EECS 388: Embedded Systems

7. Threads and Multitasking

Heechul Yun

THE UNIVERSITY OF

Agenda

Threads

Scheduling

Mutual exclusion
Problems with threads

Concurrency in Software

G (s

e Objects (tanks, planes, ...) are moving concurrently
and independently

* How to model concurrency in software?
KU

THE UNIVERSITY OF
KANSAS

Abstractions for Concurrency

Concurrent model of computation

dataflow, time triggered, synchrenous, etc.

Multitasking

processes, threads, message passing

Processor

interrupts, pipelining, multicore, etc.

l

THE UNIVERSITY OF
KANSAS

Thread

KANSAS

KANSAS

Threads in Computing

Each thread is a sequential code

Own independent flow of control (execution)
Each thread has its own stack
Memory is shared

Pthread

* |EEE POSIX standard threading API

* Pthread API
— Thread management

 create, destroy, detach, join, set/query thread attributes

— Synchronization
 Mutexes —lock, unlock
* Condition variables — signal/wait

THE UNIVERSITY OF

Pthread API

* pthread_attr_init —initialize the thread attributes object
— int pthread_attr_init(pthread_attr_t *attr);
— defines the attributes of the thread created
 pthread_create — create a new thread

— int pthread_create(pthread_t *restrict thread, const pthread_attr_t
*restrict attr, void *(*start_routine)(void*), void *restrict arg);

— upon success, a new thread id is returned in thread
e pthread_join — wait for thread to exit
— int pthread_join(pthread_t thread, void **value_ptr);
— calling process blocks until thread exits
 pthread exit —terminate the calling thread
— void pthread_exit(void *value_ptr);
— make return value available to the joining thread

THE UNIVERSITY OF

Pthread Example 1

#include <pthread.h>
#include <stdio.h>

int sum; /* data shared by all threads */ Main
void *runner (void “*param) thread
{

int i, upper = atoi (param);

sum = 0;

for (i=1 ; i<=upper ; i++)
sum += i; Create Runner
pthread exit(0); thread

int main (int argc, char *argv([])

. . . join
pthread t tid; /* thread identifier */
pthread attr t attr; (ﬂeep)
pthread attr init(&attr); < v exit
(wakeup)

/* create the thread */

pthread create (&tid, &attr, runner, argv[l]);
/* wait for the thread to exit */

pthread join(tid, NULL);

fprintf (stdout, “sum = %d\n”, sum);

KANSAS

Pthread Example 2

#include <pthread.h> User Address Space
#include <stdio.h>

Thread 2 | routine2() warl Stack Pointer

: . var? Prgrm. Counter
int arrayA[10], arrayB[10]; stack vard Registers

void *routinel (void *param) .
Thread 1 routinel {} warl Stack Pointer

{ stack var2 Prgrm. Counter
int varl, var2 Registers
} main()
void *routine2 (void *param) text routinel ()
{ routine? ()
. - Process ID
int wvarl, wvar2, var3 User ID
Group ID
J data
heap

int main (int argc, char *argv([])
{
/* create the thread */
pthread create (&tid[0], &attr, routinel, NULL);
pthread create (&tid[1], &attr, routine2, NULL);
pthread join(tid[0]); pthread join(tid[1]);

THE UNIVERSITY OF 1 O
KANSAS

CPU Scheduling

* CPU scheduling is a policy to decide
— Which thread to run next?
— When to schedule the next thread?

— How long?

e Context switching is a mechanism
— To change the running thread

THE UNIVERSITY OF

Context Switching

e Suspend the current thread and resume a next one
from its last suspended state

process P, operating system process P,

interrupt or system call
executing J_L

Y
h save state into PCB,

idle

reload state from PCB, 1
>idle interrupt or system call executing

v ~¥Y

save state into PCB,

idle

reload state from PCB,

executing Ux

THE UNIVERSITY OF

Context Switching

e Qverhead
— Save and restore CPU states
— Warm up instruction and data cache

e Cache data of previous process is not useful for new process

* InLinux 3.6.0 on an Intel Xeon 2.8Ghz
— About 1.8 us
— ~ 5040 CPU cycles
— ~ thousands of instructions

THE UNIVERSITY OF

Non-Preemptive Scheduler

 Once a thread is scheduled, it can continue to
use the CPU until it finishes or voluntarily
relinquishes itself (yield)

* Pros and Cons
++ minimal overhead
--- possible starvation
--- fairness, response time, ...

THE UNIVERSITY OF

Preemptive Scheduler

 Each thread is given a certain time slice, after
which it is preempted by the scheduler to
schedule a next thread.

* A preemptive scheduler is periodically activated
at a fixed time interval (“tick”), which is typically
implemented as a timer interrupt

* Pros and Cons

++ responsive, fair
--- overhead (context switching is not free)

THE UNIVERSITY OF

THE UNIVERSITY OF
KANSAS

Race Condition

Initial condition: counter = 5

Thread 1 Thread 2
R1 = load (counter); R2 = load (counter);
R1=R1+1; R2=R2-1;
counter = store (R1); counter = store (R2);

 What are the possible outcome?

16

Race Condition

Initial condition: counter = 5

R1 = load (counter);
R1=R1+1];
counter = store (R1);
R2 = load (counter);
R2=R2-1;
counter = store (R2);

counter =5

R1 = load (counter);
R1=R1+1];
R2 = load (counter);
R2=R2-1;
counter = store (R1);
counter = store (R2);

counter =4

* Why this happens?

uuuuuuuuuuuuu

R1 = load (counter);
R1=R1+1];
R2 = load (counter);
R2=R2-1;
counter = store (R2);
counter = store (R1);

counter =6

17

Race Condition

e A situation when two or more threads read
and write shared data at the same time

* Correctness depends on the execution order

Thread 1 Thread 2
L read \

R1 = load (counter); R2 = load (counter);
R1=R1+1; R2=R2-1;
counter = store (R1); counter = store (R2);

N /!

write

* How to prevent race conditions?

THE UNIVERSITY OF

THE UNIVERSITY OF
KANSAS

Critical Section

* Code sections of potential race conditions

Thread 1

Do something

Thread 2

Do something

R1 = load (counter);
R1=R1+1;
counter = store (R1);

R2 = load (counter);
R2=R2-1;
counter = store (R2);

Do something

Do something

Critical
sections

19

THE UNIVERSITY OF
KANSAS

Critical Section

* Code sections of potential race conditions

Thread 1

Do something

Thread 2

Do something

R1 = load (counter);
R1=R1+1;
counter = store (R1);

R2 = load (counter);
R2=R2-1;
counter = store (R2);

Do something

Do something

Critical
sections

20

Mutual Exclusion

* A property that requires only one thread can
enter its critical section at a time among
multiple concurrent threads

* Lock (mutex) is a mechanism to provide
mutual exclusion

THE UNIVERSITY OF

THE UNIVERSITY OF

Lock

* General solution
— Protect critical section via a lock

— Acquire on enter, release on exit

do {
acquire lock;

critical section
release lock;
remainder section

} while(TRUE);

22

How to Implement a Lock?

* Unicore processor
— No true concurrency
one thread at a time

— Threads are interrupted by the OS

* scheduling events: timer interrupt, device interrupts

e Disabling interrupt do {

— Threads can’t be disable interrupts;

interrupted critical section
enable interrupts;

remainder section
¥ while(TRUE);

THE UNIVERSITY OF

23

How to implement a Lock?

=
// Semaphore::P

Iy Wait until semaphore value > @, then decrement. Checking the

Iy value and decrementing must be done atomically, so we

// need to disable interrupts before checking the wvalue.

I

// Mote that Thread::5leep assumes that interrupts are disabled

'y when it is called.

=
void

Semaphore: :P()

{

IntStatus oldlLevel = interrupt->SetlLevel(IntOff); [/ disable interrupts

while (value == 8) { /{ semaphore not available
queue-rAppend((void *)currentThread); // so go to sleep
currentThread->Sleep();

¥

value--; /J semaphore available,
// consume its wvalue

(void) interrupt->SetlLevel(oldlLevel); /{ re-enable interrupts

¥

https://people.cs.uchicago.edu/~odonnell/OData/Courses/CS230/NACHOS/code/threads/synch.cc

THE UNIVERSITY OF
KANSAS

https://people.cs.uchicago.edu/~odonnell/OData/Courses/CS230/NACHOS/code/threads/synch.cc

Single-core vs. Multicore CPU

single core

T4

T T3 Ty T4 T T3 T4 T4

time

core 1

core 2

THE UNIVERSITY OF

Y

Single core execution

T4 Ta T4 T3 T4

To T4 To T4 T

time

Multiple core execution

How to Implement a Lock?

* Multicore processor

— True concurrency

 More than one active threads sharing memory

— Disabling interrupts doesn’t solve the problem

* More than one threads are executing at a time

 Hardware support

— Synchronization instructions: atomic read and write

* More on EECS678

THE UNIVERSITY OF

The Problems of Threads

e Hard to write correct multithread software
e Hard to understand

* Hard to verify

THE UNIVERSITY OF

Why Difficult?

* Thread interleaving is non-deterministic
 There are so many possible interleaving
* Hard to test/reproduce/debug

THE UNIVERSITY OF

Summary

* Threads

— An abstraction for sequential program
— Can model concurrency

— Share memory

— Require careful synchronization

* Context switching

— Suspend/resume execution among multiple threads

e Mutual exclusion

— To avoid race condition

THE UNIVERSITY OF

