
EECS 388 Lab #10

Board-to-Board Communication

In this lab, you will establish UART based communication channels between the Pi 4 and the
HiFive 1 boards.

Part 0: Setup the UART connections (for TAs)
In this part, we will connect the HiFive1 and the Raspberry Pi 4 boards via two UART channels.
(Note that this step will be performed by the TAs.)

The Pi 4 has 4 UARTs and we will use two of them (uart2 and uart3). Add the following line at
the end of the /boot/config.txt file to enable uart2 and uart3.

dtoverlay=uart2,115200

dtoverlay=uart3,115200

After rebooting the system, /dev/ttyAMA1 and /dev/ttyAMA2 will be created.

Connect HiFive’s UART1 RX (pin7) to Raspberry Pi 4’s UART2 TX (pin 27). This is the main
communication line between the Pi 4 and the HiFive1. From the Pi 4, you can access the
channel via /dev/ttyAMA1.

For debugging of HiFive 1, connect HiFive1’s UART0 TX (pin1) to Pi 4’s UART3 RX (pin 29).
From the Pi 4, it can be accessed via /dev/ttyAMA2.

In summary, you will be able to access the following two files from the Pi 4.

/dev/ttyAMA1 Pi 4 → HiFive1: Send steering angle to HiFive1 (uart1).
/dev/ttyAMA2 HiFive1 → Pi 4: Receive HiFive1’s console (uart0) output

Part 1: Programming the HiFive1
In this part of the lab, you will program the HiFive1 to receive data from the Pi 4.

On your PC (not Pi 4), download the project skeleton as follows.

$ cd ~/Documents/PlatformIO

$ wget https://ittc.ku.edu/~heechul/courses/eecs388/l10-comm.tar.gz

$ tar zxvf l10-comm.tar.gz

Add the l10-interrupt folder into VSCode workspace.

Your task is to receive the data from HiFive1’s UART1 channel and send the received data to
UART0 channel. The following is a rough pseudo code of the task.

while (1) {

 if (is UART1 ready?) {

 data = read from UART1.

 print data to UART0.

 }

}

To implement the task, you may need to use the provided serial API shown in the following.
Note that devid is 0 to access UART0, while it is 1 to access UART1.

void ser_setup(int devid);
int ser_isready(int devid);
void ser_write(int devid, char c);
void ser_printline(int devid, char *str);
char ser_read(int devid);
int ser_readline(int devid, int n, char *str);

In particular, you may need to use ser_isready() function to check whether a given UART
channel has pending data to read. To better understand what the functions are doing, check
eecs388_lib.h and eecs388_lib.c files.

int ser_isready(int devid)
{

 uint32_t regval = *(volatile uint32_t *)(UART_ADDR(devid) + UART_IP);
 return regval;
}

Once you finish programming the HiFive1, switch to the Raspberry Pi 4 and open two
terminals: one for sending data to the HiFive1, and one for seeing the debug message output
from the HiFive1.

Sender’s terminal (term1)
$ screen /dev/ttyAMA1 115200

Debug terminal (term2)
$ screen /dev/ttyAMA2 115200

Now, type any strings on the ‘term1’.

If you programmed your HiFive 1 correct, you should see the message coming out from the
‘term2’ terminal.

Part 2: Programming the Raspberry Pi 4.
Instead of using terminals, you now run a python program on the Pi 4 to communicate with the
HiFive1. Your task is to extend the dnn.py from the previous lab to be able to send the steering
output to the /dev/ttyAMA1 serial channel. The following pseudo code provides a general
idea of the modifications you will need to make to dnn.py:

Open serial connections to /dev/ttyAMA1 and /dev/ttyAMA2

While True:

 image = camera.read()

 angle = dnn_inference(image)

 Write ‘angle’ to /dev/ttyAMA1

 Wait_till_next_period()

Close serial connections

To achieve the functionality from above, you need to use Python's pySerial API which can be
used by importing the serial package:

import serial

With it, you should create two separate serial channels, one for writing to the HiFive1 over
/dev/ttyAMA1 and another for debugging over /dev/ttyAMA2. Note that both channels should be
opened with the baudrate 115200 bps.

ser1 = serial.Serial(...)

ser2 = serial.Serial(...)

The angles received from the DNN as it processes frames can then be sent to the HiFive1 by
using the serial write() function:

ser1.write(...)

However, write() requires a byte value while the angle produced by the DNN is a float32 value,
so you will have to convert the angle data in order to send it to the HiFive1. Finally, after all of
the frames are processed, the serial connections can be closed by invoking the serial close()
function:

ser1.close()

ser2.close()

Appendix
GPIO mapping of Pi 4.

Source: https://learn.pi-supply.com/make/raspberry-pi-4-pinout

https://learn.pi-supply.com/make/raspberry-pi-4-pinout/

