EECS 388: Embedded Systems

6. Interrupt

Heechul Yun

Agenda

* Polling vs. interrupt
* |Interrupt processing

* |Interrupt related issues

THE UNIVERSITY OF

Polling

» Keep checking the status to see if I/O is ready

do {
regval = *(volatile i *) (UARTO_CTRL_ADDR + UART_TXDATA):

} while (regval & 0x80000000);

*(volatile *) (UARTO_CTRL_ADDR + UART_TXDATA)

1
i

KANSAS

Polling

Check 1/0 status
register

KANSAS

Polling

* The problem
— CPU can’t do any useful things in the meantime.

* Improvements
— Check multiple I/O devices rather than one

— Instead of keep checking the status (busy waiting),
do some other useful work and then check again

* Q. when to check again?
e Q. what if the I/O must occur within a bound time?

* Can we do I/O immediately when it is ready?

THE UNIVERSITY OF

THE UNIVERSITY OF

Interrupt

What is an interrupt?

— A signal to the processor telling “do something
now!”

Hardware interrupts

— Devices (timer, disk, keyboard, ...) to CPU
Software interrupts

— special instructions (e.g., int 0x80)

Exceptions
— Divide by zero, segmentation fault, ...

Interrupt Handling

memory

— Step 1: deliver an interrupt to the CPU

— Step 2: save CPU states (registers)

— Step 3: execute the associated interrupt service routine (ISR)
— Step 4: restore the CPU states

— Step 5: return to the interrupted program

THE UNIVERSITY OF

Interrupt Handling

* |Interrupt delivery

1. raise device intr.
Device #1 \
3. raise cpu intr.
(if enabled)
Device #2
Interrupt —_—

controller —

2. set the corresponding bit 4. check the source

Device #N

KANSAS

KANSAS

Interrupt Handling

* Saving the CPU state

/ 32bit byte address of \

the current instruction

PC (program counter)

32x 32bit general
purpose registers

32bit address space
(2732 x 8bit = 4GB)

M[2732-1]

Interrupt Handling

* |Interrupt Service Routine (ISR)

Disable interrupt

Save CPU registers

Irg_no = Find out the interrupt requester
Jump to the interrupt_vector[irq_no]
Restore CPU registers

Re-enable interrupt

THE UNIVERSITY OF

rrrrrrrrr

Case Study: RISC-V Interrupts

Software
Timer
Local
External

Software Timer
Interrupt Interrupt

Global interrupt O

A 4 A 4

Global interrupt 1

) External
Global interrupt 2 | .
g interrupt
PLIC
Global interrupt N |
Platform level Local
interrupt controller Interrupt

Drew Barbier, “An Introduction to the RISC-V Architecture,” 2019

11

https://cdn2.hubspot.net/hubfs/3020607/An Introduction to the RISC-V Architecture.pdf

THE UNIVERSITY OF

FE310-G002

GPRIC Complex
-t 1.8V MOFE Core
r E31 Core Complex 1 Eﬂ
| GPIO
- I
Instruction Cache M I— | Peripheral Inlerrupty UARTD
16KIB (2-Way) E m | UARTL
o a1 | PO (8-0i1) ‘I}ZI
—_—— 5 GPIO
o I PWM1 (16-hit)
Branch Prediction = F | N PWM2 (16=hit)
Instruction Fetch It : Q5PFI1
Instruction Buffer | o QsPIL
’J'mm'ﬁl-ﬂﬁ DetoMpressgr | e 12C
il AN I =
[: FV3ZIMAC \ | Jé SPT
L} - =
N M+ U) 1 I z QSPI0 %Flash
\: | S
T~ MultiplerDivideg. = CPU core | R — OTP (8KiR) |
Load/Store r | E
[I _| Nask ROM (BKIB) |
w
=
OTIM o |
I- w Ii Clock Generation
_1BKiB = | | = veldpll
o=o= == | i
. | vsspll
,fip Platform Level Interrugpt \\
4 Control 1} | HFROSC
| 1 | X
shp/tip| Core-Local Interrupt | + | ACN interrupts HFXOSC hfxoscin
*~ Contra| - hfxoscout
~
see———__=7 Interrupt bl —
dip i I M—I I
Debug Module -
controllers | (] Backup Registers |pmu_out_o
| Core I P Ipmu_ﬂut_:l.
hfclkrst
TAPC | Reset - g corerst |dwakeup_n
| Sync B Real-Time Clock |
| _I E: Watchdog Ilf oLk
-] - - - - —— —_—— = alte
Real-Time Clock Ticks I = LFROSC I
I = ——y [1faltclksel
[&) I
| i | POR | |lerst_n
I Bandgap I
I I
I I
I I
I I
- - — 1

SiFive FE310 RISC-V CPU

12

Interrupt Related CSRs

* Control and status registers (CSRs)
— Registers for software/hardware communication
— Use special instructions to read/write

* mstatus
— Global interrupt enable/disable
* mcause
— ldentify the cause of the interrupt
* mvec
— Base address of interrupt handler(s)
* mtime

— Architecturally defined constant speed time

* mtimecmp
— Trigger interrupt when mtime > mtimecmp

KU Drew Barbier, “An Introduction to the RISC-V Architecture,” 2019

THE UNIVERSITY OF

https://cdn2.hubspot.net/hubfs/3020607/An Introduction to the RISC-V Architecture.pdf

Interrupt Related CSRs

* mcause CSR

Exception Description
Code
I n te r r u pt [3 1] 0 Instruction Address Misaligned
Interrupt = 1 (interrupt) 1 Instruction Access Fault
—_— 1 Exception Description ;
o 1 - Inte rru pt Code 2 lllegal Instruction
. o User Software Interrupt 3 L=l
° O — -
= exce pt | O n 1 Supervisor Software Interrupt 4 Load Address Misaligned
2 Reserved 5 Load Access Fault
— CO d e [3 O . O] 3 Machine Software Interrupt 6 Store/AMO Address Misaligned
L]
4 User Timer Interrupt 7 Store/AMO Access Fault
H - - 8 Environment Call from U-mode
[d 5 Supervisor Timer Interrupt
Exception code :
& Reserved 9 Environment Call from 5-mode
7 Machine Timer Interrupt 10 Reserved
8 User External Interrupt 11 Envirenment Call from M-mode
9 Supervisor External Interrupt 12 Instruction Page Fault
10 Reserved 13 Load Page Fault
11 Machine External Interrupt 14 Reserved
12-15 Reserved 15 Store/AMO Page Fault
=16 Local Interrupt X =16 Reserved

w Drew Barbier, “An Introduction to the RISC-V Architecture,” 2019
‘THE UNIVERSITY OF 1 4
KANSAS

https://cdn2.hubspot.net/hubfs/3020607/An Introduction to the RISC-V Architecture.pdf

Trap Handler Entry and Exit

* Onentry

— Save the current state
* PC, privilege, interrupt enable

— Disable interrupt (mstatus.MIE = 0)
—Jump to trap handler —— | ..o

¢ O n eX|t i.r.w-terrupt = mcause.msb
if interrupt_
— Resto re Saved State e|St;ranch isr_handler[mcause.code]

branch exception_handler[mcause.code]

e PC, privilege, interrupt ena
— Jump to the stored PC

Pop Registers
MRET

KU Drew Barbier, “An Introduction to the RISC-V Architecture,” 2019

THE UNIVERSITY OF

https://cdn2.hubspot.net/hubfs/3020607/An Introduction to the RISC-V Architecture.pdf

Trap Handler

.align 2

.global trap_entry void handle_trap()

trap_entry:
addi sp, sp, -1 { _
/lstore ABI Calle i unsigned long mcause = read_csr(mcause);
STORE x1, 0*REGRYTES(sp) if (mcause & MCAUSE_INT) {

KANSAS

/Imask interrupt bit and branch to handler

isr_handlermcause & MCAUSE_CAUSE] ();
} else {

//branch to handler

exception_handler[mcause]();

}

STORE x30, 14*REGBY
STORE x31, 15*REG
/[call C Code Hand
call handle_trap

/Irestore ABI Caller Registers
LOAD x1, 0*REGBYTES(sp)
LOAD x5, 2*REGBYTES(sp)

}

//write trap_entry address to mtvec

LOAD x30, LA'REGBYTES(SP) write_csr(mtvec, ((unsigned long)&trap_entry));

LOAD x31, 15*REGBYTES(sp)
addi sp, sp, 16* REGBYTES
mret

Drew Barbier, “An Introduction to the RISC-V Architecture,” 2019

16

https://cdn2.hubspot.net/hubfs/3020607/An Introduction to the RISC-V Architecture.pdf

PLIC External Interrupt Handler

vo!d handle_trap(void) __ attribute((interrupt)); void machine_external_interrupt()
void handle_trap()

{ {
unsigned long mcause = read_csr(mcause);
if (mcause & MCAUSE_INT) {
//mask interrupt bit and branch to handler
isr_handler[mcause & MCAUSE_CAUSE] ()
}else {
//synchronous exception, branch to handler
exception_handler[mcause & MCAUSE_CAUSE](); }
}
}
//install PLIC handler at MEIP Location
isr_handler[11] = machine_external_interrupt;
//write trap_entry address to mtvec
write_csr(mtvec, ((unsigned long)&handle_trap));

//get the highest priority pending PLIC interrupt
uint32_tint_num = plic.claim_comlete;
//branch to handler

plic_handler[int_num]();

//complete interrupt by writing interrupt number
//back to PLIC

plic.claim_complete = int_num;

KU Drew Barbier, “An Introduction to the RISC-V Architecture,” 2019

THE UNIVERSITY OF
KANSAS

17

https://cdn2.hubspot.net/hubfs/3020607/An Introduction to the RISC-V Architecture.pdf

PLIC Interrupts on FE310 (HiFivel)

Source Start | Source End Source
1 1 AON Watchdog
2 2 AON RTC
3 3 UARTO
4 4 UART1
5 5 QSPIO0
6 6 SPI1
/ / SPI2
8 39 GPIO
40 43 PWMO
44 47 PWM1
48 51 PWM?2
52 52 12C

Table 26: PLIC Interrupt Source Mapping

THE UNIVERSITY OF

Problems with Interrupts

* Timing
* Concurrency

THE UNIVERSITY OF

THE UNIVERSITY OF

Interrupts are Evil

“II]n one or two respects modern machinery is
basically more difficult to handle than the old
machinery. Firstly, we have got the interrupts,
occurring at unpredictable and irreproducible
moments; compared with the old sequential machine
that pretended to be a fully deterministic automaton,
this has been a dramatic change, and many a systems
programmer’s grey hair bears witness to the fact that
we should not talk lightly about the logical problems
created by that feature.”

'

(Dijkstra, “The humble programmer” 1972)

https://www.cs.utexas.edu/~EWD/transcriptions/EWDO03xx/EWD340.html

https://www.cs.utexas.edu/~EWD/transcriptions/EWD03xx/EWD340.html

Timing Issues

* When to occurs?
* For how long?
* How many interrupts over time?

* Generally the answers are all “don’t know”

 What if the interrupted code has real-time
requirements?

THE UNIVERSITY OF

Timing Issues

* General guideline

— ISR should be kept as small as possible.
* E.g., move data from the device’s buffer to memory
* Heavy duty work should be done later

— Know your context switching overhead
* Direct overhead: register save/restore
* Indirect overhead: cache pollution (if caches are used)

— Polling can be better sometimes

* If interrupts occur too frequently, polling can reduce
context switching overhead and improve throughput

THE UNIVERSITY OF

Concurrency

/ 32bit byte address of \ / \

the current instruction 32bit address space

PC (program counter) (2732 x 8bit = 4GB

32x 32bit general
purpose registers

M[2/32-1]

2N /

3

* Memory is shared between the ISR and the

interrupted code: they can mess with each other
w 23

KANSAS

Private: No problem Shared: Big problem

Example

int count = 0;
void ISR (void) {
count++;
print (“count=%d\n”, count)
}
int main(void) {
// install ISR

// main code

while (1) {
if (count == 10){
printf (“reset the counter”);
count -= 10;
}
}
} Q. What does this program intend to do?

THE UNIVERSITY OF

Example

int count = 0;
void ISR (void) {
count++;
print (“count=%d\n”, count)
}
int main(void) {
// install ISR

// main code

while (1) {
if (count == 10) {
printf (“reset the counter”);
count -= 10;
}
}
) Q. Will it work?

THE UNIVERSITY OF

KANSAS

Recall: Volatile in I/0O

regval ;

do {
regval = *(volatile [*} (UARTO_CTRL_ADDR + UART_TXDATA);
} while (regval & 0x80000000);

~ *(volatile *)(UARTO_CTRL_ADDR + UART_TXDATA) = cC;

1
]

a4 = 0x10013000
N ab = *a4
Tw aS,ULaiJ

bltz a5,.L17 Branch to .L17 if a5 < zero

14 ad,268513280

sSW a0,o(ad)
ret

Needed volatile to inform the compiler that the value
of the variable may be changed by the hardware

Volatile

volatile int count = 0;
vold ISR(|
count++;
print (“count=%d\n”,

Need volatile to inform the
compiler that the value

. of the variable may be

// main code changed “externally”

}

int main(void) {
// 1nstall ISR

while (1) {]
if (count == 10) | (by the interrupt handler)
printf (“reset the counter”);
count -= 10;

THE UNIVERSITY OF

Improved Example

volatile int count = 0;
void ISR (void) {
count++;

print (“count=%d\n”, count)

}

int main(void) {
// 1nstall ISR

// main code

while (1) {
if (count == 10){
printf (“reset the counter”);
count -= 10;
}
}
} Q. Is this now correct?

THE UNIVERSITY OF

Example

volatile int count = 0;
void ISR (void) {
count++;

print (“count=%d\n”, count)

}

int main(void) {

// install ISR What happen if interrupt 10
s / occurs immediately after
// main code . . . 5
while (1) { interrupt 9 finishes:
1f (count == 10) {
printf (“reset the counter”);
count —-= 10;

THE UNIVERSITY OF

Example

volatile int count = 0;
void ISR (void) {
count++;

print (“count=%d\n”, count)

}

int main(void) {
// 1nstall ISR

What happen if an interrupt

// main code
while (1) { / occurs here?
1if (count == 10) {

printf (“reset the counter”);
count -= 10;

THE UNIVERSITY OF

THE UNIVERSITY OF

Concurrency

* An interrupt can occur at any instruction

ae,ad,-268 # 6x28812coc
ra,ex2ee11838 <printf>
a5, -1783(gp)

at,ab5,-18
a5,-1788(gp)

ad,-1788(gp)

ab,18

ad,ab,x28018294 <main+96>
Bx280108270 <main+68>

31

THE UNIVERSITY OF

Example

volatile int count = 0;
void ISR (void) {
count++;

print (“count=%d\n”, count)

}

int main(void) {

// install ISR What happen if interrupt 10
. / occurs immediately after
// main code . .. 5
while (1) | interrupt 9 finishes:
if (count == 10){
printf (“reset the counter”); .910.11. ...
count -= 10; T ’ ’
}
})))
} Non-deterministic outcome

Example

volatile int count = 0;
void ISR (void) {
count++;

print (“count=%d\n”, count)

}

int main(void) {
// 1nstall ISR

What happen if an interrupt

// main code
while (1) { / occurs here?
1if (count == 10) {

Eziisz_rizét the counter”); 0’17.“’10
} ' 1, 2, ..., 10
} cer o
} Non-deterministic outcome

THE UNIVERSITY OF

THE UNIVERSITY OF

Atomicity

Single C statement can be translated into multiple
assembly instructions

Single instruction (e.g., LDM/STM in ARM) can be
multiple atomic operations in hardware

Interrupt can occur between any two atomic

operations

11 ab5,0
count64 = 0; sw ab,-1784 (gp)

sw a6,-1780 (gp)

11 ao,0

1w ab,%lo(count) (a4)
count++; addiw a5,a5,1

SW ab,%lo(count) (a4)
STMDB sp!, {r4, r5, re6, r/7, r8, r9, sl, 1r}

Race Condition

e A situation when two or more threads read
and write shared data at the same time

* Correctness depends on the execution order

ISR Main

o read ~
R1 = load (counter); R2 = load (counter);

R1=R1+1; R2=R2-1;
counter = store (R1); counter = store (R2);

N /!

write

* How to prevent race conditions?

THE UNIVERSITY OF 3 5
KANSAS

Synchronization

* How to protect shared variables?

— Between ISRs and the main program

* Solutions
— Be very careful ©
— Single writer (write at only ISR or Main)
— Disable interrupt

* When the main reads/writes the shared variables

THE UNIVERSITY OF

Improved Example

volatile int count = 0;
void ISR (void) {
count++;

print (“count=%d\n”, count)
}
int main(void) {

// install ISR

// main code
while (1) {
disable interrupt();
if (count >= 10) {
printf (“reset the counter”);
count = 0;
}

enable interrupt();

THE UNIVERSITY OF

THE UNIVERSITY OF

Interrupt in Interrupt Handler?

volatile int count = 0;

| , What happen if an interrupt
volid ISR (void) {

count++;4/ occurs here?

print (“count=%d\n”, count)

}

. . . 1w ab,%lo(count) (a4)
int main(void) { — .
// install ISR _,addiw as,as, 1
SW ab,%lo(count) (a4)

// main code
while (1) {
disable interrupt();
if (count >= 10) {
printf (“reset the counter”);
count = 0;
}
enable interrupt();

}

THE UNIVERSITY OF

Example

volatile int count = 0; What happen if an interrupt

void ISR(V?iﬁlfiff”””””’ 5
count++; occurs herer

print (“count=%d\n”, count)

}

int main (void) { In general, when an ISR is

// install ISR executed the hardware/Q0S
C already disabled the

// maln code .

while (1) { interrupt... BUT

disable interrupt();

if (count >= 10) {
printf (“reset the counter”);
count = 0;

}

enable interrupt();

}

Nested Interrupt

Main

INTX

INTy

* High priority interrupt preempts low priority one.
But not the other way around.

* Not all HW platforms support nested interrupts.
w 40

uuuuuuuuuuuuu

Interrupt on RISC-V/HiFivel

* Priority
— External interrupts (highest)
— Software interrupts
— Timer interrupts (lowest)
— (doesn’t preempt but serviced in priority order)

* Latency
— Signal =2 first instruction of the handler: 4 cycles
— PLIC routing: 3 cycles
— Total =4 + 3 = 7 cycles (best-case scenario)

THE UNIVERSITY OF

Summary

* |nterrupts
— “Do something right now!!!”
— A hardware mechanism to handle urgent matters
— Preempt whatever the CPU was currently doing
— Introduce concurrency in sequential code
— Evil (= because concurrency is hard to do it right)

— Synchronization between the main program and
the interrupt service routines are needed.

THE UNIVERSITY OF

Acknowledgements

 Some slides were adopted from the materials
originally developed by

— Edward A. Lee and Prabal Dutta (UCB) for
EECS149/249A

THE UNIVERSITY OF

