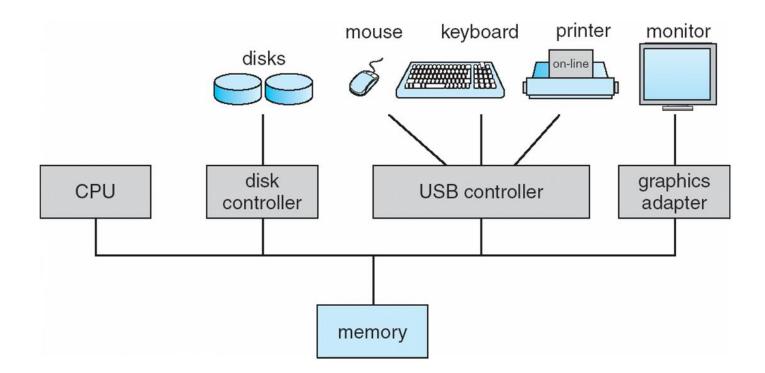
EECS 388: Embedded Systems


4. I/O Interface Heechul Yun

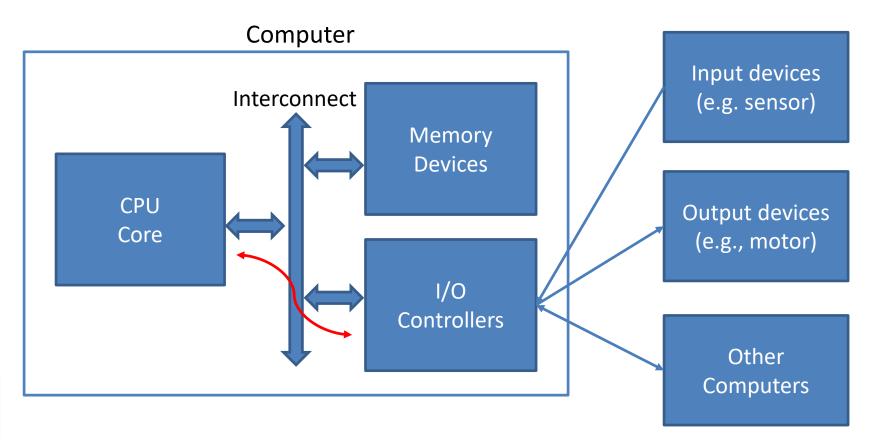
Agenda

- Memory mapped I/O
- I/O interfaces

Input/output (I/O) Devices

Input/output (I/O) Devices

Input and Output (I/O) Interfaces



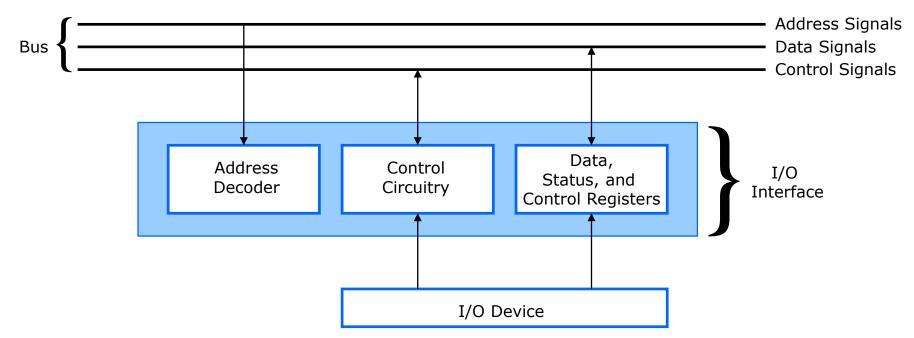
How Does CPU Talk to Devices?

- CPU talks to device controllers
 - Via memory mapped I/O

KU THE UNIVERSITY OF KANSAS

Memory Mapped I/O

 Parts of physical memory space are mapped to hardware controllers (peripherals)


Mapped to control registers and buffers

Reading/writing from/to the memory mapped regions in peripheral specific ways

Memory Mapped I/O

• Via system bus (CPU – memory or I/O device)

Base	Тор	Attr.	Description	Notes	
0x0000_0000	0x0000_0FFF	RWX A	Debug	Debug Address Space	
0x0000_1000	0x0000_1FFF	R XC	Mode Select		
			Reserved	1	
0x0000_3000		RWX A	Error Device	1	
0x0000_4000	0x0000_FFFF		Reserved	On-Chip Non Volatile Mem-	
0x0001_0000	0x0001_1FFF	R XC	Mask ROM (8 KiB)	ory	
0x0001_2000	0x0001_FFFF		Reserved		
0x0002_0000	0x0002_1FFF	R XC	OTP Memory Region	1	
0x0002_2000	0x001F_FFFF		Reserved	1	
0x0200_0000	0x0200_FFFF	RW A	CLINT		
0x0201_0000	0x07FF_FFFF		Reserved		
0x0800_0000	0x0800_1FFF	RWX A	E31 ITIM (8 KiB)]	
0x0800_2000	0x0BFF_FFFF		Reserved]	
0x0C00_0000	0x0FFF_FFF	RW A	PLIC	1	
0x1000_0000	0x1000_0FFF	RW A	AON]	
0x1000_1000	0x1000_7FFF		Reserved	1	
0x1000_8000	0x1000_8FFF	RW A	PRCI]	
0x1000_9000	0x1000_FFFF		Reserved		
0x1001_0000	0x1001_0FFF	RW A	OTP Control]	
0x1001_1000	0x1001_1FFF		Reserved		
0x1001_2000	0x1001_2FFF	RW A	GPIO	On-Chip Peripherals	
0x1001_3000	0x1001_3FFF	RW A	UART 0		
0x1001_4000	0x1001_4FFF	RW A	QSPI 0		
0x1001_5000	0x1001_5FFF	RW A	PWM 0		
0x1001_6000	0x1001_6FFF	RW A	I2C 0		
0x1001_7000	0x1002_2FFF		Reserved		
0x1002_3000	0x1002_3FFF	RW A	UART 1		
0x1002_4000	0x1002_4FFF	RW A	SPI 1		
0x1002_5000	0x1002_5FFF	RW A	PWM 1		
0x1002_6000	0x1003_3FFF		Reserved		
0x1003_4000	0x1003_4FFF	RW A	SPI 2		
0x1003_5000	0x1003_5FFF	RW A	PWM 2	ĻJ	
0x1003_6000	0x1FFF_FFFF		Reserved		
0x2000_0000	0x3FFF_FFF	R XC	QSPI 0 Flash	Off-Chip Non-Volatile Mem-	
			(512 MiB)	ory	
0×4000_0000	0x7FFF_FFF		Reserved	· · · · · · · · · · · · · · · · · · ·	
0x8000_0000	0x8000_3FFF	RWX A	E31 DTIM (16 KiB)	On-Chip Volatile Memory	
0x8000_4000	0xFFFF_FFFF		Reserved		

Memory Map of SiFive FE310

CPU: 32 bit RISC-V Clock: 320 MHz SRAM: 16 KB (D) Flash: 4MB

Memory mapped I/O regions

Base	Тор	Attr.	Description	Notes
0×0000_0000	0x0000_0FFF	RWX A	Debug	Debug Address Space
0x0000_1000	0x0000_1FFF	R XC	Mode Select	
0×0000_2000	0x0000_2FFF		Reserved	
0x0000_3000	0x0000_3FFF	RWX A	Error Device	
0x0000_4000	0x0000_FFFF		Reserved	On-Chip Non Volatile Mem-
0x0001_0000	0x0001_1FFF	R XC	Mask ROM (8 KiB)	ory
0x0001_2000	0x0001_FFFF		Reserved	
0x0002_0000	0x0002_1FFF	R XC	OTP Memory Region]
0x0002_2000	0x001F_FFFF		Reserved	
0x0200_0000	0x0200_FFFF	RW A	CLINT	
0x0201_0000	0x07FF_FFFF		Reserved	
0x0800_0000	0x0800_1FFF	RWX A	E31 ITIM (8 KiB)]
0x0800_2000	0x0BFF_FFFF		Reserved	
0x0C00_0000	0x0FFF_FFFF	RW A	PLIC]
0x1000_0000	0x1000_0FFF	RW A	AON]
0x1000_1000	0x1000_7FFF		Reserved	
0x1000_8000	0x1000_8FFF	RW A	PRCI	
0x1000_9000	0x1000_FFFF		Reserved]
0x1001_0000	0x1001_0FFF	RW A	OTP Control]
0x1001_1000	0x1001_1FFF		Reserved	
0x1001_2000	0x1001_2FFF	RW A	GPIO	
0x1001_3000	0x1001_3FFF	RW A	UART 0	-On-Chip Peripherals
0x1001_4000	0x1001_4FFF	RW A	QSPI 0	1
0x1001_5000	0x1001_5FFF	RW A	PWM 0	1 \
0x1001_6000	0x1001_6FFF	RW A	I2C 0	1 \
0x1001_7000	0x1002_2FFF		Reserved	1 \
0x1002_3000	0x1002_3FFF	RW A	UART 1	
0x1002_4000	0x1002_4FFF	RW A	SPI 1	
0x1002_5000	0x1002_5FFF	RW A	PWM 1	
0x1002_6000	0x1003_3FFF		Reserved	
0x1003_4000	0x1003_4FFF	RW A	SPI 2	
0x1003_5000	0x1003_5FFF	RW A	PWM 2] \ \
0x1003_6000	0x1FFF_FFFF		Reserved	
0x2000_0000	0x3FFF_FFF	R XC	QSPI 0 Flash	Off Chin Non Valatile Mar
			(512 MiB)	Off-Chip Non-Volatile Mem-
0×4000_0000	0x7FFF_FFFF		Reserved	ory
0×8000_0000	0x8000_3FFF	RWX A	E31 DTIM (16 KiB)	On-Chip Volatile Memory
0x8000_4000	0xFFFF_FFFF		Reserved	

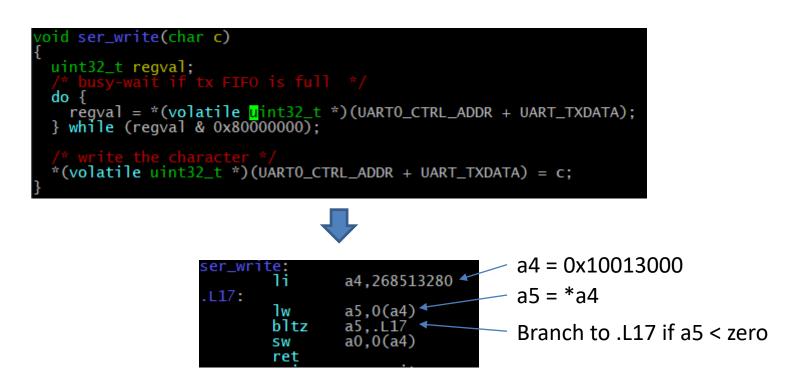
Memory Map of SiFive FE310

GPIO registers are mapped at 0x10012000 – 0x10012FFF

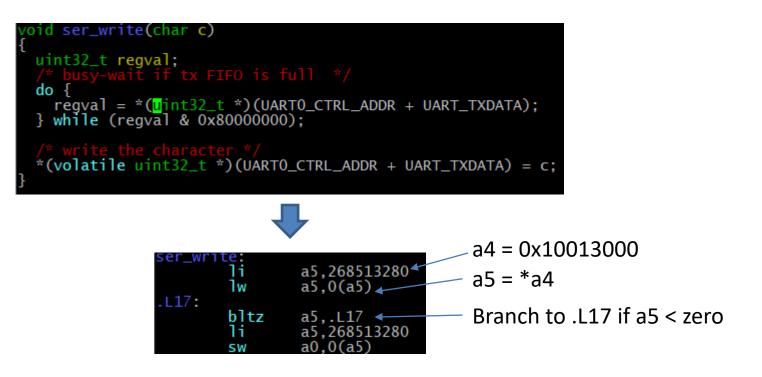
Offset	Name	Description
0×00	input_val	Pin value
0×04	input_en	Pin input enable*
0×08	output_en	Pin output enable*
0×0C	output_val	Output value
0×10	pue	Internal pull-up enable*
0x14	ds	Pin drive strength
0x18	rise_ie	Rise interrupt enable
0×1C	rise_ip	Rise interrupt pending
0×20	fall_ie	Fall interrupt enable
0x24	fall_ip	Fall interrupt pending
0x28	high_ie	High interrupt enable
0x2C	high_ip	High interrupt pending
0×30	low_ie	Low interrupt enable
0x34	low_ip	Low interrupt pending
0×40	out_xor	Output XOR (invert)

Memory Mapped I/O: Example

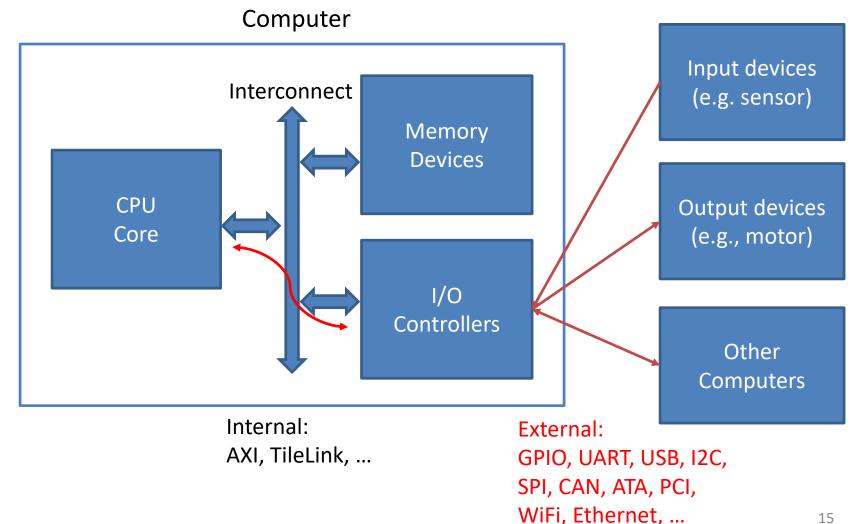
	/************************	*****	***********	
	* memory map			
_	******	****	***************************************	
	#define GPIO_CTRL_ADDR	0x10012000	// GPIO controller base address	
	<pre>#define GPIO_INPUT_VAL</pre>	0x00	// input val	
	#define GPIO_INPUT_EN	0x04	// input enable	
_	#define GPTO_OUTPUT_FN	0x08	// output enable	
	#define GPIO_OUTPUT_VAL	0x0C	// output_val	
	#define GPIO_OUTPUT_XOR	0x40	// output XOR (invert)	


```
void gpio_write(int gpio, int state)
{
    uint32_t val = *(volatile uint32_t *) (GPIO_CTRL_ADDR + GPIO_OUTPUT_VAL);
    if (state == ON)
      val |= (1<<gpio);
    else
      xal &= (~(1<<gpio));
    *(volatile uint32_t *) (GPIO_CTRL_ADDR + GPIO_OUTPUT_VAL) = val;
    return;|
</pre>
```

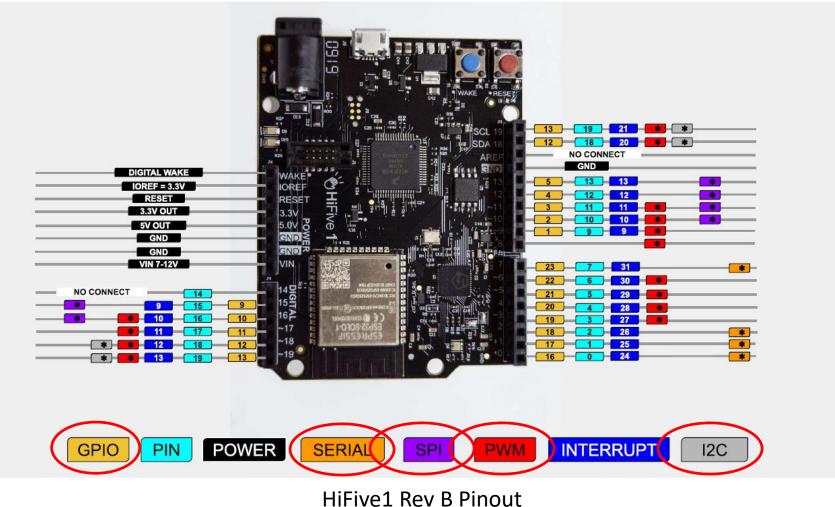

	Base	Тор	Att	r.	Description	Notes]					
(0000_0000x0	0x0000_0FFF	RWX	Α	Debug	Debug Address Space	1					
(9x0000_1000	0x0000_1FFF	RX	2	Mode Select		1	Mamony Man of				
(9x0000_2000	0x0000_2FFF			Reserved			Memory Map of				
	0x0000_3000	0x0000_3FFF	RWX	Α	Error Device							
(9x0000_4000	0x0000_FFFF			Reserved	On-Chip Non Volatile Mem-	$C: \Gamma: I \rightarrow \Gamma \Gamma \rightarrow 1 \wedge$					
(0x0001_0000	0x0001_1FFF	R X	С	Mask ROM (8 KiB)	ory		SiFive FE310				
(0x0001_2000	0x0001_FFFF			Reserved							
(9x0002_0000	0x0002_1FFF	RX	0	OTP Memory Region							
(9x0002_2000	0x001F_FFFF			Reserved							
(9x0200_0000	0x0200_FFFF	RW	А	CLINT							
(9x0201_0000	0x07FF_FFFF			Reserved							
(9x0800_0000	0x0800_1FFF	RWX	А	E31 ITIM (8 KiB)							
(9x0800_2000	0x0BFF_FFFF			Reserved							
(0000_0000x0	0x0FFF_FFFF	RW	А	PLIC							
(9x1000_0000	0x1000_0FFF	RW	А	AON							
(9x1000_1000	0x1000_7FFF			Reserved			UARTO registers are mapped at			at	
(0x1000_8000	0x1000_8FFF	RW	А	PRCI			0./100	12000			
(0x1000_9000	0x1000_FFFF			Reserved			OXTOO	12000	– 0x10013FFF		
(9x1001_0000	0x1001_0FFF	RW	Α	OTP Control							
(9x1001_1000	0x1001_1FFF			Reserved							
(9x1001 2000	0x1001_2FFF	RW	А	GPIO	Dn-Chip Peripherals						
(9x1001_3000	0x1001_3FFF	RW	А	UART 0		Offset	Name	Description	1		
	9x1001_4000	0x1001_4FFF	RW	А	QSPI 0			0×00	txdata	Transmit data register		
(9x1001_5000	0x1001_5FFF	RW	А	PWM 0		0x04	rxdata	Receive data register			
	9x1001_6000	0x1001_6FFF	RW	А	I2C 0			0x08	txctrl	Transmit control register	1	
	9x1001_7000	0x1002_2FFF			Reserved							
	9x1002_3000	0x1002_3FFF	RW	А	UART 1			0x0C	rxctrl	Receive control register	1	
	9x1002_4000	0x1002_4FFF	RW	А	SPI 1			0x10	ie	UART interrupt enable		
(9x1002_5000	0x1002_5FFF	RW	А	PWM 1			0×14	ip	UART interrupt pending		
	9x1002_6000	0x1003_3FFF			Reserved			0x18	div	Baud rate divisor		
	0x1003_4000	0x1003_4FFF	RW	А	SPI 2					-		
(9x1003_5000	0x1003_5FFF	RW	А	PWM 2							
(9x1003_6000	0x1FFF_FFFF			Reserved							
(9x2000_0000	0x3FFF_FFFF	RX	c	QSPI 0 Flash	Off-Chip Non-Volatile Mem- ory						
					(512 MiB)							
	9x4000_0000	0x7FFF_FFF			Reserved							
	9x8000_0000	0x8000_3FFF	RWX	А	E31 DTIM (16 KiB)	On-Chip Volatile Memory				12		
(9x8000_4000	0xFFFF_FFFF			Reserved							


Г

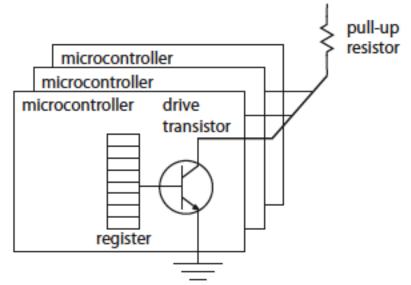
Volatile in C


Volatile in C

Is this correct?

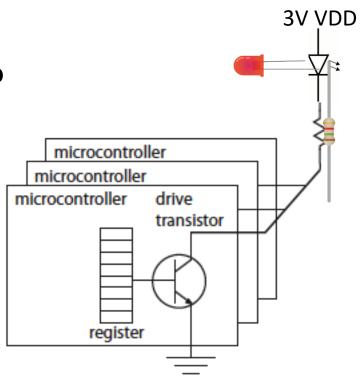


Input and Output (I/O) Interfaces


External I/O Interfaces

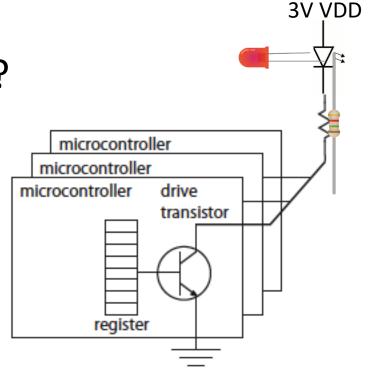
General Purpose I/O (GPIO)

- Programmable digital input/output pins
- Use voltage levels to represent digital signals
 - -5V = logic 1 (for 5V CPUs)
 - -0V = logic 0
- Can be configured as
 Input or output
- Useful to interact with external devices

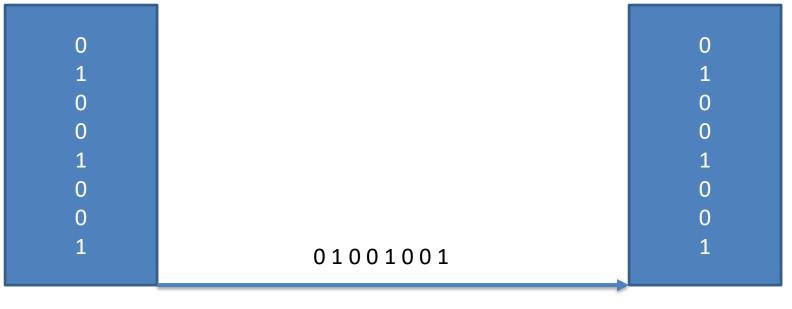


VDD

Example: Turn on an LED

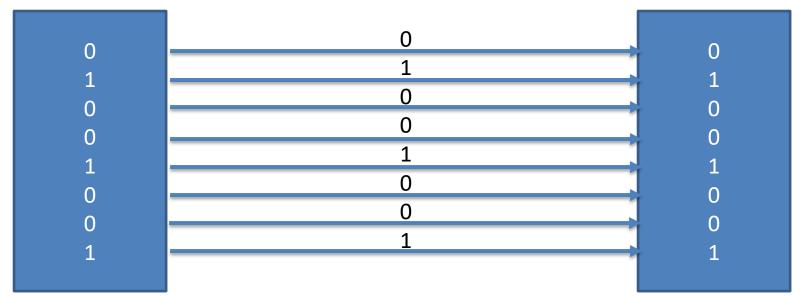

- Assume a GPIO pin can draw up to 18mA, and when the LED is on, it has a voltage drop of 2V
- Ohm's law: $I \times R = V$
- What registor is needed?

Example: Turn on an LED


- Assume a GPIO pin can draw up to 18mA, and when the LED is on, it has a voltage drop of 2V
- Ohm's law: $I \times R = V$
- What registor is needed?
 I = V / R = 1 / R < 18mA
 - R > 1V/18mA
 - = 1000mV/18mA
 - = 56 ohm

Serial vs. Parallel

- Serial communication
 - use single line


Sender

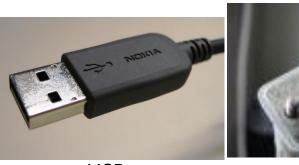
Receiver

Serial vs. Parallel

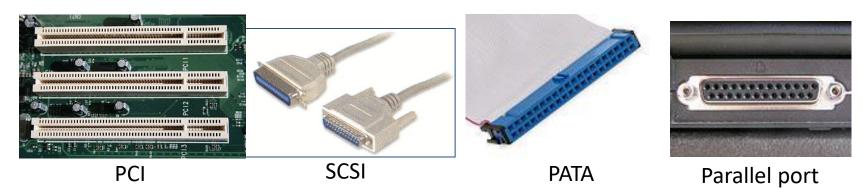
- Parallel communication
 - use multiple lines

Sender

Receiver


Serial vs. Parallel Interfaces

- Serial interfaces
 - RS-232: serial communication standard
 - USB: universal serial bus
 - I²C: inter-integrated circuit
 - SPI: serial peripheral interface bus
 - SATA: serial ATA



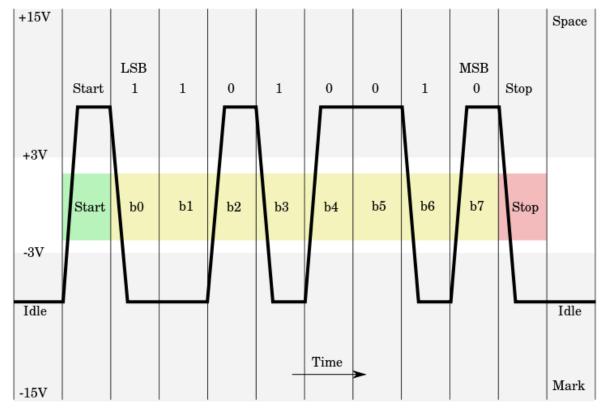
SATA

Serial vs. Parallel Interfaces

- Parallel interfaces
 - Parallel ATA: advanced technology attachment
 - SCSI: small computer system interface
 - PCI: peripheral component interface

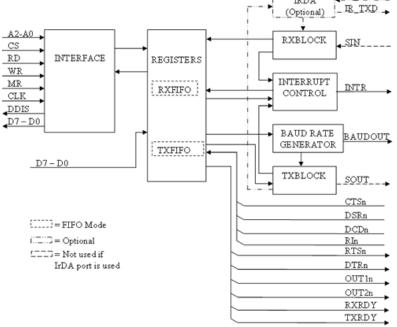
Serial vs. Parallel Interfaces

- Are parallel interfaces better?
 - ++ better performance for the same clock speed
 - --- synchronization among the wires at high speed
- Serial interfaces are increasingly popular for external i/o (e.g., USB, SATA, PCIe, ...)
- Parallel interfaces are dominant for internal interconnect within chip where clock synchronization is easier (e.g., AXI, TileLink, ..)

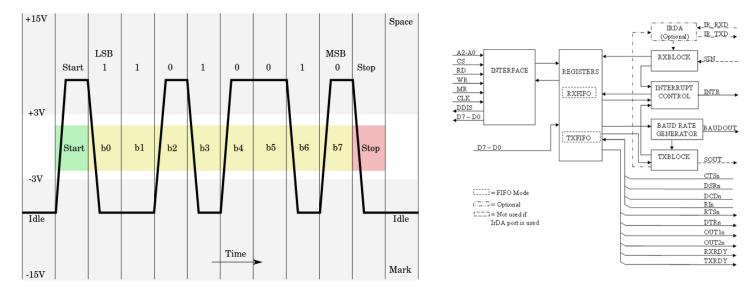

Synchronous vs. Asynchronous

- Synchronous communication
 - Requires a common shared clock
 - Higher throughput, low overhead.
 - All parallel communications are synchronous
 - Synchronization difficulties.
- Asynchronous communication
 - No shared clock.
 - Asynchronous start/stop
 - Self clocked w.r.t. agreed up on speed
 - High overhead

RS-232


 Asynchronous serial communication standard from 1960s, but still widely used

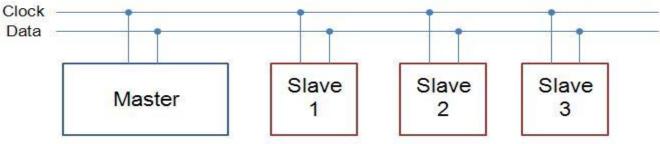
UART


- Universal asynchronous receiver/transmitter
- Convert parallel data to serial data (vice versa)
- Can be configured to implement various serial protocol (e.g., RS-232)
- Require at least TX and RX lines to function

UART Speed (Baudrate)

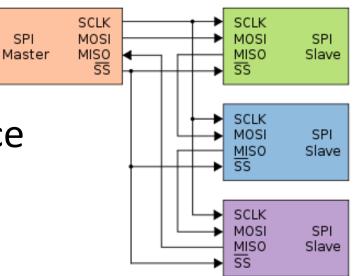
- Both sender and receiver must use agreed upon transmission speed (baudrate)
- Up on detecting the start bit, the receiver sample 8 more times before stop

Point-to-Point vs. Bus


- Point-to-point
 - 1:1 communication
- Bus
 - Shared among multiple devices
 - Need an arbitration mechanism
 - Master
 - An entity who initiates the data transfer
 - Slave
 - An entity who cooperates with the master

I²**C**

- Inter-integrated circuit protocol (I²C), by NXP
- Synchronous serial communication protocol
- Use two wires (SCL clock, SDA data)
- Multi-master, multi-slave support
- Use 7bit ID. Connect up to 127 devices.
- Half duplex, relatively slow

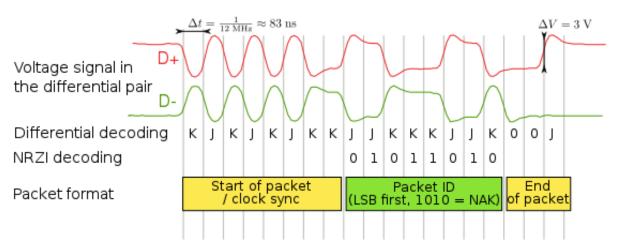


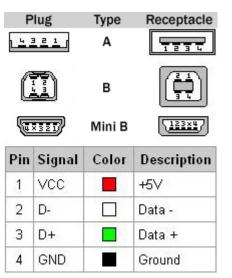
This Photo by Unknown Author is licensed under CC BY-SA

SPI

- Serial peripheral interface (SPI), by Motorola
- Synchronous serial communication protocol
- Use 4 lines, full-duplex, (relatively) fast
- Single master, multi-slave
- No start/stop bits
- Good for fast, short distance communication

USB


Universal serial bus


KU

KANSAS

- One host, multiple devices, can form a tree
- Use two wires for single differential signal
 Reduce noise caused by electromagnetic interference
- Device needs to process the protocol messages

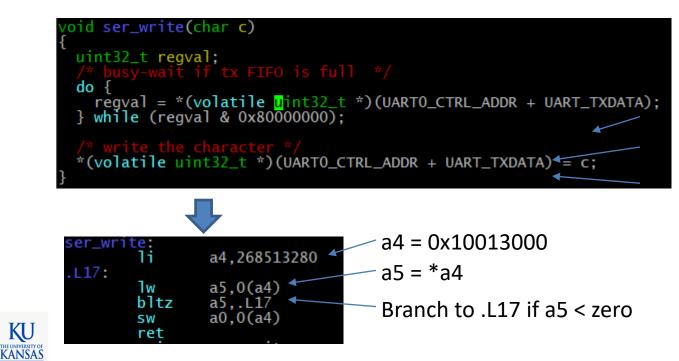
https://commons.wikimedia.org/wiki/File:USB_signal_example.svg#/media/File:USB_signal_example.svg

I/O Considerations

- Digital vs. analog
- Serial vs. parallel
- Wired vs. wireless
- Speed (throughput, latency)
- Real-time/QoS guarantees
- Power/Electrical requirements
- Reliability, Security

Summary

- Memory mapped I/O
 - Parts of physical memory space are mapped to hardware controllers (peripherals)
 - Reading/writing from/to the memory mapped regions in peripheral specific ways
- I/O interfaces
 - GPIO, UART, SPI, I2C, USB, ...
 - Serial vs parallel
 - Asynchronous vs synchronous


Quiz

 Suppose you are sending data over a UART channel at a baud rate of 115200 bps. How long does it take to send a single 8 bit character over the channel?

Quiz

 How many CPU cycles would be needed to execute the busy-wait loop in the worstcase? Assume that that the CPU is running at 1 MHz and the baud rate is set at 9600 bps?

KU

Acknowledgements

- Some slides are based on the material originally developed by
 - Edward A. Lee and Prabal Dutta (UCB) for EECS149/249A
 - Rodolfo Pellizzoni (U. Waterloo) for ECE224

