
EECS 388: Embedded Systems

6. Interrupt

Heechul Yun

1



Agenda

• Polling vs. interrupt 

• Interrupt processing

• Interrupt related issues

2



Polling

• Keep checking the status to see if I/O is ready

3



Polling

4

Check I/O status 
register

Ready?

Do I/O

Yes

No

Begin

All I/O 
done?

No

Yes



Polling

• The problem
– CPU can’t do any useful things in the meantime. 

• Improvements
– Check multiple I/O devices rather than one

– Instead of keep checking the status (busy waiting), 
do some other useful work and then check again

• Q. when to check again?

• Q. what if the I/O must occur within a bound time?

• Can we do I/O immediately when it is ready?

5



Interrupt

• What is an interrupt?
– A signal to the processor telling “do something 

now!”

• Hardware interrupts
– Devices (timer, disk, keyboard, …) to CPU

• Software interrupts
– special instructions (e.g., int 0x80)

• Exceptions
– Divide by zero, segmentation fault, …

6



Interrupt Handling

 Step 1: deliver an interrupt to the CPU
 Step 2: save CPU states (registers)
 Step 3: execute the associated interrupt service routine (ISR)
 Step 4: restore the CPU states 
 Step 5: return to the interrupted program

7



Interrupt Handling

• Interrupt delivery

8

Device #1

Interrupt 
controller

CPU 
core

Device #2

Device #N

1. raise device intr.

2. set the corresponding bit

3. raise cpu intr. 
(if enabled)

4. check the source



Interrupt Handling

• Saving the CPU state

9

PC (program counter)

x1

x2

…

x31

32x 32bit general 
purpose registers

M[0]

M[1]

M[2]
…

…

…

M[2^32-1]

32bit address space 
(2^32 x 8bit = 4GB)

32bit byte address of 
the current instruction



Interrupt Handling

• Interrupt Service Routine (ISR)

10

Disable interrupt

Save CPU registers

Irq_no = Find out the interrupt requester

Jump to the interrupt_vector[irq_no]

Restore CPU registers

Re-enable interrupt



Case Study: RISC-V Interrupts

• Software

• Timer

• Local

• External

11

Core
(hart)

PLIC

Platform level 
interrupt controller

…

Global interrupt 1

Global interrupt 0

Global interrupt 2

Global interrupt N

External 
interrupt

Software
Interrupt

Timer
Interrupt

…

Local
Interrupt

Drew Barbier, “An Introduction to the RISC-V Architecture,” 2019

https://cdn2.hubspot.net/hubfs/3020607/An Introduction to the RISC-V Architecture.pdf


12
SiFive FE310 RISC-V CPU

Interrupt 
controllers

CPU core



Interrupt Related CSRs

• Control and status registers (CSRs)
– Registers for software/hardware communication
– Use special instructions to read/write

• mstatus
– Global interrupt enable/disable

• mcause
– Identify the cause of the interrupt

• mvec
– Base address of interrupt handler(s)

• mtime
– Architecturally defined constant speed time

• mtimecmp
– Trigger interrupt when mtime > mtimecmp

13
Drew Barbier, “An Introduction to the RISC-V Architecture,” 2019

https://cdn2.hubspot.net/hubfs/3020607/An Introduction to the RISC-V Architecture.pdf


Interrupt Related CSRs

• mcause CSR

– Interrupt [31]

• 1 = interrupt

• 0 = exception

– Code [30:0]

• Exception code

14
Drew Barbier, “An Introduction to the RISC-V Architecture,” 2019

https://cdn2.hubspot.net/hubfs/3020607/An Introduction to the RISC-V Architecture.pdf


Trap Handler Entry and Exit

• On entry
– Save the current state

• PC, privilege, interrupt enable

– Disable interrupt (mstatus.MIE = 0) 

– Jump to trap handler

• On exit
– Restore saved state

• PC, privilege, interrupt enable

– Jump to the stored PC

15

Push Registers

…

interrupt = mcause.msb

if interrupt

branch isr_handler[mcause.code]

else

branch exception_handler[mcause.code]

…

Pop Registers
MRET

Drew Barbier, “An Introduction to the RISC-V Architecture,” 2019

https://cdn2.hubspot.net/hubfs/3020607/An Introduction to the RISC-V Architecture.pdf


Trap Handler

16

void handle_trap()

{

unsigned long mcause = read_csr(mcause);

if (mcause & MCAUSE_INT) {

//mask interrupt bit and branch to handler

isr_handler[mcause & MCAUSE_CAUSE] ();

} else {

//branch to handler

exception_handler[mcause]();

}

}

//write trap_entry address to mtvec
write_csr(mtvec, ((unsigned long)&trap_entry));

.align 2

.global trap_entry

trap_entry:

addi sp, sp, -16*REGBYTES

//store ABI Caller Registers

STORE x1, 0*REGBYTES(sp)

STORE x5, 2*REGBYTES(sp)

…

STORE x30, 14*REGBYTES(sp)

STORE x31, 15*REGBYTES(sp)

//call C Code Handler

call handle_trap

//restore ABI Caller Registers

LOAD x1, 0*REGBYTES(sp)

LOAD x5, 2*REGBYTES(sp)

…

LOAD x30, 14*REGBYTES(sp)

LOAD x31, 15*REGBYTES(sp)

addi sp, sp, 16*REGBYTES

mret

Drew Barbier, “An Introduction to the RISC-V Architecture,” 2019

https://cdn2.hubspot.net/hubfs/3020607/An Introduction to the RISC-V Architecture.pdf


PLIC External Interrupt Handler

17

void handle_trap(void) __attribute((interrupt));
void handle_trap()
{

unsigned long mcause = read_csr(mcause);
if (mcause & MCAUSE_INT) {

//mask interrupt bit and branch to handler
isr_handler[mcause & MCAUSE_CAUSE] ();

} else {
//synchronous exception, branch to handler
exception_handler[mcause & MCAUSE_CAUSE]();

}
}
//install PLIC handler at MEIP Location
isr_handler[11] = machine_external_interrupt;
//write trap_entry address to mtvec
write_csr(mtvec, ((unsigned long)&handle_trap));

void machine_external_interrupt()

{

//get the highest priority pending PLIC interrupt

uint32_t int_num = plic.claim_comlete;

//branch to handler

plic_handler[int_num]();

//complete interrupt by writing interrupt number 

//back to PLIC

plic.claim_complete = int_num;
}

Drew Barbier, “An Introduction to the RISC-V Architecture,” 2019

https://cdn2.hubspot.net/hubfs/3020607/An Introduction to the RISC-V Architecture.pdf


PLIC Interrupts on FE310 (HiFive1)

18



Problems with Interrupts

• Timing

• Concurrency

19



Interrupts are Evil

“[I]n one or two respects modern machinery is 
basically more difficult to handle than the old 
machinery. Firstly, we have got the interrupts, 
occurring at unpredictable and irreproducible 
moments; compared with the old sequential machine 
that pretended to be a fully deterministic automaton, 
this has been a dramatic change, and many a systems 
programmer’s grey hair bears witness to the fact that 
we should not talk lightly about the logical problems 
created by that feature.”

(Dijkstra, “The humble programmer” 1972) 
https://www.cs.utexas.edu/~EWD/transcriptions/EWD03xx/EWD340.html

https://www.cs.utexas.edu/~EWD/transcriptions/EWD03xx/EWD340.html


Timing Issues

• When to occurs?

• For how long?

• How many interrupts over time?

• Generally the answers are all “don’t know”

• What if the interrupted code has real-time 
requirements?

21



Timing Issues

• General guideline
– ISR should be kept as small as possible. 

• E.g., move data from the device’s buffer to memory

• Heavy duty work should be done later 

– Know your context switching overhead
• Direct overhead: register save/restore

• Indirect overhead: cache pollution (if caches are used)

– Polling can be better sometimes
• If interrupts occur too frequently, polling can reduce 

context switching overhead and improve throughput

22



Concurrency

• Memory is shared between the ISR and the 
interrupted code: they can mess with each other

23

PC (program counter)

x1

x2

…

x31

32x 32bit general 
purpose registers

M[0]

M[1]

M[2]
…

…

…

M[2^32-1]

32bit address space 
(2^32 x 8bit = 4GB)

32bit byte address of 
the current instruction

Private: No problem Shared: Big problem



Example

24

int count = 0;

void ISR(void) {

count++;

print(“count=%d\n”, count) 

}

int main(void) {

// install ISR

...

// main code

while(1){

if (count == 10){

printf(“reset the counter”);

count -= 10;

}

}

} Q. What does this program intend to do?



Example

25

int count = 0;

void ISR(void) {

count++;

print(“count=%d\n”, count) 

}

int main(void) {

// install ISR

...

// main code

while(1){

if (count == 10){

printf(“reset the counter”);

count -= 10;

}

}

} Q. Will it work? 



Recall: Volatile in I/O

26

a4 = 0x10013000

Branch to .L17 if a5 < zero

a5 = *a4

Needed volatile to inform the compiler that the value
of the variable may be changed by the hardware



Volatile

27

volatile int count = 0;

void ISR(void) {

count++;

print(“count=%d\n”, count) 

}

int main(void) {

// install ISR

...

// main code

while(1){

if (count == 10){

printf(“reset the counter”);

count -= 10;

}

}

}

Need volatile to inform the 
compiler that the value
of the variable may be
changed “externally”
(by the interrupt handler)



Improved Example

28

volatile int count = 0;

void ISR(void) {

count++;

print(“count=%d\n”, count) 

}

int main(void) {

// install ISR

...

// main code

while(1){

if (count == 10){

printf(“reset the counter”);

count -= 10;

}

}

} Q. Is this now correct?



Example

29

volatile int count = 0;

void ISR(void) {

count++;

print(“count=%d\n”, count) 

}

int main(void) {

// install ISR

...

// main code

while(1){

if (count == 10){

printf(“reset the counter”);

count -= 10;

}

}

}

What happen if interrupt 10
occurs immediately after 
interrupt 9 finishes?



Example

30

volatile int count = 0;

void ISR(void) {

count++;

print(“count=%d\n”, count) 

}

int main(void) {

// install ISR

...

// main code

while(1){

if (count == 10){

printf(“reset the counter”);

count -= 10;

}

}

}

What happen if an interrupt
occurs here?



Concurrency

• An interrupt can occur at any instruction

31



Example

32

volatile int count = 0;

void ISR(void) {

count++;

print(“count=%d\n”, count) 

}

int main(void) {

// install ISR

...

// main code

while(1){

if (count == 10){

printf(“reset the counter”);

count -= 10;

}

}

}

What happen if interrupt 10
occurs immediately after 
interrupt 9 finishes?

…, 9, 10, 11, … 

Non-deterministic outcome



Example

33

volatile int count = 0;

void ISR(void) {

count++;

print(“count=%d\n”, count) 

}

int main(void) {

// install ISR

...

// main code

while(1){

if (count == 10){

printf(“reset the counter”);

count -= 10;

}

}

}

What happen if an interrupt
occurs here?

0, 1, …, 10
1, 2, …, 10
…

Non-deterministic outcome



Atomicity

• Single C statement can be translated into multiple 
assembly instructions

• Single instruction (e.g., LDM/STM in ARM) can be 
multiple atomic operations in hardware

• Interrupt can occur between any two atomic 
operations

34

count++;

lw a5,%lo(count)(a4)

addiw a5,a5,1

sw a5,%lo(count)(a4)

STMDB sp!, {r4, r5, r6, r7, r8, r9, sl, lr}

count64 = 0;

li a5,0

sw a5,-1784(gp)

sw a6,-1780(gp)

li a6,0



Race Condition

• A situation when two or more threads read 
and write shared data at the same time

• Correctness depends on the execution order

• How to prevent race conditions?

35

R1 = load (counter);
R1 = R1 + 1;
counter = store (R1);

R2 = load (counter);
R2 = R2 – 1;
counter = store (R2);

ISR Main
read

write



Synchronization

• How to protect shared variables?

– Between ISRs and the main program

• Solutions

– Be very careful 

– Single writer (write at only ISR or Main)

– Disable interrupt

• When the main reads/writes the shared variables

36



Improved Example

37

volatile int count = 0;

void ISR(void) {

count++;

print(“count=%d\n”, count) 

}

int main(void) {

// install ISR

...

// main code

while(1){

disable_interrupt();

if (count >= 10){

printf(“reset the counter”);

count = 0;

}

enable_interrupt();

}

}



Interrupt in Interrupt Handler?

38

volatile int count = 0;

void ISR(void) {

count++;

print(“count=%d\n”, count) 

}

int main(void) {

// install ISR

...

// main code

while(1){

disable_interrupt();

if (count >= 10){

printf(“reset the counter”);

count = 0;

}

enable_interrupt();

}

}

What happen if an interrupt
occurs here?

lw a5,%lo(count)(a4)

addiw a5,a5,1

sw a5,%lo(count)(a4)



Example

39

volatile int count = 0;

void ISR(void) {

count++;

print(“count=%d\n”, count) 

}

int main(void) {

// install ISR

...

// main code

while(1){

disable_interrupt();

if (count >= 10){

printf(“reset the counter”);

count = 0;

}

enable_interrupt();

}

}

What happen if an interrupt
occurs here?

In general, when an ISR is 
executed the hardware/OS 
already disabled the 
interrupt… BUT 



Nested Interrupt

• High priority interrupt preempts low priority one. 
But not the other way around.

• Not all HW platforms support nested interrupts.
40

Main

INTx

INTy



Interrupt on RISC-V/HiFive1

• Priority
– External interrupts  (highest)

– Software interrupts

– Timer interrupts (lowest)

– (doesn’t preempt but serviced in priority order)

• Latency
– Signal  first instruction of the handler: 4 cycles

– PLIC routing: 3 cycles

– Total = 4 + 3 = 7 cycles (best-case scenario)

41



Summary

• Interrupts

– “Do something right now!!!”

– A hardware mechanism to handle urgent matters

– Preempt whatever the CPU was currently doing

– Introduce concurrency in sequential code

– Evil (= because concurrency is hard to do it right)

– Synchronization between the main program and 
the interrupt service routines are needed.

42



Acknowledgements

• Some slides were adopted from the materials 
originally developed by 

– Edward A. Lee and Prabal Dutta (UCB) for 
EECS149/249A

43


