
EECS 388: Embedded Systems

7. Threads and Multitasking

Heechul Yun

1

Agenda

• Threads

• Scheduling

• Mutual exclusion

• Problems with threads

2

Concurrency in Software

• Objects (tanks, planes, …) are moving concurrently
and independently

• How to model concurrency in software?

3

Abstractions for Concurrency

4

Thread

5

Threads in Computing

• Each thread is a sequential code

• Own independent flow of control (execution)

• Each thread has its own stack

• Memory is shared

6

Memory

Thread Thread

Pthread

• IEEE POSIX standard threading API

• Pthread API

– Thread management
• create, destroy, detach, join, set/query thread attributes

– Synchronization
• Mutexes –lock, unlock

• Condition variables – signal/wait

7

Pthread API

• pthread_attr_init – initialize the thread attributes object
– int pthread_attr_init(pthread_attr_t *attr);

– defines the attributes of the thread created

• pthread_create – create a new thread
– int pthread_create(pthread_t *restrict thread, const pthread_attr_t

*restrict attr, void *(*start_routine)(void*), void *restrict arg);

– upon success, a new thread id is returned in thread

• pthread_join – wait for thread to exit
– int pthread_join(pthread_t thread, void **value_ptr);

– calling process blocks until thread exits

• pthread_exit – terminate the calling thread
– void pthread_exit(void *value_ptr);

– make return value available to the joining thread

8

Pthread Example 1

9

#include <pthread.h>

#include <stdio.h>

int sum; /* data shared by all threads */

void *runner (void *param)

{

int i, upper = atoi(param);

sum = 0;

for(i=1 ; i<=upper ; i++)

sum += i;

pthread_exit(0);

}

int main (int argc, char *argv[])

{

pthread_t tid; /* thread identifier */

pthread_attr_t attr;

pthread_attr_init(&attr);

/* create the thread */

pthread_create(&tid, &attr, runner, argv[1]);

/* wait for the thread to exit */

pthread_join(tid, NULL);

fprintf(stdout, “sum = %d\n”, sum);

}

Main
thread

Runner
thread

join
(sleep)

(wakeup)

create

exit

Pthread Example 2

10

#include <pthread.h>

#include <stdio.h>

int arrayA[10], arrayB[10];

void *routine1(void *param)

{

int var1, var2

…

}

void *routine2(void *param)

{

int var1, var2, var3

…

}

int main (int argc, char *argv[])

{

/* create the thread */

pthread_create(&tid[0], &attr, routine1, NULL);

pthread_create(&tid[1], &attr, routine2, NULL);

pthread_join(tid[0]); pthread_join(tid[1]);

}

CPU Scheduling

• CPU scheduling is a policy to decide

– Which thread to run next?

– When to schedule the next thread?

– How long?

• Context switching is a mechanism

– To change the running thread

11

Context Switching
• Suspend the current thread and resume a next one

from its last suspended state

12

Context Switching

• Overhead

– Save and restore CPU states

– Warm up instruction and data cache
• Cache data of previous process is not useful for new process

• In Linux 3.6.0 on an Intel Xeon 2.8Ghz

– About 1.8 us

– ~ 5040 CPU cycles

– ~ thousands of instructions

13

Non-Preemptive Scheduler

• Once a thread is scheduled, it can continue to
use the CPU until it finishes or voluntarily
relinquishes itself (yield)

• Pros and Cons

++ minimal overhead

--- possible starvation

--- fairness, response time, …

14

Preemptive Scheduler

• Each thread is given a certain time slice, after
which it is preempted by the scheduler to
schedule a next thread.

• A preemptive scheduler is periodically activated
at a fixed time interval (“tick”), which is typically
implemented as a timer interrupt

• Pros and Cons

++ responsive, fair

--- overhead (context switching is not free)

15

Race Condition

• What are the possible outcome?

16

R1 = load (counter);
R1 = R1 + 1;
counter = store (R1);

R2 = load (counter);
R2 = R2 – 1;
counter = store (R2);

Thread 1 Thread 2

Initial condition: counter = 5

Race Condition

• Why this happens?

17

R1 = load (counter);
R1 = R1 + 1;
counter = store (R1);
R2 = load (counter);
R2 = R2 – 1;
counter = store (R2);

R1 = load (counter);
R1 = R1 + 1;
R2 = load (counter);
R2 = R2 – 1;
counter = store (R1);
counter = store (R2);

R1 = load (counter);
R1 = R1 + 1;
R2 = load (counter);
R2 = R2 – 1;
counter = store (R2);
counter = store (R1);

counter = 5 counter = 4 counter = 6

Initial condition: counter = 5

Race Condition

• A situation when two or more threads read
and write shared data at the same time

• Correctness depends on the execution order

• How to prevent race conditions?

18

R1 = load (counter);
R1 = R1 + 1;
counter = store (R1);

R2 = load (counter);
R2 = R2 – 1;
counter = store (R2);

Thread 1 Thread 2
read

write

Critical Section

• Code sections of potential race conditions

19

Do something
..
R1 = load (counter);
R1 = R1 + 1;
counter = store (R1);
...
Do something

Do something
..
R2 = load (counter);
R2 = R2 – 1;
counter = store (R2);
..
Do something

Thread 1 Thread 2

Critical
sections

Critical Section

• Code sections of potential race conditions

20

Do something
..
R1 = load (counter);
R1 = R1 + 1;
counter = store (R1);
...
Do something

Do something
..
R2 = load (counter);
R2 = R2 – 1;
counter = store (R2);
..
Do something

Thread 1 Thread 2

Critical
sections

Mutual Exclusion

• A property that requires only one thread can
enter its critical section at a time among
multiple concurrent threads

• Lock (mutex) is a mechanism to provide
mutual exclusion

21

Lock

• General solution

– Protect critical section via a lock

– Acquire on enter, release on exit

22

do {
acquire lock;

critical section

release lock;

remainder section

} while(TRUE);

How to Implement a Lock?

• Unicore processor

– No true concurrency
one thread at a time

– Threads are interrupted by the OS
• scheduling events: timer interrupt, device interrupts

• Disabling interrupt

– Threads can’t be
interrupted

23

do {

disable interrupts;
critical section

enable interrupts;

remainder section
} while(TRUE);

How to implement a Lock?

24

https://people.cs.uchicago.edu/~odonnell/OData/Courses/CS230/NACHOS/code/threads/synch.cc

https://people.cs.uchicago.edu/~odonnell/OData/Courses/CS230/NACHOS/code/threads/synch.cc

Single-core vs. Multicore CPU

25

Single core execution

Multiple core execution

How to Implement a Lock?

• Multicore processor

– True concurrency
• More than one active threads sharing memory

– Disabling interrupts doesn’t solve the problem
• More than one threads are executing at a time

• Hardware support

– Synchronization instructions: atomic read and write

• More on EECS678

26

The Problems of Threads

• Hard to write correct multithread software

• Hard to understand

• Hard to verify

27

Why Difficult?

• Thread interleaving is non-deterministic

• There are so many possible interleaving

• Hard to test/reproduce/debug

28

Summary

• Threads

– An abstraction for sequential program

– Can model concurrency

– Share memory

– Require careful synchronization

• Context switching

– Suspend/resume execution among multiple threads

• Mutual exclusion

– To avoid race condition

29

