhz



Best-case

L3

DRAM DIMM

Memory Controller (MC)

Bank
4

Bank
3

Bank
2

Bank
1

Core1 Core2 Core3 Core4

• Peak = 10.6 GB/s  
– DDR3 1333Mhz

• Out-of-order processors

Fast



Most-cases

L3

DRAM DIMM

Memory Controller (MC)

Bank
4

Bank
3

Bank
2

Bank
1

Core1 Core2 Core3 Core4

Mess
• Performance = ??



Worst-case

• 1bank b/w 
– Less than peak b/w

– How much?

Slow

L3

DRAM DIMM

Memory Controller (MC)

Bank
4

Bank
3

Bank
2

Bank
1

Core1 Core2 Core3 Core4



DRAM Controller

• Request queue

– Buffer read/write requests from CPU cores

– Unpredictable queuing delay due to reordering

46

Bruce Jacob et al, “Memory Systems: Cache, DRAM, Disk” Fig 13.1. 



Request Reordering

• Improve row hit ratio and throughput
• Unpredictable queuing delay

47

Core1: READ Row 1, Col 1
Core2: READ Row 2, Col 1
Core1: READ Row 1, Col 2

Core1: READ Row 1, Col 1
Core1: READ Row 1, Col 2
Core2: READ Row 2, Col 1

DRAM DRAM

Initial Queue Reordered Queue

2 Row Switch 1 Row Switch



How to Improve Predictability?

• Partitioning

– Reserve resources (cache space, bank) to tasks

• Throttling

– Limit access rates to the shared resources

• Scheduling

– Schedule tasks in ways to avoid contention

48



Cache Partitioning

• Divide cache space among cores/tasks

• To improve throughput and isolation

– Protect “useful” cache-lines from being evicted 
can improve throughput

– Prevent “unwanted” evictions to improve isolation

49



Cache Partitioning

• Way-partitioning

– Requires h/w support

• Set-partitioning

– Can be done in s/w as long as there’s MMU.

• MMU: virtual -> physical address translation h/w

• Page table: translation table managed by the OS

• Most (but not all) processors support MMU

– Page-coloring

50



Way Partitioning

• H/W support is needed

– E.g., Freescale P4080, Intel

51

Cache
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Intel CAT

• Cache Allocation Technology (CAT)
– Intel’s way partitioning mechanism

– Thread/VM  logical id  resource (cache) 
partition

• Part of intel’s platform QoS techniques
– CAT: cache allocation technology

– CMT: cache monitoring technology

– MBM: memory bandwidth monitoring

– CDP: code/data prioritization

52



53Slide source: C. Peng, “Achieving QoS in Server Virtualization,” 2016

https://events.static.linuxfound.org/sites/events/files/slides/Achieving QoS in Server Virtualization.pdf


54Slide source: C. Peng, “Achieving QoS in Server Virtualization,” 2016

https://events.static.linuxfound.org/sites/events/files/slides/Achieving QoS in Server Virtualization.pdf


Set Partitioning

55

Cache
Cache

Cache

Cache 

C
ach

e sets

Cache

cache-line (L)

2
3

4

1

Core1 Core2 Core3 Core4

• Can be done in S/W

– Page coloring: control 
physical address (cache 
index) of pages



Page Coloring

• Cache can be divided into page colors

• Assign certain colors to 
certain CPU cores
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Cache
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OS controlled bits for L2 partitioning

31 06

Set index

17 12

31 06

Set index

14 12

Tag

Page offset

Cache-line
offset

12

Physical page frame number

Cache-line
offset

Cache-line
offset

Set index

Set indexTag

Tag

6

1416

L2 Cache
(shared)

L1 Cache
(private)

Physical
Address

31 0

Page Coloring on Cortex-A15

• OS controls the color (bit 14, 15, 16) of allocated 
memory block to partition the cache

57



PALLOC: DRAM Bank-Aware Memory 
Allocator for Performance Isolation on 

Multicore Platforms

Heechul Yun*, Renato Mancuso+, Zheng-Pei Wu#, Rodolfo Pellizzoni#

*University of Kansas, +University of Illinois , #University of Waterloo

IEEE Real-Time and Embedded Technology and Applications Symposium 
(RTAS), 2014
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Problem

L3

DRAM DIMM

Memory Controller (MC)

Bank
4

Bank
3

Bank
2

Bank
1

Core1 Core2 Core3 Core4

• OS does NOT know 
DRAM banks

• OS memory pages are 
spread all over multiple 
banks

????
Unpredictable

memory 
performance

SMP OS
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PALLOC

L3

DRAM DIMM

Memory Controller (MC)

Bank
4

Bank
3

Bank
2

Bank
1

Core1 Core2 Core3 Core4 • Private banking

– Allocate pages 
on certain 
exclusively 
assigned banks

Eliminate
Inter-core bank

conflicts

60



Real-Time Performance

• Setup: HRT  Core0, X-server  Core1
• Buddy: no bank control (use all Bank 0-15)
• Diffbank: Core0  Bank0-7, Core1  Bank8-15

61

Buddy(solo) PALLOC(diffbank)Buddy



Performance Isolation on 4 Cores 

• Setup: Core0: X-axis,  Core1-3: 470.lbm x 3 (interference)
• PB: DRAM bank partitioning only; 
• PB+PC: DRAM bank and Cache partitioning
• Finding: bank (and cache) partitioning improves isolation, but far from ideal

62
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Taming Non-blocking Caches to 
Improve Isolation in Multicore Real-

Time Systems

Prathap Kumar Valsan, Heechul Yun, Farzad Farshchi

University of Kansas

IEEE Real-Time and Embedded Technology and 
Applications Symposium (RTAS), 2016

Best Paper Award

63



Non-blocking Cache

• Can serve cache hits under multiple cache misses
– Essential for an out-of-order core and any multicore 

• Miss-Status-Holding Registers (MSHRs)
– On a miss, allocate a MSHR entry to track the req.
– On receiving the data, clear the MSHR entry

64

cpu cpu

miss hit miss

Miss penalty

Miss penalty

stall only when 
result is needed

Multiple outstanding misses

(*) D. Kroft. “Lockup-free instruction fetch/prefetch cache organization,” ISCA’81



Cache Interference Experiments

• Measure the performance of the ‘subject’ 
– (1) alone, (2) with co-runners
– LLC is partitioned (equal partition) using PALLOC (*)

• Q: Does cache partitioning provide isolation?

65

DRAM

LLC

Core1 Core2 Core3 Core4

subject co-runner(s)

(*) Heechul Yun, Renato Mancuso, Zheng-Pei Wu, Rodolfo Pellizzoni. “PALLOC: DRAM Bank-Aware Memory Allocator for 
Performance Isolation on Multicore Platforms.” RTAS’14



IsolBench: Synthetic Workloads

• Latency
– A linked-list traversal, data dependency, one outstanding miss

• Bandwidth
– An array reads or writes, no data dependency, multiple misses

• Subject benchmarks: LLC partition fitting

66

Working-set size: (LLC) < ¼ LLC  cache-hits, (DRAM) > 2X LLC  cache misses



Latency(LLC) vs. BwRead(DRAM)

• No interference on Cortex-A7 and Nehalem

• On Cortex-A15, Latency(LLC) suffers 3.8X slowdown 
– despite partitioned LLC

67



BwRead(LLC) vs. BwRead(DRAM)

• Up to 10.6X slowdown on Cortex-A15
• Cache partitioning != performance isolation

– On all tested out-of-order cores (A9, A15, Nehalem)

68



BwRead(LLC) vs. BwWrite(DRAM)

• Up to 21X slowdown on Cortex-A15
• Writes generally cause more slowdowns

– Due to write-backs

69



Denial-of-Service Attacks on Shared 
Cache in Multicore: Analysis and 

Prevention
Michael Garrett Bechtel and Heechul Yun 

University of Kansas
IEEE Real-Time and Embedded Technology and Applications 

Symposium (RTAS), 2019

Outstanding Paper Award
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Effects of Cache DoS Attacks

LLC

Core1 Core2 Core3 Core4

victim attackers

• Observed worst-case: >300X (times) slowdown

– On popular in-order multicore processors

– Due to contention in cache write-back buffer

>300X



Non-Blocking Cache

• We identified cache internal structures that 
are potential DoS attack vectors

72

Writeback Buffer2

● Holds evicted dirty 

lines (writebacks).

● Prevents cache refills 

from waiting.

Miss Status Holding 

Registers1

● Track outstanding 

cache misses.

1 P. K. Valsan, H. Yun, F. Farshchi. “Taming Non-blocking Caches to Improve Isolation in Multicore Real-Time Systems.” In RTAS, 2016
2 M. G. Bechtel and H. Yun. “Denial-of-Service Attacks on Shared Cache in Multicore: Analysis and Prevention.”  In RTAS, 2019



How to Improve Predictability?

• Partitioning

– Reserve resources (cache space, bank) to tasks

• Throttling

– Limit access rates to the shared resources

• Scheduling

– Schedule tasks in ways to avoid contention

73



MemGuard: Memory Bandwidth Reservation
System for Efficient Performance Isolation in

Multi-core Platforms

Heechul Yun+, Gang Yao+, Rodolfo Pellizzoni*, 
Marco Caccamo+, Lui Sha+

+University of Illinois, *University of Waterloo

IEEE Real-Time and Embedded Technology and 
Applications Symposium (RTAS), 2013



Operating System

MemGuard
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Memory Bandwidth Throttling

• Idea

– OS monitor and enforce each core’s memory bandwidth usage
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Impact of Throttling
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Evaluation Results
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How to Improve Predictability?

• Partitioning

– Reserve resources (cache space, bank) to tasks

• Throttling

– Limit access rates to the shared resources

• Scheduling

– Schedule tasks in ways to avoid contention
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RT-Gang: Real-Time Gang 
Scheduling Framework for Safety-

Critical Systems
Waqar Ali and Heechul Yun

University of Kansas

IEEE Real-Time and Embedded Technology 
and Applications Symposium (RTAS), 2019
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RT-Gang

• One (parallel) real-time task---a gang---at a time
– Eliminate inter-task interference by construction

• Schedule best-effort tasks during slacks w/ throttling
– Improve utilization with bounded impacts on the RT tasks
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Implementation

• Modified Linux’s RT scheduler

– Implemented as a “feature” of SCHED_FIFO 
(sched/rt.c)

• Best-effort task throttling

– Based on BWLOCK++*
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* W. Ali and H. Yun., “Protecting Real-Time GPU Kernels on Integrated CPU-GPU SoC Platforms.”  In ECRTS, 2018



Experiment Setup

• DNN control task of DeepPicar (real-world RT)

• IsolBench BwWrite benchmark (synthetic RT)

• Parboil benchmarks (real-world BE)
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Execution Time Distribution

• RT-Gang achieves deterministic timing
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What does this look like in the real world?



CoSched (w/o RT-Gang)
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https://youtu.be/Jm6KSDqlqiU

https://youtu.be/Jm6KSDqlqiU


RT-Gang
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https://youtu.be/pk0j063cUAs

https://youtu.be/pk0j063cUAs


Summary

• Real-time != Real-fast
– Real-time: about predictability
– Real-fast: about average performance

• Real-fast chips are often bad for real-time
• Because timing is highly unpredictable on most 

real-fast chips. 
• Traditional real-time systems use simple micro-

controllers (like HiFive1), which are predictable
• But, they cannot run complex stuff (e.g., AI) 
• Increasingly, we need both: real-time & real-fast
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