
EECS 388: Embedded Systems

8. Real-Time Scheduling

Heechul Yun

1

Agenda

• Real-time operating systems

• Real-time CPU scheduling theory and practice

2

Real-Time Operating System

• Often refers to lightweight OS used in
embedded systems

– FreeRTOS, VxWorks, QNX, …

• Specialized to guarantee fast, deterministic
real-time response to external events

– Real-time (CPU) scheduling is key

3

Real-Time Operating System

• Thread scheduling

– CPU scheduler

• Synchronization

– Lock, semaphore, etc.

• Input and output

– Device drivers

• …

4

A Scheduler

• Initialization
– set up periodic timer interrupts;

– create default thread data structures;

– dispatch a thread (procedure call);

– execute main thread (idle or power save, for example).

• Thread control block (TCB) data structure
– copy of CPU state (machine registers)

– address at which to resume executing the thread

– status of the thread (e.g. blocked on mutex)

– priority, WCET (worst case execution time), and other info
to assist the scheduler

5

A Scheduler

• Timer interrupt service routine:
– dispatch a thread.

• Dispatching a thread:
– disable interrupts;
– determine which thread should execute (scheduling);
– if the same one, enable interrupts and return;
– save state (registers) into current thread data structure;
– save return address from the stack for current thread;
– copy new thread state into machine registers;
– replace program counter on the stack for the new thread;
– enable interrupts;
– return.

6

Real-Time Systems

• The correctness of the system depends on not
only on the logical result of the computation
but also on the time at which the results are
produced

• A correct value at a wrong time is a fault.

• Two requirements
– Logical correctness: correct outputs

– Temporal correctness: outputs at the right time

7

Soft vs. Hard Real-Time

• Soft real-time: missing deadlines is undesirable, but will
not lead to catastrophic consequences

– Related to the concept of “Quality of Service”

– Typically interested in average-case response time
(turnaround time)

– Ex: reservation systems, media players, phones, etc.

• Hard real-time: missing deadlines is not an option

– Interested in worst-case response time

– Ex: airplanes, nuclear plants, military systems, etc.

8

Real-Time Spectrum

9

User
interface

Computer
simulation

Internet
video, audio

Tele
communication

Flight
control

Soft RT Hard RTNo RT

Jobs and Tasks

• A job is a unit of computation

– E.g., one execution of a key event handling

• A task is a sequence jobs of the same type

– E.g., the key event handling task

10

Periodic Tasks

• Time-triggered computation

• Task is activated periodically every T time
units.

• Each instance of the task is called a job.

• Each job has the same relative deadline
(usually = to period).

• E.g., most digital controllers.

11

Periodic Task Model

• Task τi (N tasks in the system, τ1 to τN)

– Execution time Ci (sometimes ei)

– Relative deadline Di

– Period Ti (sometimes pi)

• Each job τij of τi (first job: τi0)

– Activation time aij = aij-1 + Ti (usually with ai0 = 0)

– Absolute deadline dij = aij + Di

12

Periodic Task Model

• Release time: the instant at which the job
becomes ready to execute

• Absolute deadline: specified in absolute time.

– Ex: train and airlines schedules

• Relative deadline: related to the release time.

– Ex: 8 msec after the release time.

• By convention, we will refer to an absolute
deadline as “d”, and a relative deadline as “D”

13

Periodic Task Model

14

ai0=0 ai1=10 ai2=20

t0 10 20

di0=8 di1=18

Ci=3

Di=8

Ti=10

response time for job#1: 6

τi

τi0 τi1

Aperiodic Tasks

• Event-triggered computation.

• Task is activated by an external event.

• Task runs once to respond to the event.

• Relative deadline D: available time to respond to the
event.

• Usually, minimal inter-arrival time T is assumed to be
known

15

Example Real-Time System

16

Periodic tasks Shared resources Aperiodics

t1

t2

t3

20 msec

40 msec

100 msec

100 msec (period)

20 msec

shared data1

2 msec

10 msec

shared data2

10 msec

5 msec

Emergency
50 msec (min interarrival time)

Deadline 6 msec
after arrival

2 msec

Non-critical display

40 msec (avg interarrival time)

Desired response
20 msec average

(protected by mutex)

150 msec (period)

350 msec (period)

Goal: guarantee that no real-time deadline is missed!!!

EECS 388: Embedded Systems

8. Real-Time Scheduling (Part 2)

Heechul Yun

17

Recap

• Job

– A computation instance

• Task

– A sequence of jobs

• Periodic task model

– ti = (Ci, Ti) or (Ci, Ti, Di)

18

Real-Time Scheduling

• Scheduling

– Pick which task to run next

• Priority-based scheduling

– Pick the highest priority task among ready tasks

19

Priority and Criticality

• Priority
– priority is the order we execute ready jobs.

• Criticality (Importance)
– represents the penalty if a task misses a deadline (one of

its jobs misses a deadline).
• Quiz

– Which task should have higher priority?
– Task 1: The most import task in the system: if it does not

get done, serious consequences will occur
– Task 2: A mp3 player: if it does not get done in time, the

played song will have a glitch
– If it is feasible, we would like to meet the real-time

deadlines of both tasks
– Answer: It depends…

20

Priority and Criticality

• If priorities are assigned according to
importance, you can miss the deadline even if
the system is mostly idle

• If p2 (period of t2) < C1 (execution time of t1),
t2 will miss the deadline

21

Utilization

• A task’s utilization (of the CPU) is the fraction of time
for which it uses the CPU (over a long interval of time).

• A periodic task’s utilization Ui (of CPU) is the ratio
between its execution time and period: Ui = Ci/pi

• Given a set of periodic tasks, the total CPU’s utilization
is equal to the sum of periodic tasks’ utilization:

• QUIZ: What is the obvious limit on U?

22

=
i i

i

p

C
U

Real-Time Scheduling Algorithms

• Fixed-priority scheduling

– All jobs of a task have the same priority

– Rate Monotonic (RM)

• Dynamic priority scheduling

– Different jobs of the same task may have different
priorities

– Earliest Deadline First (EDF)

23

Rate Monotonic (RM)

• Fixed-priority scheduling algorithm

• Assigns priorities to tasks on the basis of their
periods

• Shorter period = higher priority.

24

RM Example

• Case#1

– τ1 (C1 = 4, T1 = 8), high prio

– τ2 (C2 = 3, T2 = 12), low prio

– Utilization: U = 4/8 + 3/12 = 0.75

25

t0 10 20

τ2

t

τ1

RM Example

• Case#2

– τ1 (C1 = 4, T1 = 8), high prio

– τ2 (C2 = 6, T2 = 12), low prio

– Utilization: U = 4/8 + 6/12 = 1

26

t0 10 20

τ2

t

τ1

deadline miss

Earliest Deadline First (EDF)

• Dynamic-Priority Scheduling Algorithm

• Task priority is inversely proportional to its current
absolute deadline

• Earlier deadline = higher priority

• Each job of a task has a different deadline, hence a
different priority.

27

EDF Example

• Case#2:

– τ1 (C1 = 4, T1 = 8), τ2 (C2 = 6, T1 = 12)

– Utilization: U = 4/8 + 6/12 = Ub = 1

28

t0 10 20

τ2

t

τ1

RM vs. EDF

29

• τ1 (C1 = 1, T1 = 4), τ2 (C2 = 2, T1 = 6), τ3 (C3 = 3, T3 = 8)

• Utilization: U = 1/4 + 2/6 + 3/8 = 23/24

• Schedulable in RM?

– No

RM vs. EDF

30

• τ1 (C1 = 1, T1 = 4), τ2 (C2 = 2, T1 = 6), τ3 (C3 = 3, T3 = 8)

• Utilization: U = 1/4 + 2/6 + 3/8 = 23/24

• Schedulable in EDF?

– Yes

Key Results

• For periodic tasks with relative deadlines equal to their
periods:

• Rate monotonic scheduling is the optimal fixed-priority
priority policy
– No other static priority assignment can do better
– Yet, it cannot achieve 100% CPU utilization

• Earliest deadline first scheduling is the optimal
dynamic priority policy
– EDF can achieve 100% CPU utilization

31

RM vs. EDF

• In practice, industrial systems heavily favor RM
over EDF. Why?

• RM is easier to implement
– Task priority never changes.

• RM is more transparent and robust
– easier to understand what is going on if something

goes wrong (ex: overload).

– if a task executes for longer than its prescribed worst-
case time, higher priority tasks will be left untouched.

32

EECS 388: Embedded Systems

9. Real-Time Scheduling (Part 3)

Heechul Yun

33

So far

• Job, Task

• Periodic task model
– ti = (Ci, Pi) or (Ci, Pi, Di)

• Static/dynamic priority scheduling:
– RM
– EDF

• Utilization
– Ui = Ci / Pi

34

=
i i

i

p

C
U

Agenda

• Utilization Bound

• Exact Schedulability analysis

• POSIX scheduling interface

35

Recall: RM Example

• τ1 (C1 = 4, T1 = 8), high prio

• τ2 (C2 = 6, T1 = 12), low prio

• Utilization: U = 4/8 + 6/12 = 1

36

t0 10 20

τ2

t

τ1

deadline miss

Unschedulable

RM Example

• τ1 (C1 = 4, T1 = 8), high prio

• τ2 (C2 = 4, T1 = 12), low prio

• Utilization: U = 4/8 + 4/12 = 10/12 = 0.83

37

t0 10 20

τ2

t

τ1

Schedulable!
Is there an easy way to know whether a

taskset is schedulable or not?

Liu & Layland, JACM, Jan. 1973

38

Liu & Layland Bound

• A set of n periodic tasks is schedulable if

– UB(1) = 1.0

– UB(2) = 0.828

– UB(3) = 0.779

– …

– UB(n) = ln(2) = ~0.693

39

()12... /1

2

2

1

1 −+++ n

n

n n
p

c

p

c

p

c

Q. If it isn’t, does that mean
the taskset is unschedulable?

A. Not necessarily.
It’s a sufficient condition,

but not necessary one.

Sample Problem

C T U

Task t1 20 100 0.200

Task t2 40 150 0.267

Task t3 100 350 0.286

40

• Are all tasks schedulable?
– U1 + U2 + U3 = 0.753 < U(3) ➔ Schedulable!

• What if we double the C of t1

– 0.2*2 + 0.267+ 0.286 = 0.953 > UB(3) = 0.779

– We don’t know yet.

UB(1) = 1.0
UB(2) = 0.828
UB(3) = 0.779
UB(n) = 0.693

L&L Bound

Sample Problem

41

t1

t2

t3

t1

t2

t3

t1

t2

t3

(20, 100)

(40, 150)

(100, 350)

(40, 100)

(40, 150)

(100, 350)

(40, 100)

(40, 150)

(110, 350)

UB(3) = 0.779
UB(n) = 0.693

L&L Bound

U = 0.753

U = 0.953

U = 0.981

Sample Problem

42

t1

t2

t3

t1

t2

t3

(20, 100)

RM

(40, 150)

(100, 350)

(40, 100)

RM

(40, 150)

(100, 350)

(40, 100)

RM

(40, 150)

(110, 350)

t1

t2

t3
deadline miss!

UB(3) = 0.779
UB(n) = 0.693

L&L Bound

U = 0.753

U = 0.953

U = 0.981

Critical Instant Theorem

• If a task meets its first deadline when all
higher priority tasks are started at the same
time, then this task’s future deadlines will
always be met.

43

Timeline

t1

t2

tasks’

schedule

Task set

Exact Schedulability Test

• For each task, checks if it can meet its first
deadline

44

4 4 4 4

0 10 20 30

15 30

35

0

0

4 4 4

2 1 1 6

(C1=4, T1=10), U1 = 0.4

(C2=4, T2=15), U2 = 0.27

(C3=10, T3=35), U3 = 0.28

Exact Schedulability Test

• For each task, checks if it can meet its first
deadline

45

Test terminates when ri
k+1 > pi (not schedulable)

or when ri
k+1 = ri

k < pi (schedulable).


=

−

=

+ =











+=

i

j

jij

i

j j

k

i
i

k

i crc
p

r
cr

1

0
1

1

1 where,

ceiling function

Exact Schedulability Test

• For task 3

– First iteration

46

181044321

3

1

0

3 =++=++== 
=

ccccr
j

j

4

0 10 20 30

15 30

35

0

0

4

10

r3
0 = 18

4.0),10,4(111 === Upc

27.0),15,4(222 === Upc

28.0),35,10(333 === Upc

Exact Schedulability Test

• For task 3

– Second iteration

47

264
15

18
4

10

18
10

2

1

0

3
3

1

3 =







+








+=












+= 

=

j

j j

c
p

r
cr

4

0 10 20 30

15 30

35

0

0

4

2

r3
1 = 26

4

4

1 7

4.0),10,4(111 === Upc

27.0),15,4(222 === Upc

28.0),35,10(333 === Upc

Exact Schedulability Test

• For task 3

– Third iteration

48

304
15

26
4

10

26
10

2

1

1

3
3

2

3 =







+








+=












+= 

=

j

j j

c
p

r
cr

4

0 10 20 30

15 30

35

0

0

4

2

r3
2 = r3

3 = 30

4

4

1 6

4

1

4.0),10,4(111 === Upc

27.0),15,4(222 === Upc

28.0),35,10(333 === Upc

Exact Schedulability Test

• For task 3

– Fourth iteration … is the same as the 3rd

– Done!

49

304
15

30
4

10

30
10

2

1

2

3
3

3

3 =







+








+=












+= 

=

j

j j

c
p

r
cr

304
15

26
4

10

26
10

2

1

1

3
3

2

3 =







+








+=












+= 

=

j

j j

c
p

r
cr

Exact Schedulability Test

• All tasks meet their deadlines → schedulable

50

4

0 10 20 30

15 30

35

0

0

4

2

r3
2 = r3

3 = 30

4

4

1 6

4

1

4.0),10,4(111 === Upc

27.0),15,4(222 === Upc

28.0),35,10(333 === Upc

Caveats: Assumptions

• So far the theories assume

– All the tasks are periodic

– Tasks are scheduled according to RMS

– All tasks are independent and do not share
resources (data)

– Tasks do not self-suspend during their execution

– Scheduler overhead (context-switch) is negligible

51

POSIX Scheduling Interface

• POSIX.4 Real-Time Extension support real-time
scheduling policies

• Each process can run with a particular scheduling
policy and associated scheduling attributes. Both the
policy and the attributes can be changed
independently.

• POSIX.4 defined policies
– SCHED_FIFO: preemptive, priority-based scheduling.
– SCHED_RR: Preemptive, priority-based scheduling with

quanta.
– SCHED_OTHER: an implementation-defined scheduler →

Linux’s default scheduler (CFS)

52

SCHED_FIFO

• Preemptive, priority-based scheduling.
• Priority ranges: 1 (lowest) – 99 (highest)
• When a SCHED_FIFO process becomes runnable, it will

always preempt immediately any currently running normal
SCHED_OTHER process. SCHED_FIFO is a simple scheduling
algorithm without time slicing.

• A process calling sched_yield will be put at the end of its
priority list. No other events will move a process scheduled
under the SCHED_FIFO policy in the wait list of runnable
processes with equal static priority. A SCHED_FIFO process
runs until either it is blocked by an I/O request, it is
preempted by a higher priority process, it calls sched_yield,
or it finishes.

53

SCHED_RR

• Same as SCHED_FIFO except the following.

• Time slicing among the same priority tasks:
– If a SCHED_RR process has been running for a time

period equal to or longer than the time quantum, it
will be put at the end of the list for its priority.

– A SCHED_RR process that has been preempted by a
higher priority process and subsequently resumes
execution as a running process will complete the
unexpired portion of its round robin time quantum.
The length of the time quantum can be retrieved by
sched_rr_get_interval.

54

SCHED_OTHER

• An implementation defined scheduler, not
defined by POSIX.4

• In Linux, this class is the default CFS scheduler.

55

Linux Scheduling Framework

CFS
(sched/fair.c)

Real-time
(sched/rt.c)

SCHED_OTHER
(SCHED_NORMAL)

SCHED_BATCH SCHED_RR

SCHED_FIFO

• Completely Fair Scheduler (CFS)  for general purpose
• Real-time Schedulers  for real-time apps.
• Why not to create a single scheduler for both?

SCHED_DEADLINE

Completely Fair Scheduler (CFS)

• SCHED_OTHER class

• Linux’s default scheduler, focusing on fairness

• Each task owns a fraction of CPU time share
– E.g.,) A=10%, B=30%, C=60%

• Scheduling algorithm
– Each task maintains its virtual runtime

• Virtual runtime = executed time (x 1 / weight)

– Pick the task with the smallest virtual runtime
• Tasks are sorted according to their virtual times

57

CFS Example

Weights: gcc = 2/3, bigsim=1/3
X-axis: mcu (tick), Y-axis: virtual time

Fair in the long run

58

kernel/sched/fair.c (CFS)

• Priority to CFS weight conversion table

– Priority (Nice value): -20 (highest) ~ +19 (lowest)

– kernel/sched/core.c

59

const int sched_prio_to_weight[40] = {

/* -20 */ 88761, 71755, 56483, 46273, 36291,

/* -15 */ 29154, 23254, 18705, 14949, 11916,

/* -10 */ 9548, 7620, 6100, 4904, 3906,

/* -5 */ 3121, 2501, 1991, 1586, 1277,

/* 0 */ 1024, 820, 655, 526, 423,

/* 5 */ 335, 272, 215, 172, 137,

/* 10 */ 110, 87, 70, 56, 45,

/* 15 */ 36, 29, 23, 18, 15,

};

Summary

• Utilization Bound

• Exact Schedulability analysis

• POSIX scheduling interface

60

Acknowledgements

• These slides draw on materials developed by

– Lui Sha and Marco Caccamo (UIUC)

– Rodolfo Pellizzoni (U. Waterloo)

– Edward A. Lee and Prabal Dutta (UCB) for
EECS149/249A

61

