
EECS 388 Lab #6

Timer Interrupt Handling

In this lab, you will write timer interrupt handler.

Part 0: Setup the project
Download the project skeleton as follows.

$ cd ~/Documents/PlatformIO

$ wget https://ittc.ku.edu/~heechul/courses/eecs388/l6-interrupt.tar.gz

$ tar zxvf l6-interrupt.tar.gz

Add the l6-interrupt folder into VSCode workspace.

Part 1: Understanding Timer and Interrupt Handling in RISC-V
To do this lab, you need to understand a bit of background on how interrupts work in RISC-V.
Open the CPU datasheet (docs/FE310-G002.pdf) and read Chapter 8. Figure 4 shows how
various interrupts are connected to the CPU core (E31). What you will use in this lab is ‘Machine
Timer Interrupt’ as shown in the figure below.

‘Machine Timer Interrupt’ is a core local timer interrupt, which can be generated by using two
architecturally defined timer registers: mtime and mtimecmp.

In RISC-V, each core is required to provide a 64 bit real-time counter, which is monotonically
increasing at a constant speed and is exposed as a memory mapped register, mtime. In the E31
core of the HiFive1 board, CLINT (core local interruptor) hardware block (Chapter 9) is
responsible to provide the real-time counter and is mapped at the following address.

On the HiFive1 platform, the mtime register contains the number of cycles counted from the
system’s real-time clock, which is running at 32.678kHz (32768Hz).

The following get_cycles function, which is provided in eecs388_lib.c, returns the value of the
mtime register.
uint64_t get_cycles(void)
{

 return *(volatile uint64_t *)(CLINT_CTRL_ADDR + CLINT_MTIME);
}

Quiz. How long (in years) will it take to overflow the 64bit timer? Assume the counter begins
from zero at reset, and is incremented at the speed of 32678Hz.

In order to generate a timer interrupt, one should update mtimecmp register, which is mapped in
the following address on the HiFive 1 platform.

A timer interrupt (if enabled) is generated whenever mtime is greater than or equal to the value
in the mtimecmp register. Therefore, to generate a timer interrupt after X cycles, one can update
mtimecmp register as follows: mtimecmp = mtime + X.

You can use the following set_cycle function, which is provided in eecs388_lib.c, to update
the mtimecmp register.
void set_cycles(uint64_t cycle)
{

 *(volatile uint64_t *)(CLINT_CTRL_ADDR + CLINT_MTIMECMP) = cycle;
}

Note that the timer interrupt can be enabled or disabled by updating an architecturally defined
control register, mie, shown below. To enable the timer interrupt, MTIE (bit 7) field of the mie
register should be set, while it should be cleared to disable it.

In addition to mie register, there is another control register, mstatus, which can enable or
disable all interrupts. To enable the timer interrupt, both mie and mstatus registers should be
updated as follows: mie.MTIE = 1 and mstatus.MIE = 1.

Note that unlike the timer registers, mie and mstatus registers are not memory-mapped and
can only be accessed by executing special instructions: csrr and csrw for read and write,
respectively. You can use the following macros, which are provided in the eecs388_lib.h.

#define read_csr(reg) ({ unsigned long __tmp; \
 asm volatile ("csrr %0, " #reg : "=r"(__tmp)); \
 __tmp; })

#define write_csr(reg, val) ({ \
 asm volatile ("csrw " #reg ", %0" :: "rK"(val)); })

For example, read_csr(mie) will return the value of the mie register, while write_csr(mie,
<32bit value>) will update the mie register.

Once an interrupt is generated, the CPU traps to the address stored in mtvec register. The trap
handler is responsible to identify the cause of the interrupt and jump to the appropriate interrupt
service routine. The cause of the interrupt can be read via mcause register, shown below, which

is also accessible only via csrr or cswr instructions (using the macros above, for example,
read_csrr(mcause)). For the timer interrupt, the exception code in the mcause register is 7.

Part 2: Write your periodic timer interrupt handler
The goal of this lab is to blink an LED at a constant 100ms interval. You need to program the
timer handler and interrupt enable/disable functions to complete the lab.

First, review the main program ‘eecs388_interrupt.c’ and eecs388_lib.[ch]. Currently,
timer_handler, enable_interrupt, disable_interrupt are partially filled or empty. Your
task is to complete the functions.

