
EECS 388: Embedded Systems

10. Timing Analysis

Heechul Yun

1

Agenda

• Execution time analysis

• WCET, BCET, ACET

• Static analysis methods

• Measurement based methods

• Modern computer architecture

2

Execution Time Analysis

• Will my brake-by-wire system actuate the
brakes within one millisecond?

• Will my camera based steer-by-wire system
identify a bicycler crossing within 100ms
(10Hz)?

• Will my drone be able to finish computing
control commands within 10ms (100Hz)?

3

Execution Time

• Worst-Case Execution Time (WCET)

• Best-Case Execution Time (BCET)

• Average-Case Execution Time (ACET)

4

Execution Time

• Real-time scheduling theory is based on the
assumption of known WCETs of real-time tasks

5

Image source: [Wilhelm et al., 2008]

The WCET Problem

• For a given code of a task and the platform
(OS & hardware), determine the WCET of the
task.

6

while(1) {

read_from_sensors();

compute();

write_to_actuators();

wait_till_next_period();

}

Loops w/ finite bounds
No recursion
Run uninterrupted

Computing WCET

• Static analysis

– Input: program code, architecture model

– output: WCET

– Problem: architecture model is hard and
pessimistic

• Measurement

– No guarantee on true worst-case

– But, widely used in practice

7

Static Timing Analysis

• Analyze code

• Split basic blocks

• Find longest path
– consider loop bounds

• Compute per-block WCET
– use abstract CPU model

• Compute task WCET
– by summing up the WCETs of the

longest path

8

Static Timing Analysis

9

968 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 28, NO. 7, JULY 2009

Fig. 1. Main components of a timing-analysis framework and their
interaction.

A. Timing-Analysis Framework

Over the last several years, a more or less standard archi-

tecture for timing-analysis tools has emerged [11]–[13]. Fig. 1

shows a general view on this architecture. First, one can distin-

guish three major building blocks:

1) control-flow reconstruction and static analyses for control

and data flow;

2) microarchitectural analysis, which computes upper and

lower bounds on execution times of basic blocks;

3) global bound analysis, which computes upper and lower

bounds for the whole program.

The following list presents the individual phases and de-

scribes their objectives and problems. Note that the first four

phases are part of the first building block.

1) Control-flow reconstruction [14] takes a binary exe-

cutable to be analyzed, reconstructs the program’s control

flow, and transforms the program into a suitable interme-

diate representation. Problems encountered are dynami-

cally computed control-flow successors, e.g., stemming

from switch statements, function pointers, etc.

2) Value analysis [15], [16] computes an overapproximation

of the set of possible values in registers and memory loca-

tions by an interval analysis and/or congruence analysis.

This information is, among others, used for a precise data-

cache analysis.

3) Loop bound analysis [17], [18] identifies loops in the

program and tries to determine bounds on the number

of loop iterations, information which is indispensable to

bound the execution time. Problems are the analysis of

arithmetic on loop counters and loop-exit conditions, as

well as dependencies in nested loops.

4) Control-flow analysis [17], [19] narrows down the set

of possible paths through the program by eliminating

infeasible paths or to determine correlations between the

number of executions of different blocks using the results

of value-analysis results. These constraints will tighten

the obtained timing bounds.

5) Microarchitectural analysis [10], [20], [21] determines

bounds on the execution time of basic blocks by per-

forming an abstract interpretation of the program, taking

into account the processor’s pipeline, caches, and spec-

ulation concepts. Static cache analyses determine safe

approximations to the contents of caches at each program

point. Pipeline analysis analyzes how instructions pass

through the pipeline accounting for occupancy of shared

resources like queues, functional units, etc. Ignoring these

average-case-enhancing features would result in impre-

cise bounds.

6) Global bound analysis [22], [23] finally determines

bounds on execution time for the whole program. In-

formation about the execution time of basic blocks is

combined to compute the shortest and the longest paths

through the program. This phase takes into account in-

formation provided by the loop bound and control-flow

analyses.

The commercially available tool ai T by AbsInt, cf.

http://www.absint.de/wcet.htm, implements this architecture.

It is used in the aeronautics and automotive industries and

has been successfully used to determine precise bounds on

execution times of real-time programs [6], [7], [10], [24].

III. PIPELINES

For nonpipelined architectures, one can simply add up the

execution times of individual instructions to obtain a bound

on the execution time of a basic block. Pipelines increase

performance by overlapping the executions of different in-

structions. Hence, a timing analysis cannot consider individual

instructions in isolation. Instead, they have to be considered

collectively—together with their mutual interactions—to obtain

tight timing bounds.

The analysis of a given program for its pipeline behavior is

based on an abstract model of the pipeline. All components

that contribute to the timing of instructions have to be modeled

conservatively. Depending on the employed pipeline features,

the number of states the analysis has to consider varies greatly.

A. Contributions to Complexity

Since most parts of the pipeline state influence timing, the

abstract model needs to closely resemble the concrete hard-

ware. The more performance-enhancing features a pipeline has,

the larger is the search space. Superscalar and out-of-order

executions increase the number of possible interleavings. The

larger the buffers (e.g., fetch buffers, retirement queues, etc.),

the longer the influence of past events lasts. Dynamic branch

prediction, cachelike structures, and branch history tables in-

crease history dependence even more.

All these features influence execution time. To compute a

precise bound on the execution time of a basic block, the analy-

sis needs to exclude as many timing accidents as possible. Such

Authorized licensed use limited to: University of Florida. Downloaded on March 29,2010 at 12:54:04 EDT from IEEE Xplore. Restrictions apply.

Timing Compositionality

• Consider a task T with two parts A and B

composed in sequence: T = A; B

• Is WCET(T) = WCET(A) + WCET(B) ?

• Not always

10

WCET and Caches

• How to determine the WCET of a task?

• The longest execution path of the task?

– Problem: the longest path can take less time to finish
than shorter paths if your system has a cache(s)!

• Example

– Path1: 1000 instructions, 0 cache misses

– Path2: 500 instructions, 100 cache misses

– Cache hit: 1 cycle, Cache miss: 100 cycles

– Path 2 takes much longer

11

Processor Behavior Analysis: Cache

Effects

Suppose:

1. 32-bit processor

2. Direct-mapped cache holds two sets

 4 floats per set

 x and y stored contiguously

starting at address 0x0

What happens

when n=2?

Slide source: Edward A. Lee and Prabal Dutta (UCB)

Direct-Mapped
Cache

Valid Tag Block

Valid Tag Block

Valid Tag Block

.
.
.

Set 0

Set 1

Set S

Tag Set index Block offset

m-1 0

s bitst bits b bits

Address

1 valid bit t tag bits B = 2b bytes per block

CACHE

A “set” consists of one “line”

If the tag of the address

matches the tag of the line, then

we have a “cache hit.”

Otherwise, the fetch goes to

main memory, updating the line.

Slide source: Edward A. Lee and Prabal Dutta (UCB)

This Particular
Direct-Mapped

Cache

Valid Tag Block

Valid Tag Block

Set 0

Set 1

Tag Set index Block offset

m-1 0

s = 1 bitst = 27 bits b = 4 bits

Address = 32 bits

1 valid bit t tag bits B = 2b bytes per block

CACHE

Four floats per

block, four bytes

per float, means 16

bytes, so b = 4

Slide source: Edward A. Lee and Prabal Dutta (UCB)

Processor Behavior Analysis: Cache

Effects

Suppose:

1. 32-bit processor

2. Direct-mapped cache holds two sets

 4 floats per set

 x and y stored contiguously

starting at address 0x0

What happens

when n=2?

x[0] will miss,

pulling x[0], x[1],

y[0] and y[1] into

the set 0. All but

one access will

be a cache hit.

Slide source: Edward A. Lee and Prabal Dutta (UCB)

Processor Behavior Analysis: Cache

Effects

Suppose:

1. 32-bit processor

2. Direct-mapped cache holds two sets

 4 floats per set

 x and y stored contiguously

starting at address 0x0

What happens

when n=8?

x[0] will miss,

pulling x[0-3] into

the set 0. Then

y[0] will miss,

pulling y[0-3] into

the same set,

evicting x[0-3].

Every access will

be a miss!

Slide source: Edward A. Lee and Prabal Dutta (UCB)

Timing Anomalies

• Locally faster != globally faster

17Image source: [Wilhelm et al., 2008]

Timing Anomalies

• Locally faster != globally faster

18Image source: [Wilhelm et al., 2008]

“Problematic” CPU Features

• Architectures are optimized to reduce average
performance

• WCET estimation is hard because of
– Pipelining

– TLBs/Caches

– Super-scalar

– Out-of-order scheduling

– Branch predictors

– Hardware prefetchers

– Basically anything that affect processor state

19

Measurement

• Measurement Based Timing Analysis (MBTA)

• Do a lots of measurement under worst-case
scenarios (e.g., heavy load)

• Take the maximum + safety margin as WCET

• Commonly practiced in industry

20

Real-Time DNN Control

• ~27M floating point multiplication and additions
– Per image frame (deadline: 50ms)

21
M. Bechtel. E. McEllhiney, M Kim, H. Yun. “DeepPicar: A Low-cost Deep Neural Network-based
Autonomous Car.” In RTCSA, 2018

First Attempt

• 1000 samples (minus the first sample. Why?)

22

CFS (nice=0)

Mean 23.8

Max 47.9

99pct 47.4

Min 20.7

Median 20.9

Stdev. 7.7

Why?

DVFS

• Dynamic voltage and frequency scaling (DVFS)

• Lower frequency/voltage saves power

• Vary clock speed depending on the load

• Cause timing variations

• Disabling DVFS

23

echo performance > /sys/devices/system/cpu/cpu0/cpufreq/scaling_governor
echo performance > /sys/devices/system/cpu/cpu1/cpufreq/scaling_governor
echo performance > /sys/devices/system/cpu/cpu2/cpufreq/scaling_governor
echo performance > /sys/devices/system/cpu/cpu3/cpufreq/scaling_governor

Second Attempt (No DVFS)

• What if there are other tasks in the system?

24

CFS (nice=0)

Mean 21.0

Max 22.4

99pct 21.8

Min 20.7

Median 20.9

Stdev. 0.3

Third Attempt (Under Load)

• 4x cpuhog compete the cpu time with the DNN

25

CFS (nice=0)

Mean 31.1

Max 47.7

99pct 41.6

Min 21.6

Median 31.7

Stdev. 3.1

Recall: kernel/sched/fair.c (CFS)

• Priority to CFS weight conversion table

– Priority (Nice value): -20 (highest) ~ +19 (lowest)

– kernel/sched/core.c

26

const int sched_prio_to_weight[40] = {

/* -20 */ 88761, 71755, 56483, 46273, 36291,

/* -15 */ 29154, 23254, 18705, 14949, 11916,

/* -10 */ 9548, 7620, 6100, 4904, 3906,

/* -5 */ 3121, 2501, 1991, 1586, 1277,

/* 0 */ 1024, 820, 655, 526, 423,

/* 5 */ 335, 272, 215, 172, 137,

/* 10 */ 110, 87, 70, 56, 45,

/* 15 */ 36, 29, 23, 18, 15,

};

Fourth Attempt (Use Priority)

• Effect may vary depending on the workloads

27

CFS
(nice=0)

CFS
(nice=-2)

CFS
(nice=-5)

Mean 31.1 27.2 21.4

Max 47.7 44.9 31.3

99pct 41.6 40.8 22.4

Min 21.6 21.6 21.1

Median 31.7 22.1 21.3

Stdev. 3.1 5.8 0.4

Fifth Attempt (Use RT Scheduler)

• Are we done?

28

CFS
(nice=0)

CFS
(nice=-2)

CFS
(nice=-5)

FIFO

Mean 31.1 27.2 21.4 21.4

Max 47.7 44.9 31.3 22.0

99pct 41.6 40.8 22.4 21.8

Min 21.6 21.6 21.1 21.1

Median 31.7 22.1 21.3 21.4

Stdev. 3.1 5.8 0.4 0.1

BwRead

• Use this instead of the ‘cpuhog’ as background tasks

• Everything else is the same.

• Will there be any differences? If so, why?

29

#define MEM_SIZE (4*1024*1024)
char ptr[MEM_SIZE];
while(1)
{

for(int i = 0; i < MEM_SIZE; i += 64) {
sum += ptr[i];

}
}

Sixth Attempt (Use BwRead)

• ~2.5X (fifo) WCET increase! Why?
30

Solo w/ BwRead

CFS
(nice=0)

CFS
(nice=0)

CFS
(nice=-5)

FIFO

Mean 21.0 75.8 52.3 50.2

Max 22.4 123.0 80.1 51.7

99pct 21.8 107.8 72.4 51.3

Min 20.7 40.6 40.9 38.3

Median 20.9 81.0 50.1 50.6

Stdev. 0.3 17.7 6.1 1.9

BwWrite

• Use this background tasks instead

• Everything else is the same.

• Will there be any differences? If so, why?

31

#define MEM_SIZE (4*1024*1024)
char ptr[MEM_SIZE];
while(1)
{

for(int i = 0; i < MEM_SIZE; i += 64) {
ptr[i] = 0xff;

}
}

Seventh Attempt (Use BwWrite)

• ~4.7X (fifo) WCET increase! Why?
32

Solo w/ BwWrite

CFS
(nice=0)

CFS
(nice=0)

CFS
(nice=-5)

FIFO

Mean 21.0 101.2 89.7 92.6

Max 22.4 194.0 137.2 99.7

99pct 21.8 172.4 119.8 97.1

Min 20.7 89.0 71.8 78.7

Median 20.9 93.0 87.5 92.5

Stdev. 0.3 22.8 7.7 1.0

Shared Memory Hierarchy

33

• Memory performance varies widely due to
interference

• Task WCET can be extremely pessimistic

Core1 Core2 Core3 Core4

Memory Controller (MC)

Shared Cache

DRAM

Task 1 Task 2 Task 3 Task 4

I D I D I D I D

Effect of Memory Interference

• DNN control task suffers >10X slowdown

– When co-scheduling different tasks on on idle cores.

34

 0

 2

 4

 6

 8

 10

 12

DNN (Core 0,1) BwWrite (Core 2,3)

N
o
rm

a
liz

e
d
 E

x
e
u
c
ti
o
n
 T

im
e

Solo
Corun

DRAM

LLC

Core1 Core2 Core3 Core4

DNN BwWrite

Waqar Ali and Heechul Yun. “RT-Gang: Real-Time Gang Scheduling Framework for Safety-Critical Systems.” RTAS, 2019

Challenges: Shared Memory Hierarchy

35

CPU

Memory Hierarchy

Unicore

T1 T2

Core
1

Memory Hierarchy

Core
2

Core
3

Core
4

Multicore

T
1

T
2

T
3

T
4

T
5

T
6

T
7

T
8

Performance Impact

Shared Memory Hierarchy

• Cache space
• Memory bus bandwidth
• Memory controller queues
• …

36

Core1 Core2 Core3 Core4

DRAM

Memory Controller (MC)

Shared Last Level Cache (LLC)

ARM Cotex-A72

• Your Pi 4: 1 MB shared L2 cache, 2GB DRAM

37

• Some terminologies

– Cache-line

– Cache tag, index, and offset

– Direct map cache

– Set-associative cache, cache ways

Cache Architecture

38

Direct Map Cache

• Cache-line size = 2L

• # of cache-sets = 2S

• Cache size = 2L+S

39

tags index offset

Cache

cache-line (L)

Cache

Physical address

C
ach

e sets

S L

Cache
Cache

Cache

Set-associative Cache

• Cache-line size = 2L

• # of cache-sets = 2S

• # of ways = W
• Cache size = W x 2L+S

• Your Pi 4: 16 way 1MB L2 (64KB/way, 64B line)
– W = 16, L = 6, S = 10

40

tags index offset

Cache

Physical address

C
ach

e sets

Cache

cache-line (L)

S L 2
3

4

1

DRAM Organization

L3

DRAM DIMM

Memory Controller (MC)

Bank
4

Bank
3

Bank
2

Bank
1

Core1 Core2 Core3 Core4

• Have multiple banks

• Different banks can be
accessed in parallel

Best-case

L3

DRAM DIMM

Memory Controller (MC)

Bank
4

Bank
3

Bank
2

Bank
1

Core1 Core2 Core3 Core4

Fast
• Peak = 10.6 GB/s

– DDR3 1333Mhz

Best-case

L3

DRAM DIMM

Memory Controller (MC)

Bank
4

Bank
3

Bank
2

Bank
1

Core1 Core2 Core3 Core4

• Peak = 10.6 GB/s
– DDR3 1333Mhz

• Out-of-order processors

Fast

Most-cases

L3

DRAM DIMM

Memory Controller (MC)

Bank
4

Bank
3

Bank
2

Bank
1

Core1 Core2 Core3 Core4

Mess
• Performance = ??

Worst-case

• 1bank b/w
– Less than peak b/w

– How much?

Slow

L3

DRAM DIMM

Memory Controller (MC)

Bank
4

Bank
3

Bank
2

Bank
1

Core1 Core2 Core3 Core4

DRAM Controller

• Request queue

– Buffer read/write requests from CPU cores

– Unpredictable queuing delay due to reordering

46

Bruce Jacob et al, “Memory Systems: Cache, DRAM, Disk” Fig 13.1.

Request Reordering

• Improve row hit ratio and throughput
• Unpredictable queuing delay

47

Core1: READ Row 1, Col 1
Core2: READ Row 2, Col 1
Core1: READ Row 1, Col 2

Core1: READ Row 1, Col 1
Core1: READ Row 1, Col 2
Core2: READ Row 2, Col 1

DRAM DRAM

Initial Queue Reordered Queue

2 Row Switch 1 Row Switch

How to Improve Predictability?

• Partitioning

– Reserve resources (cache space, bank) to tasks

• Throttling

– Limit access rates to the shared resources

• Scheduling

– Schedule tasks in ways to avoid contention

48

Cache Partitioning

• Divide cache space among cores/tasks

• To improve throughput and isolation

– Protect “useful” cache-lines from being evicted
can improve throughput

– Prevent “unwanted” evictions to improve isolation

49

Cache Partitioning

• Way-partitioning

– Requires h/w support

• Set-partitioning

– Can be done in s/w as long as there’s MMU.

• MMU: virtual -> physical address translation h/w

• Page table: translation table managed by the OS

• Most (but not all) processors support MMU

– Page-coloring

50

Way Partitioning

• H/W support is needed

– E.g., Freescale P4080, Intel

51

Cache
Cache

Cache

Cache

C
ach

e
 sets

Cache

cache-line (L)

2
3

4

1

Core1 Core2 Core3 Core4

Intel CAT

• Cache Allocation Technology (CAT)
– Intel’s way partitioning mechanism

– Thread/VM  logical id  resource (cache)
partition

• Part of intel’s platform QoS techniques
– CAT: cache allocation technology

– CMT: cache monitoring technology

– MBM: memory bandwidth monitoring

– CDP: code/data prioritization

52

53Slide source: C. Peng, “Achieving QoS in Server Virtualization,” 2016

https://events.static.linuxfound.org/sites/events/files/slides/Achieving QoS in Server Virtualization.pdf

54Slide source: C. Peng, “Achieving QoS in Server Virtualization,” 2016

https://events.static.linuxfound.org/sites/events/files/slides/Achieving QoS in Server Virtualization.pdf

Set Partitioning

55

Cache
Cache

Cache

Cache

C
ach

e sets

Cache

cache-line (L)

2
3

4

1

Core1 Core2 Core3 Core4

• Can be done in S/W

– Page coloring: control
physical address (cache
index) of pages

Page Coloring

• Cache can be divided into page colors

• Assign certain colors to
certain CPU cores

56

Cache
Cache

Cache

Cache

C
ach

e sets

Cache

cache-line (L)

2
3

4

1

Core1 Core2

Core3 Core4

OS controlled bits for L2 partitioning

31 06

Set index

17 12

31 06

Set index

14 12

Tag

Page offset

Cache-line
offset

12

Physical page frame number

Cache-line
offset

Cache-line
offset

Set index

Set indexTag

Tag

6

1416

L2 Cache
(shared)

L1 Cache
(private)

Physical
Address

31 0

Page Coloring on Cortex-A15

• OS controls the color (bit 14, 15, 16) of allocated
memory block to partition the cache

57

PALLOC: DRAM Bank-Aware Memory
Allocator for Performance Isolation on

Multicore Platforms

Heechul Yun*, Renato Mancuso+, Zheng-Pei Wu#, Rodolfo Pellizzoni#

*University of Kansas, +University of Illinois , #University of Waterloo

IEEE Real-Time and Embedded Technology and Applications Symposium
(RTAS), 2014

58

Problem

L3

DRAM DIMM

Memory Controller (MC)

Bank
4

Bank
3

Bank
2

Bank
1

Core1 Core2 Core3 Core4

• OS does NOT know
DRAM banks

• OS memory pages are
spread all over multiple
banks

????
Unpredictable

memory
performance

SMP OS

59

PALLOC

L3

DRAM DIMM

Memory Controller (MC)

Bank
4

Bank
3

Bank
2

Bank
1

Core1 Core2 Core3 Core4 • Private banking

– Allocate pages
on certain
exclusively
assigned banks

Eliminate
Inter-core bank

conflicts

60

Real-Time Performance

• Setup: HRT  Core0, X-server  Core1
• Buddy: no bank control (use all Bank 0-15)
• Diffbank: Core0  Bank0-7, Core1  Bank8-15

61

Buddy(solo) PALLOC(diffbank)Buddy

Performance Isolation on 4 Cores

• Setup: Core0: X-axis, Core1-3: 470.lbm x 3 (interference)
• PB: DRAM bank partitioning only;
• PB+PC: DRAM bank and Cache partitioning
• Finding: bank (and cache) partitioning improves isolation, but far from ideal

62

Sl
o

w
d

o
w

n
 r

a
ti

o

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

buddy PB PB+PC

Taming Non-blocking Caches to
Improve Isolation in Multicore Real-

Time Systems

Prathap Kumar Valsan, Heechul Yun, Farzad Farshchi

University of Kansas

IEEE Real-Time and Embedded Technology and
Applications Symposium (RTAS), 2016

Best Paper Award

63

Non-blocking Cache

• Can serve cache hits under multiple cache misses
– Essential for an out-of-order core and any multicore

• Miss-Status-Holding Registers (MSHRs)
– On a miss, allocate a MSHR entry to track the req.
– On receiving the data, clear the MSHR entry

64

cpu cpu

miss hit miss

Miss penalty

Miss penalty

stall only when
result is needed

Multiple outstanding misses

(*) D. Kroft. “Lockup-free instruction fetch/prefetch cache organization,” ISCA’81

Cache Interference Experiments

• Measure the performance of the ‘subject’
– (1) alone, (2) with co-runners
– LLC is partitioned (equal partition) using PALLOC (*)

• Q: Does cache partitioning provide isolation?

65

DRAM

LLC

Core1 Core2 Core3 Core4

subject co-runner(s)

(*) Heechul Yun, Renato Mancuso, Zheng-Pei Wu, Rodolfo Pellizzoni. “PALLOC: DRAM Bank-Aware Memory Allocator for
Performance Isolation on Multicore Platforms.” RTAS’14

IsolBench: Synthetic Workloads

• Latency
– A linked-list traversal, data dependency, one outstanding miss

• Bandwidth
– An array reads or writes, no data dependency, multiple misses

• Subject benchmarks: LLC partition fitting

66

Working-set size: (LLC) < ¼ LLC  cache-hits, (DRAM) > 2X LLC  cache misses

Latency(LLC) vs. BwRead(DRAM)

• No interference on Cortex-A7 and Nehalem

• On Cortex-A15, Latency(LLC) suffers 3.8X slowdown
– despite partitioned LLC

67

BwRead(LLC) vs. BwRead(DRAM)

• Up to 10.6X slowdown on Cortex-A15
• Cache partitioning != performance isolation

– On all tested out-of-order cores (A9, A15, Nehalem)

68

BwRead(LLC) vs. BwWrite(DRAM)

• Up to 21X slowdown on Cortex-A15
• Writes generally cause more slowdowns

– Due to write-backs

69

Denial-of-Service Attacks on Shared
Cache in Multicore: Analysis and

Prevention
Michael Garrett Bechtel and Heechul Yun

University of Kansas
IEEE Real-Time and Embedded Technology and Applications

Symposium (RTAS), 2019

Outstanding Paper Award

70

Effects of Cache DoS Attacks

LLC

Core1 Core2 Core3 Core4

victim attackers

• Observed worst-case: >300X (times) slowdown

– On popular in-order multicore processors

– Due to contention in cache write-back buffer

>300X

Non-Blocking Cache

• We identified cache internal structures that
are potential DoS attack vectors

72

Writeback Buffer2

● Holds evicted dirty

lines (writebacks).

● Prevents cache refills

from waiting.

Miss Status Holding

Registers1

● Track outstanding

cache misses.

1 P. K. Valsan, H. Yun, F. Farshchi. “Taming Non-blocking Caches to Improve Isolation in Multicore Real-Time Systems.” In RTAS, 2016
2 M. G. Bechtel and H. Yun. “Denial-of-Service Attacks on Shared Cache in Multicore: Analysis and Prevention.” In RTAS, 2019

How to Improve Predictability?

• Partitioning

– Reserve resources (cache space, bank) to tasks

• Throttling

– Limit access rates to the shared resources

• Scheduling

– Schedule tasks in ways to avoid contention

73

MemGuard: Memory Bandwidth Reservation
System for Efficient Performance Isolation in

Multi-core Platforms

Heechul Yun+, Gang Yao+, Rodolfo Pellizzoni*,
Marco Caccamo+, Lui Sha+

+University of Illinois, *University of Waterloo

IEEE Real-Time and Embedded Technology and
Applications Symposium (RTAS), 2013

Operating System

MemGuard

75

Core1 Core2 Core3 Core4

PMC PMC PMC PMC

DRAM DIMM

MemGuard

Multicore Processor
Memory Controller

• Memory bandwidth management system

BW
Regulator

BW
Regulator

BW
Regulator

BW
Regulator

0.9GB/s 0.1GB/s 0.1GB/s 0.1GB/s

Reclaim Manager

Memory Bandwidth Throttling

• Idea

– OS monitor and enforce each core’s memory bandwidth usage

76

1ms 2ms0
Dequeue tasks

Enqueue tasks

Dequeue tasks

Budget

Core

activity

2
1

computation memory fetch

Impact of Throttling

77

LL
C

 m
is

se
s/

m
s

Time (ms) Time (ms)

W/o MemGuard MemGuard (1GB/s)

LL
C

 m
is

se
s/

m
s

Evaluation Results

C0

Shared Memory

C2

Intel Core2

L2 L2

462.Libquantum
(foreground)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

run-alone co-run run-alone co-run run-alone co-run

w/o Memguard Memguard
(reservation only)

Memguard
(reclaim+share)

N
o

rm
al

iz
ed

 IP
C

Foreground (462.libquantum)

1GB/s

memory hogs
(background)

C2

.2GB/s

Reservation provides performance isolation

Guaranteed
performance

How to Improve Predictability?

• Partitioning

– Reserve resources (cache space, bank) to tasks

• Throttling

– Limit access rates to the shared resources

• Scheduling

– Schedule tasks in ways to avoid contention

79

RT-Gang: Real-Time Gang
Scheduling Framework for Safety-

Critical Systems
Waqar Ali and Heechul Yun

University of Kansas

IEEE Real-Time and Embedded Technology
and Applications Symposium (RTAS), 2019

80

RT-Gang

• One (parallel) real-time task---a gang---at a time
– Eliminate inter-task interference by construction

• Schedule best-effort tasks during slacks w/ throttling
– Improve utilization with bounded impacts on the RT tasks

81

Implementation

• Modified Linux’s RT scheduler

– Implemented as a “feature” of SCHED_FIFO
(sched/rt.c)

• Best-effort task throttling

– Based on BWLOCK++*

82
* W. Ali and H. Yun., “Protecting Real-Time GPU Kernels on Integrated CPU-GPU SoC Platforms.” In ECRTS, 2018

Experiment Setup

• DNN control task of DeepPicar (real-world RT)

• IsolBench BwWrite benchmark (synthetic RT)

• Parboil benchmarks (real-world BE)

83

Task WCET
(C ms)

Period
(P ms)

Threads

34 100 2

220 340 2

∞ N/A 4

∞ N/A 4
DRAM

LLC

Core1 Core2 Core3 Core4

DNN BwWrite

Parboil cutcp & lbm

RT

BE

Execution Time Distribution

• RT-Gang achieves deterministic timing

84

What does this look like in the real world?

CoSched (w/o RT-Gang)

85
https://youtu.be/Jm6KSDqlqiU

https://youtu.be/Jm6KSDqlqiU

RT-Gang

86
https://youtu.be/pk0j063cUAs

https://youtu.be/pk0j063cUAs

Summary

• Real-time != Real-fast
– Real-time: about predictability
– Real-fast: about average performance

• Real-fast chips are often bad for real-time
• Because timing is highly unpredictable on most

real-fast chips.
• Traditional real-time systems use simple micro-

controllers (like HiFive1), which are predictable
• But, they cannot run complex stuff (e.g., AI)
• Increasingly, we need both: real-time & real-fast

87

Acknowledgements

• Some slides draw on materials developed by

– Edward A. Lee and Prabal Dutta (UCB) for
EECS149/249A

88

