EECS 388 Lab #3

Universal Asynchronous
Receiver/Transmitter (UART)

In this lab, we first take a deeper look at our hardware platform (HiFive1), including its CPU
architecture, memory map, external gpio pin map, and other relevant information. Then, you will
implement the ser_read() function, which reads data from the terminal via UART connection.

Part 0: Setup the project
Download the project skeleton as follows.
$ cd ~/Documents/PlatformIO

$ wget https://ittc.ku.edu/~heechul/courses/eecs388/13-uart.tar.gz
$ tar zxvf 13-uart.tar.gz

Add the [3-uart folder into VSCode workspace.

Part 1: Understanding the Hardware Platform

USB to JTAG and Serial 32Mbit SPI Flash Memory

Shield connectors

Reset Button

Wake Button RGB LED

SiFive

Micro-B USB Ly, e o
\H ; i 1 FE310-G002

WiFi + Bluetooth

7-12v DC ESP32-SOLO-1
Power Input
Shield connectors
3.3V Power LED

1.8V Power LED JTAG direct

To complete this project, you need to understand a bit more about the hardware. Let’s first open
the “SiFive HiFive1 Rev B Getting Started Guide’ (docs/hifive1b-getting-started-guide_v1.1.pdf).
This document includes lots of board specific information.

Go to Section 3.3 “USB to JTAG and Serial Ports” and find Figure 2: J-Link OB connectivity. As
you can see in the figure, the platform uses a specialized chip (Segger J-Link OB) to provide
two serial connections via USB. For this project, we will only use UARTO, which is connected to
the main CPU (SiFive FE310-G002 CPU) of the platform.

To use the UARTO, you need to program the CPU. For that, you need to read the datasheet of
the CPU (docs/FE310-G002.pdf). Open the CPU datasheet and find Figure 1, shown below
(page 11), which shows the top-level block diagram of the CPU.

FE310-G002
GPIO Complex
| S e g e G e e o 1,8V MODFF Core
GPlO
Instruction Cache Fenpheral Inlermupts UARTO
16KIB (2-Way) UARTL
[TV BWMO (8=Dit)
L—— — H>]ep10
s PWIML (16=hit)
Branch Predicton EWM2 [16=hit}
Instruction Fetch QSPI1
QSPI1
Instruction Decompressor 12C

|
|
|
|
|
|
|
|
|
Instruction Buffer l
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
4
| &
(m]
' 9
| =
| i RV32IMAC = =
| M+) T QsPID D<[ET2sh
: Multiplier/Divider T / E OTP (8KIB)
| Loat/Store M l— i -
| Mask ROM (BKIB)
w
| 7 @
| :ﬁsllirg & " Clock Generation
| eip| Platform Level Intermupt = vsspll
| | .
| sip/tip Core-Local |nterrupt } FFar] ot hfxoscin
| Control | B SITupEs hfxoscout
| | D W O e T
| dip | | |
Debug Module —
| | | _l_ Backup Registers _,—p |pmu_out_e
l [l | PMU ™ lpmu_out_1
: : SD'C | | o [|nfelkrst el
eset corerst akeup_n
TAPC 114 l
| JTME@ | Sync 1l Real-Time Clock |
l | |2 — Waltchdog |
e e e e e e e e e e = e 1faltclk
Real-Time Clock Ticks : g f— LFROSC :
1| @ Reset Unit l].faltclksel
| i POR lerst_n
: E— Bandgap |
| —
|
|

Figure 1: FE310-G002 top-level block diagram.

The block diagram shows what hardware blocks are integrated in the CPU along with other
useful information such as data ram size (16KB DTIM), which is the maximum amount of
memory you can use within your program. (This sounds very small, but don’t worry as it is
certainly big enough to complete your assignment). Note that there are two UART blocks
(UARTO and UART1), of which we will use UARTO for this lab.

To program the UARTO block, you first need to know where the hardware block is mapped in
the CPU’s address space. For this, let’'s go to Chapter 4 and find Table 4, shown below.

Base Top Attr. Description Notes
Ox0000_0000 | Ox0008_OFFF | RWX A | Debug Debug Address Space
Ox0000_1000 | 0x0000_1FFF | R XC Mode Select
Ox0000_2000 | OxB008_2FFF Reserved
9x0000_3000 | @x0008_3FFF | RWX A | Error Device
Ox00B0O_4000 | Ox0000_FFFF Reserved On-Chip Non Volatile Mem-
0x0001_0000 | OxB8E01_1FFF | R XC Mask REOM (& KiB) ory
Ox0001_2000 | Ox0001_FFFF Reserved
0x0002_0000 | Ox0002_1FFF [R XC | OTP Memaory Fegion
0x0002_2000 | 0x001F_FFFF Reserved
9x0200_0000 | @x0200_FFFF | RW A | CLINT
0x0201_0000 | OxO87FF_FFFF Reserved
8x0800_0000 | @x0808_1FFF | RWX A | E31 ITIM (8 KiB)
0x0800_2000 | OxBBFF_FFFF Reserved
8x0CE0_00A0 | @xOFFF_FFFF | RW A | PLIC
8x1000_0000 | 0x1000_BFFF | RWw A | AON
0x1000_1000 | Ox1066_7FFF Reserved
8x1000_80E0 | @x1008_BFFF [RW A | PRCI
0x1000_9000 | 0x1000_FFFF Reserved
09x1001_0060 | @x10Q@1_BFFF | RWw A | OTP Control
0x1001_1000 | 0x1001_1FFF Reserved

el G ARG e A A A o o Pl o B0 %Dn—(:hip Peripherals
B8x1001_3060 | @x1001_3FFF [RW A | UARTO
il:":'?“'wxu_omi;qw:mw B2 A | R 1at i e \w e e o
09x1001_5060 | @x10@1_5FFF [RWw A | PWMO
8x1001_6000 | @x1601_6FFF [RW A | 12C0
0x1001_7000 | 0x1802_2FFF Reserved
8x1002_3000 | @x1002_3FFF [RW A | UART 1
8x1002_4000 | Ox1002_4FFF [RW A | SPI1
8x1002_5000 | @x1002_5FFF [RW A | PWM 1
0x1002_6000 | Ox18603_3FFF Reserved
Bx1003_4000 | @x1003_4FFF [RW A | SPI 2
9x1003_5060 | @x10E@3_5FFF | RW A | PWM 2
0x1003_6000 | Ox1FFF_FFFF Reserved
0x2000_0000 | @x3FFF_FFFF | R XC ?_?;IP‘;) Flash Off-Chip Non-Volatile Mem-
(512 MiB) wi
0x4000_0000 | @x7FFF_FFFF Reserved
9x8000_0000 | x8BEB_3FFF [RWX A | E31 DTIM (16 KiB) On-Chip Volatile Memary
0x8000_4000 | OxXFFFF_FFFF Reserved

Table 4: FE310-G002 Memory Map. Memory Attributes: R - Fead, W - Write, X - Execute, C -

This table shows memory mapping information of the hardware blocks of the CPU. As you can
see above, the UARTO block is mapped between 0x10013000 - 0x10013FFF (4KB space).

Cacheable, A - Atomics

Next, we need to know how to actually program the UART hardware block, which is described in
Chapter 18. Note that each UART block has 8 entry TX and RX FIFO queues to temporarily
hold data to be sent and received. The following table (Table 55) shows the control registers
that you need to know to interact with a UART hardware block.

Offset | Name Description
OX00 | txdata | Transmit data register
Ox04 | rxdata | Receive data register
Ox08 | txctrl | Transmit control register
Ox0C | rxctrl | Receive control register

Ox10 | ie UART interrupt enable
Ox14 | ip UART interrupt pending
0x18 | div Baud rate divisor

Table 55: Register offsets within UART memory map

The rest of the chapter describes what these control registers are about and how they can be
read/written in order to communicate between the UART block hardware and your software
code. You will need to refer to this chapter to understand the code we provided and to complete
the assignment.

Part 2: UART read/write functions

Task 2.1. Review the EECS388 library

We already provided the UART initialization and transmit related code as part of the EECS388
library (src/eecs388_lib.[ch]). So, let’s first look at the provided code to better understand how to
program the UART block.

The code below shows the implementation of ser_setup(), which initializes the UART block.
What it does is simply set the bit 0 of the txctrl and rxctrl register values as 1.

void ser setup ()

{

*(volatile uint32 t *) (UARTO CTRL ADDR + UART TXCTRL) |= 0x1;

*(volatile uint32 t *) (UARTO CTRL ADDR + UART RXCTRL) |= 0x1;

}

If you look at Section 18.6, writing one to bit 0 of the txctrl register enables the transmit
capability of the UART block. Likewise, in Section 18.7, you can find that receive capability can
be enabled by writing one to bit 0 of the rxctrl register. Thus, the ser_setup() function enables
both the transmit and receive capabilities of the UART block.

ser write (
regval;
do {

regval = *(*) (UARTO_CTRL_ADDR + UART TXDATA) ;
} while (regval & 0x80000000) ;

*) (UARTO_CTRL ADDR + UART TXDATA)

Now, let’s look at the ser_write() function shown above. What this code does is busy-wait while
bit 31 of the txdata register is 1, which---according to Section 18.4, Table 56---indicates that
the transmit FIFO queue is full. If it is not---i.e., the queue is not full---then the single character
‘c’ (8 bit) is written to the [7:0] bits of the txdata register.

Task 2.2. Implement ser_read()

Reading from the UART block can be performed similarly, but by using the rxdata register
instead. Consult the datasheet (Section 18.5) and implement the ser_read() function.

Once you correctly implement the ser_read() function, you can type ‘r’ or ‘g’ or ‘b’ characters
over the serial terminal in your PC to enable red, green, blue LEDs, respectively.

Note that to open the serial terminal in your PC, click the PlatformlO: Serial Monitor icon, which
is the 2nd to last in the toolbar at the bottom left.

