
EECS 388: Embedded Systems

4. I/O Interface

Heechul Yun

1

Agenda

• Memory mapped I/O

• I/O interfaces

2

Input/output (I/O) Devices

3

Input/output (I/O) Devices

4

Input and Output (I/O) Interfaces

5

CPU
Core

Memory
Devices

I/O
Controllers

Interconnect

Computer

Input devices
(e.g. sensor)

Output devices
(e.g., motor)

Other
Computers

External:
GPIO, UART, USB, I2C,
SPI, CAN, ATA, PCI,
WiFi, Ethernet, …

Internal:
AXI, TileLink, …

How Does CPU Talk to Devices?

• CPU talks to device controllers

– Via memory mapped I/O

6

CPU
Core

Memory
Devices

I/O
Controllers

Interconnect

Computer

Input devices
(e.g. sensor)

Output devices
(e.g., motor)

Other
Computers

Memory Mapped I/O

• Parts of physical memory space are mapped
to hardware controllers (peripherals)

– Mapped to control registers and buffers

• Reading/writing from/to the memory mapped
regions in peripheral specific ways

7

Memory Mapped I/O

• Via system bus (CPU – memory or I/O device)

8

Address Signals

Data Signals

Control Signals

Address
Decoder

Control
Circuitry

Data,
Status, and

Control Registers

I/O Device

I/O
Interface

Bus{

}

9

Memory Map of
SiFive FE310

CPU: 32 bit RISC-V
Clock: 320 MHz
SRAM: 16 KB (D)
Flash: 4MB

Memory mapped I/O
regions

10

Memory Map of
SiFive FE310

GPIO registers are mapped at
0x10012000 – 0x10012FFF

Memory Mapped I/O: Example

11

12

Memory Map of
SiFive FE310

UART0 registers are mapped at
0x10013000 – 0x10013FFF

Volatile in C

13

a4 = 0x10013000

Branch to .L17 if a5 < zero

a5 = *a4

Volatile in C

14

Is this correct?

a4 = 0x10013000

Branch to .L17 if a5 < zero

a5 = *a4

Input and Output (I/O) Interfaces

15

CPU
Core

Memory
Devices

I/O
Controllers

Interconnect

Computer

Input devices
(e.g. sensor)

Output devices
(e.g., motor)

Other
Computers

External:
GPIO, UART, USB, I2C,
SPI, CAN, ATA, PCI,
WiFi, Ethernet, …

Internal:
AXI, TileLink, …

External I/O Interfaces

16
HiFive1 Rev B Pinout

General Purpose I/O (GPIO)

• Programmable digital input/output pins

• Use voltage levels to represent digital signals

– 5V = logic 1 (for 5V CPUs)

– 0V = logic 0

• Can be configured as

– Input or output

• Useful to interact with
external devices

17

3V VDD

Example: Turn on an LED

• Assume a GPIO pin can draw up to 18mA, and
when the LED is on, it has a voltage drop of 2V

• Ohm’s law: 𝐼 × 𝑅 = 𝑉

• What registor is needed?

18

3V VDD

Example: Turn on an LED

• Assume a GPIO pin can draw up to 18mA, and
when the LED is on, it has a voltage drop of 2V

• Ohm’s law: 𝐼 × 𝑅 = 𝑉

• What registor is needed?

I = V / R = 1 / R < 18mA

R > 1V/18mA

= 1000mV/18mA
= 56 ohm

19

Serial vs. Parallel

• Serial communication

– use single line

20

0
1
0
0
1
0
0
1

0
1
0
0
1
0
0
10 1 0 0 1 0 0 1

Sender Receiver

Serial vs. Parallel

• Parallel communication

– use multiple lines

21

0
1
0
0
1
0
0
1

0
1
0
0
1
0
0
1

Sender Receiver

0
1
0
0
1
0
0
1

Serial vs. Parallel Interfaces

• Serial interfaces
– RS-232: serial communication standard
– USB: universal serial bus
– I2C: inter-integrated circuit
– SPI: serial peripheral interface bus
– SATA: serial ATA
– …

22

SATA USB RS-232I2C

Serial vs. Parallel Interfaces

• Parallel interfaces

– Parallel ATA: advanced technology attachment

– SCSI: small computer system interface

– PCI: peripheral component interface

– …

23

PCI SCSI PATA Parallel port

Serial vs. Parallel Interfaces

• Are parallel interfaces better?
++ better performance for the same clock speed

--- synchronization among the wires at high speed

• Serial interfaces are increasingly popular for
external i/o (e.g., USB, SATA, PCIe, …)

• Parallel interfaces are dominant for internal
interconnect within chip where clock
synchronization is easier (e.g., AXI, TileLink, ..)

24

Synchronous vs. Asynchronous

• Synchronous communication
– Requires a common shared clock
– Higher throughput, low overhead.
– All parallel communications are synchronous
– Synchronization difficulties.

• Asynchronous communication
– No shared clock.
– Asynchronous start/stop
– Self clocked w.r.t. agreed up on speed
– High overhead

25

RS-232

• Asynchronous serial communication standard
from 1960s, but still widely used

26This Photo by Unknown Author is licensed under CC BY-SA

http://electronics.stackexchange.com/questions/110478/difference-between-uart-and-rs232
https://creativecommons.org/licenses/by-sa/3.0/

UART

• Universal asynchronous receiver/transmitter

• Convert parallel data to serial data (vice versa)

• Can be configured to implement various serial
protocol (e.g., RS-232)

• Require at least TX and
RX lines to function

27

UART Speed (Baudrate)

• Both sender and receiver must use agreed
upon transmission speed (baudrate)

• Up on detecting the start bit, the receiver
sample 8 more times before stop

28

Point-to-Point vs. Bus

• Point-to-point
– 1:1 communication

• Bus
– Shared among multiple devices

– Need an arbitration mechanism

– Master
• An entity who initiates the data transfer

– Slave
• An entity who cooperates with the master

29

I2C

• Inter-integrated circuit protocol (I2C), by NXP
• Synchronous serial communication protocol
• Use two wires (SCL - clock, SDA - data)
• Multi-master, multi-slave support
• Use 7bit ID. Connect up to 127 devices.
• Half duplex, relatively slow

30

This Photo by Unknown Author is licensed under CC BY-SAThis Photo by Unknown Author is licensed under CC BY-SA

https://electronics.stackexchange.com/questions/116256/arduino-uno-to-attiny44a-i2c-communication
https://creativecommons.org/licenses/by-sa/3.0/
https://electronics.stackexchange.com/questions/45590/usb-i2c-adapter-and-cognimem-on-mac-os-x
https://creativecommons.org/licenses/by-sa/3.0/

SPI

• Serial peripheral interface (SPI), by Motorola

• Synchronous serial communication protocol

• Use 4 lines, full-duplex, (relatively) fast

• Single master, multi-slave

• No start/stop bits

• Good for fast, short distance
communication

31

This Photo is licensed under CC BY-SA

https://en.wikipedia.org/wiki/Serial_Peripheral_Interface_Bus
https://creativecommons.org/licenses/by-sa/3.0/

USB

• Universal serial bus
• One host, multiple devices, can form a tree
• Use two wires for single differential signal

– Reduce noise caused by electromagnetic interference

• Device needs to process the protocol messages

32

https://commons.wikimedia.org/wiki/File:USB_signal_example.svg#/media/File:USB_signal_example.svg

I/O Considerations

• Digital vs. analog

• Serial vs. parallel

• Wired vs. wireless

• Speed (throughput, latency)

• Real-time/QoS guarantees

• Power/Electrical requirements

• Reliability, Security

33

Summary

• Memory mapped I/O
– Parts of physical memory space are mapped to

hardware controllers (peripherals)

– Reading/writing from/to the memory mapped regions
in peripheral specific ways

• I/O interfaces
– GPIO, UART, SPI, I2C, USB, …

– Serial vs parallel

– Asynchronous vs synchronous

34

Quiz

• Suppose you are sending data over a UART
channel at a baud rate of 115200 bps. How
long does it take to send a single 8 bit
character over the channel?

35

Quiz

• How many CPU cycles would be needed to
execute the busy-wait loop in the worst-
case? Assume that that the CPU is running at
1 MHz and the baud rate is set at 9600 bps?

36

a4 = 0x10013000

Branch to .L17 if a5 < zero

a5 = *a4

Acknowledgements

• Some slides are based on the material
originally developed by

– Edward A. Lee and Prabal Dutta (UCB) for
EECS149/249A

– Rodolfo Pellizzoni (U. Waterloo) for ECE224

37

