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Agenda

• Real-time operating systems

• Real-time CPU scheduling theory and practice
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Real-Time Operating System

• Often refers to lightweight OS used in 
embedded systems

– FreeRTOS, VxWorks, QNX, …

• Specialized to guarantee fast, deterministic 
real-time response to external events

– Real-time (CPU) scheduling is key
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Real-Time Operating System

• Thread scheduling  

– CPU scheduler

• Synchronization

– Lock, semaphore, etc.

• Input and output

– Device drivers

• …
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A Scheduler

• Initialization
– set up periodic timer interrupts;

– create default thread data structures;

– dispatch a thread (procedure call);

– execute main thread (idle or power save, for example).

• Thread control block (TCB) data structure
– copy of CPU state (machine registers)

– address at which to resume executing the thread

– status of the thread (e.g. blocked on mutex)

– priority, WCET (worst case execution time), and other info 
to assist the scheduler
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A Scheduler

• Timer interrupt service routine:
– dispatch a thread.

• Dispatching a thread:
– disable interrupts;
– determine which thread should execute (scheduling);
– if the same one, enable interrupts and return;
– save state (registers) into current thread data structure;
– save return address from the stack for current thread;
– copy new thread state into machine registers;
– replace program counter on the stack for the new thread;
– enable interrupts;
– return.
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Real-Time Systems

• The correctness of the system depends on not 
only on the logical result of the computation 
but also on the time at which the results are 
produced

• A correct value at a wrong time is a fault.

• Two requirements
– Logical correctness: correct outputs

– Temporal correctness: outputs at the right time
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Soft vs. Hard Real-Time

• Soft real-time: missing deadlines is undesirable, but will 
not lead to catastrophic consequences

– Related to the concept of “Quality of Service”

– Typically interested in average-case response time 
(turnaround time)

– Ex: reservation systems, media players, phones, etc.

• Hard real-time: missing deadlines is not an option

– Interested in worst-case response time

– Ex: airplanes, nuclear plants, military systems, etc.
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Real-Time Spectrum
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Jobs and Tasks

• A job is a unit of computation 

– E.g., one execution of a key event handling

• A task is a sequence jobs of the same type

– E.g., the key event handling task
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Periodic Tasks

• Time-triggered computation

• Task is activated periodically every T time 
units.

• Each instance of the task is called a job.

• Each job has the same relative deadline 
(usually = to period).

• E.g., most digital controllers.
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Periodic Task Model

• Task τi (N tasks in the system, τ1 to τN)

– Execution time Ci (sometimes ei) 

– Relative deadline Di

– Period Ti (sometimes pi) 

• Each job τij of τi (first job: τi0)

– Activation time aij = aij-1 + Ti (usually with ai0 = 0)

– Absolute deadline dij = aij + Di
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Periodic Task Model

• Release time: the instant at which the job 
becomes ready to execute

• Absolute deadline: specified in absolute time. 

– Ex: train and airlines schedules

• Relative deadline: related to the release time. 

– Ex: 8 msec after the release time.

• By convention, we will refer to an absolute 
deadline as “d”, and a relative deadline as “D”
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Periodic Task Model
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Aperiodic Tasks

• Event-triggered computation.

• Task is activated by an external event.

• Task runs once to respond to the event.

• Relative deadline D: available time to respond to the 
event.

• Usually, minimal inter-arrival time T is assumed to be 
known
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Example Real-Time System
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Periodic tasks Shared resources Aperiodics

t1

t2

t3

20 msec

40 msec

100 msec

100 msec (period)

20 msec

shared data1

2 msec

10 msec

shared data2

10 msec

5 msec

Emergency
50 msec (min interarrival time)

Deadline 6 msec
after arrival

2 msec

Non-critical display

40 msec (avg interarrival time)

Desired response
20 msec average

(protected by mutex)

150 msec (period)

350 msec (period)

Goal: guarantee that no real-time deadline is missed!!!
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Recap

• Job

– A computation instance

• Task

– A sequence of jobs

• Periodic task model

– ti = (Ci, Ti) or (Ci, Ti, Di)
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Real-Time Scheduling

• Scheduling

– Pick which task to run next

• Priority-based scheduling

– Pick the highest priority task among ready tasks
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Priority and Criticality

• Priority
– priority is the order we execute ready jobs. 

• Criticality (Importance)
– represents the penalty if a task misses a deadline (one of 

its jobs misses a deadline). 
• Quiz 

– Which task should have higher priority?
– Task 1:  The most import task in the system: if it does not 

get done, serious consequences will occur
– Task 2: A mp3 player: if it does not get done in time, the 

played song will have a glitch
– If it is feasible, we would like to meet the real-time 

deadlines of both tasks
– Answer: It depends…
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Priority and Criticality

• If priorities are assigned according to 
importance, you can miss the deadline even if 
the system is mostly idle

• If p2 (period of t2) < C1 (execution time of t1), 
t2 will miss the deadline
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Utilization

• A task’s utilization (of the CPU) is the fraction of time 
for which it uses the CPU (over a long interval of time).

• A periodic task’s utilization Ui (of  CPU)  is the ratio 
between its execution time and period: Ui = Ci/pi

• Given a set of periodic tasks, the total CPU’s utilization 
is equal to the sum of periodic tasks’ utilization:

• QUIZ: What is the obvious limit on U? 
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Real-Time Scheduling Algorithms

• Fixed-priority scheduling

– All jobs of a task have the same priority

– Rate Monotonic (RM)

• Dynamic priority scheduling

– Different jobs of the same task may have different 
priorities

– Earliest Deadline First (EDF)
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Rate Monotonic (RM)

• Fixed-priority scheduling algorithm

• Assigns priorities to tasks on the basis of their 
periods

• Shorter period = higher priority.
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RM Example

• Case#1

– τ1 (C1 = 4, T1 = 8), high prio

– τ2 (C2 = 3, T2 = 12), low prio

– Utilization: U = 4/8 + 3/12 = 0.75  

25

t0 10 20

τ2

t

τ1



RM Example

• Case#2

– τ1 (C1 = 4, T1 = 8), high prio

– τ2 (C2 = 6, T2 = 12), low prio

– Utilization: U = 4/8 + 6/12 = 1  
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Earliest Deadline First (EDF)

• Dynamic-Priority Scheduling Algorithm

• Task priority is inversely proportional to its current 
absolute deadline

• Earlier deadline = higher priority

• Each job of a task has a different deadline, hence a 
different priority.

27



EDF Example

• Case#2: 

– τ1 (C1 = 4, T1 = 8), τ2 (C2 = 6, T1 = 12)

– Utilization: U = 4/8 + 6/12 = Ub = 1
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RM vs. EDF
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• τ1 (C1 = 1, T1 = 4), τ2 (C2 = 2, T1 = 6), τ3 (C3 = 3, T3 = 8) 

• Utilization: U = 1/4 + 2/6 + 3/8 = 23/24

• Schedulable in RM?

– No



RM vs. EDF

30

• τ1 (C1 = 1, T1 = 4), τ2 (C2 = 2, T1 = 6), τ3 (C3 = 3, T3 = 8) 

• Utilization: U = 1/4 + 2/6 + 3/8 = 23/24

• Schedulable in EDF?

– Yes



Key Results

• For periodic tasks with relative deadlines equal to their 
periods: 

• Rate monotonic scheduling is the optimal fixed-priority 
priority policy
– No other static priority assignment can do better
– Yet, it cannot achieve 100% CPU utilization

• Earliest deadline first scheduling is the optimal 
dynamic priority policy
– EDF can achieve 100% CPU utilization
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RM vs. EDF

• In practice, industrial systems heavily favor RM 
over EDF. Why? 

• RM is easier to implement
– Task priority never changes. 

• RM is more transparent and robust
– easier to understand what is going on if something 

goes wrong (ex: overload).

– if a task executes for longer than its prescribed worst-
case time, higher priority tasks will be left untouched. 
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So far

• Job, Task

• Periodic task model
– ti = (Ci, Pi) or (Ci, Pi, Di)

• Static/dynamic priority scheduling: 
– RM
– EDF

• Utilization
– Ui = Ci / Pi
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Agenda

• Utilization Bound

• Exact Schedulability analysis

• POSIX scheduling interface
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Recall: RM Example

• τ1 (C1 = 4, T1 = 8), high prio

• τ2 (C2 = 6, T1 = 12), low prio

• Utilization: U = 4/8 + 6/12 = 1  
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RM Example

• τ1 (C1 = 4, T1 = 8), high prio

• τ2 (C2 = 4, T1 = 12), low prio

• Utilization: U = 4/8 + 4/12 = 10/12 = 0.83  
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Schedulable!
Is there an easy way to know whether a 

taskset is schedulable or not?



Liu & Layland, JACM, Jan. 1973
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Liu & Layland Bound

• A set of n periodic tasks is schedulable if

– UB(1) = 1.0

– UB(2) = 0.828

– UB(3) = 0.779

– …

– UB(n) = ln(2) = ~0.693
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Q. If it isn’t, does that mean
the taskset is unschedulable?

A. Not necessarily.
It’s a sufficient condition, 

but not necessary one.



Sample Problem

C T U

Task t1 20 100 0.200

Task t2 40 150 0.267

Task t3 100 350 0.286
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• Are all tasks schedulable?
– U1 + U2 + U3 = 0.753 < U(3)  ➔ Schedulable!

• What if we double the C of t1

– 0.2*2 + 0.267+ 0.286 = 0.953 > UB(3) = 0.779

– We don’t know yet.

UB(1) = 1.0
UB(2) = 0.828
UB(3) = 0.779
UB(n) = 0.693

L&L Bound



Sample Problem
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t3

t1

t2

t3

t1
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Sample Problem
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Critical Instant Theorem

• If a task meets its first deadline when all 
higher priority tasks are started at the same 
time,  then this task’s future deadlines will 
always be met. 
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Exact Schedulability Test

• For each task, checks if it can meet its first 
deadline
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Exact Schedulability Test

• For each task, checks if it can meet its first 
deadline
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Exact Schedulability Test

• For task 3

– First iteration
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Exact Schedulability Test

• For task 3

– Second iteration
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Exact Schedulability Test

• For task 3

– Third iteration
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Exact Schedulability Test

• For task 3

– Fourth iteration … is the same as the 3rd

– Done!
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Exact Schedulability Test

• All tasks meet their deadlines → schedulable

50

4

0 10 20 30

15 30

35

0

0

4

2

r3
2 = r3

3 = 30

4

4

1 6

4

1

4.0),10,4( 111 === Upc

27.0),15,4( 222 === Upc

28.0),35,10( 333 === Upc



Caveats: Assumptions

• So far the theories assume

– All the tasks are periodic

– Tasks are scheduled according to RMS

– All tasks are independent and do not share 
resources (data) 

– Tasks do not self-suspend during their execution

– Scheduler overhead (context-switch) is negligible
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POSIX Scheduling Interface

• POSIX.4 Real-Time Extension support real-time 
scheduling policies

• Each process can run with a particular scheduling 
policy and associated scheduling attributes. Both the 
policy and the attributes can be changed 
independently. 

• POSIX.4 defined policies
– SCHED_FIFO: preemptive, priority-based scheduling. 
– SCHED_RR: Preemptive, priority-based scheduling with 

quanta. 
– SCHED_OTHER: an implementation-defined scheduler →

Linux’s default scheduler (CFS)
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SCHED_FIFO

• Preemptive, priority-based scheduling. 
• Priority ranges: 1 (lowest) – 99 (highest)
• When a SCHED_FIFO process becomes runnable, it will 

always preempt immediately any currently running normal 
SCHED_OTHER process. SCHED_FIFO is a simple scheduling 
algorithm without time slicing. 

• A process calling sched_yield will be put at the end of its 
priority list. No other events will move a process scheduled 
under the SCHED_FIFO policy in the wait list of runnable 
processes with equal static priority. A SCHED_FIFO process 
runs until either it is blocked by an I/O request, it is 
preempted by a higher priority process, it calls sched_yield, 
or it finishes. 
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SCHED_RR

• Same as SCHED_FIFO except the following.

• Time slicing among the same priority tasks:
– If a SCHED_RR process has been running for a time 

period equal to or longer than the time quantum, it 
will be put at the end of the list for its priority. 

– A SCHED_RR process that has been preempted by a 
higher priority process and subsequently resumes 
execution as a running process will complete the 
unexpired portion of its round robin time quantum. 
The length of the time quantum can be retrieved by 
sched_rr_get_interval.
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SCHED_OTHER

• An implementation defined scheduler, not 
defined by POSIX.4

• In Linux, this class is the default CFS scheduler. 
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Linux Scheduling Framework

CFS
(sched/fair.c)

Real-time
(sched/rt.c)

SCHED_OTHER
(SCHED_NORMAL)

SCHED_BATCH SCHED_RR

SCHED_FIFO

• Completely Fair Scheduler (CFS)  for general purpose
• Real-time Schedulers  for real-time apps.
• Why not to create a single scheduler for both?

SCHED_DEADLINE



Completely Fair Scheduler (CFS)

• SCHED_OTHER class

• Linux’s default scheduler, focusing on fairness

• Each task owns a fraction of CPU time share
– E.g.,) A=10%, B=30%, C=60%

• Scheduling algorithm
– Each task maintains its virtual runtime

• Virtual runtime = executed time (x 1 / weight)

– Pick the task with the smallest virtual runtime
• Tasks are sorted according to their virtual times
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CFS Example

Weights: gcc = 2/3, bigsim=1/3
X-axis: mcu (tick), Y-axis: virtual time

Fair in the long run
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kernel/sched/fair.c (CFS)

• Priority to CFS weight conversion table

– Priority (Nice value): -20 (highest) ~ +19 (lowest)

– kernel/sched/core.c
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const int sched_prio_to_weight[40] = {

/* -20 */     88761,     71755,     56483,     46273,     36291,

/* -15 */     29154,     23254,     18705,     14949,     11916,

/* -10 */      9548,      7620,      6100,      4904,      3906,

/*  -5 */      3121,      2501,      1991,      1586,      1277,

/*   0 */      1024,       820,       655,       526,       423,

/*   5 */       335,       272,       215,       172,       137,

/*  10 */       110,        87,        70,        56,        45,

/*  15 */        36,        29,        23,        18,        15,

};



Summary

• Utilization Bound

• Exact Schedulability analysis

• POSIX scheduling interface
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