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Agenda

• Memory mapped I/O

• I/O interfaces
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Input/output (I/O) Devices
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Input/output (I/O) Devices
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Input and Output (I/O) Interfaces
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How Does CPU Talk to Devices?

• CPU talks to device controllers 

– Via memory mapped I/O
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Memory Mapped I/O

• Parts of physical memory space are mapped 
to hardware controllers (peripherals)

– Mapped to control registers and buffers

• Reading/writing from/to the memory mapped 
regions in peripheral specific ways
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Memory Mapped I/O

• Via system bus (CPU – memory or I/O device)
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Memory Map of
SiFive FE310

CPU: 32 bit RISC-V
Clock: 320 MHz
SRAM:  16 KB (D)
Flash: 4MB

Memory mapped I/O 
regions
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Memory Map of
SiFive FE310

GPIO registers are mapped at
0x10012000 – 0x10012FFF



Memory Mapped I/O: Example
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Memory Map of
SiFive FE310

UART0 registers are mapped at
0x10013000 – 0x10013FFF



Volatile in C
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a4 = 0x10013000

Branch to .L17 if a5 < zero

a5 = *a4



Volatile in C
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Is this correct?

a4 = 0x10013000

Branch to .L17 if a5 < zero

a5 = *a4



Input and Output (I/O) Interfaces
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External I/O Interfaces
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HiFive1 Rev B Pinout



General Purpose I/O (GPIO)

• Programmable digital input/output pins

• Use voltage levels to represent digital signals

– 5V = logic 1  (for 5V CPUs)

– 0V = logic 0 

• Can be configured as

– Input or output 

• Useful to interact with
external devices
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3V VDD

Example: Turn on an LED 

• Assume a GPIO pin can draw up to 18mA, and 
when the LED is on, it has a voltage drop of 2V

• Ohm’s law: 𝐼 × 𝑅 = 𝑉

• What registor is needed?
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3V VDD

Example: Turn on an LED 

• Assume a GPIO pin can draw up to 18mA, and 
when the LED is on, it has a voltage drop of 2V

• Ohm’s law: 𝐼 × 𝑅 = 𝑉

• What registor is needed?

I = V / R = 1 / R < 18mA

R > 1V/18mA 

= 1000mV/18mA
= 56 ohm
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Serial vs. Parallel

• Serial communication

– use single line
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Serial vs. Parallel

• Parallel communication

– use multiple lines 
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Serial vs. Parallel Interfaces

• Serial interfaces
– RS-232: serial communication standard
– USB: universal serial bus
– I2C: inter-integrated circuit
– SPI: serial peripheral interface bus
– SATA: serial ATA
– …
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Serial vs. Parallel Interfaces

• Parallel interfaces

– Parallel ATA: advanced technology attachment

– SCSI: small computer system interface

– PCI: peripheral component interface

– …
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PCI SCSI PATA Parallel port



Serial vs. Parallel Interfaces

• Are parallel interfaces better?
++ better performance for the same clock speed

--- synchronization among the wires at high speed

• Serial interfaces are increasingly popular for 
external i/o (e.g., USB, SATA, PCIe, …) 

• Parallel interfaces are dominant for internal 
interconnect within chip where clock 
synchronization is easier (e.g., AXI, TileLink, ..)
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Synchronous vs. Asynchronous

• Synchronous communication
– Requires a common shared clock
– Higher throughput, low overhead. 
– All parallel communications are synchronous 
– Synchronization difficulties.

• Asynchronous communication
– No shared clock.
– Asynchronous start/stop 
– Self clocked w.r.t. agreed up on speed
– High overhead
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RS-232

• Asynchronous serial communication standard 
from 1960s, but still widely used
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UART

• Universal asynchronous receiver/transmitter

• Convert parallel data to serial data (vice versa)

• Can be configured to implement various serial 
protocol (e.g., RS-232)

• Require at least TX and 
RX lines to function
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UART Speed (Baudrate)

• Both sender and receiver must use agreed 
upon transmission speed (baudrate)

• Up on detecting the start bit, the receiver 
sample 8 more times before stop
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Point-to-Point vs. Bus

• Point-to-point
– 1:1 communication

• Bus
– Shared among multiple devices

– Need an arbitration mechanism

– Master
• An entity who initiates the data transfer

– Slave
• An entity who cooperates with the master 
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I2C

• Inter-integrated circuit protocol (I2C), by NXP
• Synchronous serial communication protocol
• Use two wires (SCL - clock, SDA - data)
• Multi-master, multi-slave support
• Use 7bit ID. Connect up to 127 devices.
• Half duplex, relatively slow 
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SPI

• Serial peripheral interface (SPI), by Motorola

• Synchronous serial communication protocol

• Use 4 lines, full-duplex, (relatively) fast

• Single master, multi-slave

• No start/stop bits

• Good for fast, short distance 
communication
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USB

• Universal serial bus
• One host, multiple devices, can form a tree
• Use two wires for single differential signal 

– Reduce noise caused by electromagnetic interference 

• Device needs to process the protocol messages
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https://commons.wikimedia.org/wiki/File:USB_signal_example.svg#/media/File:USB_signal_example.svg



I/O Considerations

• Digital vs. analog 

• Serial vs. parallel

• Wired vs. wireless

• Speed (throughput, latency)

• Real-time/QoS guarantees

• Power/Electrical requirements

• Reliability, Security 
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Summary

• Memory mapped I/O
– Parts of physical memory space are mapped to 

hardware controllers (peripherals)

– Reading/writing from/to the memory mapped regions 
in peripheral specific ways

• I/O interfaces
– GPIO, UART, SPI, I2C, USB, … 

– Serial vs parallel

– Asynchronous vs synchronous

34



Quiz

• Suppose you are sending data over a UART 
channel at a baud rate of 115200 bps. How 
long does it take to send a single 8 bit 
character over the channel?
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Quiz

• How many CPU cycles would be needed to 
execute the busy-wait loop in the worst-
case? Assume that that the CPU is running at 
1 MHz and the baud rate is set at 9600 bps?
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a4 = 0x10013000

Branch to .L17 if a5 < zero

a5 = *a4
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