EECS 388 Lab #7 Intro to Embedded Linux

In this lab, you will setup your account on your Raspberry Pi 4, and be familiarized with the system.

Unlike the HiFive1 micro-controller you used, the Raspberry Pi 4 in front of you is essentially a small PC, which runs a general purpose operating system, Linux, complete with a desktop environment. You can basically do anything that you would expect to do on a Linux based PC. On the Raspberry Pi 4, using its computing power, you will later run a deep learning model for vision based real-time control.

Part 0: Setup your account in the Raspberry Pi 4.

Before you do any of such fancy things, you first need to setup your account that you will use for the rest of the semester. Because each Pi needs to be shared by six students, we created the following six accounts.

Login id:

lab1	for M 08:00 - 09:50 a m. class
lab 1	for M 02:00 02:50 nm class
labz	101 W 02.00 - 03.50 p.m. class
lab3	for Tu 08:00 - 09:50 a.m. class
lab4	for Tu 01:00 - 02:50 p.m. class

lab5	for W 02:00 - 03:50 p.m. class
lab6	for Th 08:00 - 09:50 a.m. class

You need to choose the right account based on which lab section you belong to. For example, if you are in 8:00 a.m. Monday lab section, your account will be 'lab1', while it will be 'lab6' if you are in the Thursday lab.

The TA will tell you the initial login password. Once you login to the Pi 4, the first thing you need to do is to change the password as follows, so that only you can access the files in our account.

\$ passwd

Note that, throughout the rest of the semester, you need to use the same Pi 4 because your account is local to the specific Pi 4 board.

Part 1: Getting familiar with the commonly used Linux tools

In this lab, the main goal is to get familiar with the system.

```
Task 1.1 Hello World in C
```

Use your favorite editor (vi, emacs, or anything), edit the following hello world in C and python

```
$ vi hello.c
#include <stdio.h>
int main()
{
    printf("hello world!\n");
    return 0;
}
$ gcc hello.c
$ ./a.out
hello world!
```

Task 2. Hello World in Python

Do the same hello world with python as follows.

```
$ python
Python 2.7.16 (default, Apr 6 2019, 01:42:57)
[GCC 8.2.0] on linux2
```

```
Type "help", "copyright", "credits" or "license" for more information. >>> print ("Hello World!") Hello World!
```

Task 3. System monitoring

Let's check what programs are currently running on the pi 4 using htop. Note that Pi 4 has 4 cores and 2 GB of memory. You can visually see what programs are running on which CPU cores and how much they are being used.

\$	ht	ор
----	----	----

File Ed	t Tabs <mark>H</mark>	elp								
* pi@ras	pbe 🕺 p	oi@ra	spberr.	×						
1 [2.0%] Tasks: 73, 184 thr; 1 running 2 [3.4%] Load average: 0.98 1.20 1.19 3 [1.3%] Uptime: 00:34:52 4 [13.4%] Mem[
PID US	ER PRI	NI	VIRT	RES	SHR	S	CPU%	MEM%	TIME+	Command
492 ro	ot 20	Θ	248M	58348	40072	S	12.7	2.9	4:42.25	/usr/lib/xorg/Xo
8054 pi	20	Θ	116M	30368	24364	S	6.7	1.5	0:00.96	gnome-screenshot
743 pi	20	Θ	87440	29052	21984	S	3.4	1.5	1:39.68	lxterminal
8096 pi	26	Θ	8064	2680	2252		1.3	0.1	0:00.41	htop
7668 pi	26	Θ	425M	142M	102M	S	0.7	7.3	0:10.22	/usr/lib/chromiu
508 ro	ot 26	Θ	248M	58348	40072	S	0.7	2.9	0:04.50	/usr/lib/xorg/Xo
762 pi	26	Θ	619M	158M	82088	S	0.7	8.2	3:44.67	/usr/lib/chromiu
789 pi	26	Θ	619M	158M	82088	S	0.7	8.2	1:29.72	/usr/lib/chromiu
7672 pi	26	Θ	425M	142M	102M	S	0.0	7.3	0:00.68	/usr/lib/chromiu
913 pi	26	Θ	421M	102M	64928	S	0.0	5.3	0:34.61	/usr/lib/chromiu
807 pi	26	Θ	421M	102M	64928	S	0.0	5.3	4:21.81	/usr/lib/chromiu
7675 pi	20	Θ	425M	142M	102M	S	0.0	7.3	0:01.79	/usr/lib/chromiu
F1Help	-2Setup F3S	earch	F4Filt	ter F5Tr	ree <mark>F</mark>	So	ortBy	7Nice	-F8Nice	+F9Kill F10Quit

Now, open another terminal and run the following simple C program and see how it is shown in the htop screen.

```
$ vi cpuhog.c
int main()
{
   while(1);
   return 0;
}
$ gcc cpuhog.c -o cpuhog
$ ./cpuhog
```

There are a couple of very useful Raspberry Pi specific tools. The pinout is such a program. You may need the tool in the future when you connect the Pi 4 to other sensors and the HiFive 1.

File Edit Tabs Help	
* pi@raspbe 🕱 pi@raspberr 🕱	
pi@raspberrypi:~ 5 pinout	
000000000000000000000000000000000000	
Revision: b03111SoC: BCM2711RAM: 2048MbStorage: MicroSDUSB ports: 4 (excluding power)Ethernet ports: 1Wi-fi: TrueBluetooth: TrueCamera ports (CSI): 1Display ports (DSI):1	
J8: 3V3 (1) (2) 5V GPI02 (3) (4) 5V GPI03 (5) (6) GND GPI04 (7) (8) GPI014 GND (9) (10) GPI015 GPI017 (11) (12) GPI018 GPI027 (13) (14) GND	
GPI022 (15) (16) GPI023 3V3 (17) (18) GPI024 GPI010 (19) (20) GND GPI09 (21) (22) GPI025 GPI011 (23) (24) GPI08 GND (25) (26) GPI07 GPI00 (27) (28) GPI01	
GPI05 (29) (30) GND GPI06 (31) (32) GPI012 GPI013 (33) (34) GND GPI019 (35) (36) GPI016 GPI026 (37) (38) GPI020 GND (39) (40) GPI021	

\$ pinout

Appendix

GPIO mapping of Pi 4.

Function	Pin Number	Pin Number	Function
3V3	1	2	5V
SPI3 MOSI/SDA3	3	4	5V
SPI3 SCLK/SCL3	5	6	GND
SPI4 CE0 N/SDA 3	7	8	TXD1/SPI5 MOSI
GND	9	10	RXD1/SPI5 SCLK
	11	12	SPI6 CEO N
SPI6 CE1 N	13	14	GND
SDA6	15	16	SCL6
3V3	17	18	SPI3 CE1 N
SDA5	19	20	GND
RXD4/SCL4	21	22	SPI4 CE1 N
SCL5	23	24	SDA4/TXD4
GND	25	26	SCL4/SPI4 SCLK
SPI3 CE0 N/TXD2/SDA6	27	28	SPI3 MISO/SCL6/RXD2
SPI4 MISO/RXD3/SCL3	29	30	GND
SPI4 MOSI/SDA4	31	32	SDA5/SPI5 CEO N/TXD5
SPI5 MISO/RXD5/SCL5	33	34	GND
SPI6 MISO	35	36	SPI1 CE2 N
SPI5 CE1 N	37	38	SPI6 MOSI
GND	39	40	SPI6 SCLK
12C			Ground
UART			5V Power
SPI			3V3 Power

Source: <u>https://learn.pi-supply.com/make/raspberry-pi-4-pinout</u>

Disclaimer: This document is edited on a Raspberry Pi 4 using chromium-browser.