EECS 388: Embedded Systems

7. Threads and Multitasking
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Concurrency in Software

G (s

e Objects (tanks, planes, ...) are moving concurrently
and independently

* How to model concurrency in software?
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Abstractions for Concurrency

Concurrent model of computation

dataflow, time triggered, synchrenous, etc.

Multitasking

processes, threads, message passing

Processor

interrupts, pipelining, multicore, etc.
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Thread
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Threads in Computing

Each thread is a sequential code

Own independent flow of control (execution)
Each thread has its own stack
Memory is shared




Pthread

* |EEE POSIX standard threading API

* Pthread API
— Thread management

 create, destroy, detach, join, set/query thread attributes

— Synchronization
 Mutexes —lock, unlock
* Condition variables — signal/wait
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Pthread API

* pthread_attr_init —initialize the thread attributes object
— int pthread_attr_init(pthread_attr_t *attr);
— defines the attributes of the thread created
 pthread_create — create a new thread

— int pthread_create(pthread_t *restrict thread, const pthread_attr_t
*restrict attr, void *(*start_routine)(void*), void *restrict arg);

— upon success, a new thread id is returned in thread
e pthread_join — wait for thread to exit
— int pthread_join(pthread_t thread, void **value_ptr);
— calling process blocks until thread exits
 pthread exit —terminate the calling thread
— void pthread_exit(void *value_ptr);
— make return value available to the joining thread
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Pthread Example 1

#include <pthread.h>
#include <stdio.h>

int sum; /* data shared by all threads */ Main
void *runner (void “*param) thread
{

int i, upper = atoi (param);

sum = 0;

for (i=1 ; i<=upper ; i++)
sum += i; Create Runner
pthread exit(0); thread

int main (int argc, char *argv([])

. . . join
pthread t tid; /* thread identifier */
pthread attr t attr; (ﬂeep)
pthread attr init(&attr); < v exit
(wakeup)

/* create the thread */

pthread create (&tid, &attr, runner, argv[l]);
/* wait for the thread to exit */

pthread join(tid, NULL);

fprintf (stdout, “sum = %d\n”, sum);
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Pthread Example 2

#include <pthread.h> User Address Space
#include <stdio.h>

Thread 2 | routine2() warl Stack Pointer

: . var? Prgrm. Counter
int arrayA[10], arrayB[10]; stack vard Registers

void *routinel (void *param) .
Thread 1 routinel {} warl Stack Pointer

{ stack var2 Prgrm. Counter
int varl, var2 Registers
} main()
void *routine2 (void *param) text routinel ()
{ routine? ()
. - Process ID
int wvarl, wvar2, var3 User ID
Group ID
J data
heap

int main (int argc, char *argv([])
{
/* create the thread */
pthread create (&tid[0], &attr, routinel, NULL);
pthread create (&tid[1], &attr, routine2, NULL);
pthread join(tid[0]); pthread join(tid[1]);
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CPU Scheduling

* CPU scheduling is a policy to decide
— Which thread to run next?
— When to schedule the next thread?

— How long?

e Context switching is a mechanism
— To change the running thread
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Context Switching

e Suspend the current thread and resume a next one
from its last suspended state

process P, operating system process P,

interrupt or system call
executing J_L

Y
h save state into PCB,

idle

reload state from PCB, 1
>idle interrupt or system call executing

v ~¥Y

save state into PCB,

idle

reload state from PCB,

executing Ux
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Context Switching

e Qverhead
— Save and restore CPU states
— Warm up instruction and data cache

e Cache data of previous process is not useful for new process

* InLinux 3.6.0 on an Intel Xeon 2.8Ghz
— About 1.8 us
— ~ 5040 CPU cycles
— ~ thousands of instructions
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Non-Preemptive Scheduler

 Once a thread is scheduled, it can continue to
use the CPU until it finishes or voluntarily
relinquishes itself (yield)

* Pros and Cons
++ minimal overhead
--- possible starvation
--- fairness, response time, ...
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Preemptive Scheduler

 Each thread is given a certain time slice, after
which it is preempted by the scheduler to
schedule a next thread.

* A preemptive scheduler is periodically activated
at a fixed time interval (“tick”), which is typically
implemented as a timer interrupt

* Pros and Cons

++ responsive, fair
--- overhead (context switching is not free)
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Race Condition

Initial condition: counter = 5

Thread 1 Thread 2
R1 = load (counter); R2 = load (counter);
R1=R1+1; R2=R2-1;
counter = store (R1); counter = store (R2);

 What are the possible outcome?
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Race Condition

Initial condition: counter = 5

R1 = load (counter);
R1=R1+1];
counter = store (R1);
R2 = load (counter);
R2=R2-1;
counter = store (R2);

counter =5

R1 = load (counter);
R1=R1+1];
R2 = load (counter);
R2=R2-1;
counter = store (R1);
counter = store (R2);

counter =4

* Why this happens?

uuuuuuuuuuuuu

R1 = load (counter);
R1=R1+1];
R2 = load (counter);
R2=R2-1;
counter = store (R2);
counter = store (R1);

counter =6
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Race Condition

e A situation when two or more threads read
and write shared data at the same time

* Correctness depends on the execution order

Thread 1 Thread 2
L read \

R1 = load (counter); R2 = load (counter);
R1=R1+1; R2=R2-1;
counter = store (R1); counter = store (R2);

N /!

write

* How to prevent race conditions?
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Critical Section

* Code sections of potential race conditions

Thread 1

Do something

Thread 2

Do something

R1 = load (counter);
R1=R1+1;
counter = store (R1);

R2 = load (counter);
R2=R2-1;
counter = store (R2);

Do something

Do something

Critical
sections
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Critical Section

* Code sections of potential race conditions

Thread 1

Do something

Thread 2

Do something

R1 = load (counter);
R1=R1+1;
counter = store (R1);

R2 = load (counter);
R2=R2-1;
counter = store (R2);

Do something

Do something

Critical
sections
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Mutual Exclusion

* A property that requires only one thread can
enter its critical section at a time among
multiple concurrent threads

* Lock (mutex) is a mechanism to provide
mutual exclusion
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Lock

* General solution
— Protect critical section via a lock

— Acquire on enter, release on exit

do {
acquire lock;

critical section
release lock;
remainder section

} while(TRUE);
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How to Implement a Lock?

* Unicore processor
— No true concurrency
one thread at a time

— Threads are interrupted by the OS

* scheduling events: timer interrupt, device interrupts

e Disabling interrupt do {

— Threads can’t be disable interrupts;

interrupted critical section
enable interrupts;

remainder section
¥ while(TRUE);
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How to implement a Lock?

=
// Semaphore::P

Iy Wait until semaphore value > @, then decrement. Checking the

Iy value and decrementing must be done atomically, so we

// need to disable interrupts before checking the wvalue.

I

// Mote that Thread::5leep assumes that interrupts are disabled

'y when it is called.

=
void

Semaphore: :P()

{

IntStatus oldlLevel = interrupt->SetlLevel(IntOff); [/ disable interrupts

while (value == 8) { /{ semaphore not available
queue-rAppend((void *)currentThread); // so go to sleep
currentThread->Sleep();

¥

value--; /J semaphore available,
// consume its wvalue

(void) interrupt->SetlLevel(oldlLevel); /{ re-enable interrupts

¥

https://people.cs.uchicago.edu/~odonnell/OData/Courses/CS230/NACHOS/code/threads/synch.cc
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https://people.cs.uchicago.edu/~odonnell/OData/Courses/CS230/NACHOS/code/threads/synch.cc

Single-core vs. Multicore CPU

single core

T4

T T3 Ty T4 T T3 T4 T4

time

core 1

core 2
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Single core execution

T4 Ta T4 T3 T4

To T4 To T4 T

time

Multiple core execution




How to Implement a Lock?

* Multicore processor

— True concurrency

 More than one active threads sharing memory

— Disabling interrupts doesn’t solve the problem

* More than one threads are executing at a time

 Hardware support

— Synchronization instructions: atomic read and write

* More on EECS678
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The Problems of Threads

e Hard to write correct multithread software
e Hard to understand

* Hard to verify
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Why Difficult?

* Thread interleaving is non-deterministic
 There are so many possible interleaving
* Hard to test/reproduce/debug
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Summary

* Threads

— An abstraction for sequential program
— Can model concurrency

— Share memory

— Require careful synchronization

* Context switching

— Suspend/resume execution among multiple threads

e Mutual exclusion

— To avoid race condition
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