
EECS 388 Lab #3

Universal Asynchronous
Receiver/Transmitter (UART)

In this lab, we first take a deeper look at our hardware platform (HiFive1), including its CPU
architecture, memory map, external gpio pin map, and other relevant information. Then, you will
implement the ​ser_read()​ function, which reads data from the terminal via UART connection.

Part 0: Setup the project
Download the project skeleton as follows.

$ cd ~/Documents/PlatformIO

$ wget https://ittc.ku.edu/~heechul/courses/eecs388/l3-uart.tar.gz

$ tar zxvf l3-uart.tar.gz

Add the l3-uart folder into VSCode workspace.

Part 1: Understanding the Hardware Platform

To complete this project, you need to understand a bit more about the hardware. Let’s first open
the “SiFive HiFive1 Rev B Getting Started Guide’ (docs/hifive1b-getting-started-guide_v1.1.pdf).
This document includes lots of board specific information.

Go to Section 3.3 “USB to JTAG and Serial Ports” and find Figure 2: J-Link OB connectivity. As
you can see in the figure, the platform uses a specialized chip (Segger J-Link OB) to provide
two serial connections via USB. For this project, we will only use UART0, which is connected to
the main CPU (SiFive FE310-G002 CPU) of the platform.

To use the UART0, you need to program the CPU. For that, you need to read the datasheet of
the CPU (docs/FE310-G002.pdf). Open the CPU datasheet and find Figure 1, shown below
(page 11), which shows the top-level block diagram of the CPU.

The block diagram shows what hardware blocks are integrated in the CPU along with other
useful information such as data ram size (16KB DTIM), which is the maximum amount of
memory you can use within your program. (This sounds very small, but don’t worry as it is
certainly big enough to complete your assignment). Note that there are two UART blocks
(UART0 and UART1), of which we will use UART0 for this lab.

To program the UART0 block, you first need to know where the hardware block is mapped in
the CPU’s address space. For this, let’s go to Chapter 4 and find Table 4, shown below.

This table shows memory mapping information of the hardware blocks of the CPU. As you can
see above, the UART0 block is mapped between 0x10013000 - 0x10013FFF (4KB space).

Next, we need to know how to actually program the UART hardware block, which is described in
Chapter 18. Note that each UART block has 8 entry TX and RX FIFO queues to temporarily
hold data to be sent and received. The following table (Table 55) shows the control registers
that you need to know to interact with a UART hardware block.

The rest of the chapter describes what these control registers are about and how they can be
read/written in order to communicate between the UART block hardware and your software
code. You will need to refer to this chapter to understand the code we provided and to complete
the assignment.

Part 2: UART read/write functions

Task 2.1. Review the EECS388 library
We already provided the UART initialization and transmit related code as part of the EECS388
library (src/eecs388_lib.[ch]). So, let’s first look at the provided code to better understand how to
program the UART block.

The code below shows the implementation of ser_setup(), which initializes the UART block.
What it does is simply set the bit 0 of the ​txctrl​ and ​rxctrl​ register values as 1.

void​ ​ser_setup​()
{

 ​/* initialize UART0 TX/RX */
 *(​volatile​ ​uint32_t​ *)(UART0_CTRL_ADDR + UART_TXCTRL) |= ​0x1​;
 *(​volatile​ ​uint32_t​ *)(UART0_CTRL_ADDR + UART_RXCTRL) |= ​0x1​;
}

If you look at Section 18.6, writing one to bit 0 of the ​txctrl ​register enables the transmit
capability of the UART block. Likewise, in Section 18.7, you can find that receive capability can
be enabled by writing one to bit 0 of the ​rxctrl​ register. Thus, the ser_setup() function enables
both the transmit and receive capabilities of the UART block.

void​ ​ser_write​(​char​ ​c​)
{

 ​uint32_t​ regval;
 ​/* busy-wait if tx FIFO is full */
 ​do​ {
 regval = *(​volatile​ ​uint32_t​ *)(UART0_CTRL_ADDR + UART_TXDATA);
 } ​while​ (regval & ​0x80000000​);

 ​/* write the character */
 *(​volatile​ ​uint32_t​ *)(UART0_CTRL_ADDR + UART_TXDATA) = c;
}

Now, let’s look at the ser_write() function shown above. What this code does is busy-wait while
bit 31 of the ​txdata​ register is 1, which---according to Section 18.4, Table 56---indicates that
the transmit FIFO queue is full. If it is not---i.e., the queue is not full---then the single character
‘c’ (8 bit) is written to the [7:0] bits of the ​txdata​ register.

Task 2.2. Implement ser_read()

Reading from the UART block can be performed similarly, but by using the ​rxdata​ register
instead. Consult the datasheet (Section 18.5) and implement the ​ser_read()​ function.

Once you correctly implement the ser_read() function, you can type ‘r’ or ‘g’ or ‘b’ characters
over the serial terminal in your PC to enable red, green, blue LEDs, respectively.

Note that to open the serial terminal in your PC, click the PlatformIO: Serial Monitor icon, which
is the 2nd to last in the toolbar at the bottom left.

