EECS 388 Lab #8

Playing with Linux Scheduler

In this lab, you will learn to interact with Linux's CPU schedulers and monitor their behaviors on Raspberry Pi 4. In the process, you will also learn to use several standard tools and scheduling related system call APIs.

Part 1. Using scheduler related tools

On a terminal, create the following 'cpuhog' program and compile it.

```
$ cat cpuhog.c
int main()
{
         while(1);
}
$ gcc cpuhog.c -o cpuhog
```

Now, you shall use the 'taskset' utility to launch three instances of the 'cpuhog' program as follows.

```
$ taskset -c 0 ./cpuhog &
[1] 3361
$ taskset -c 0 ./cpuhog &
[2] 3378
$ taskset -c 0 ./cpuhog &
[3] 3379
```

The taskset utility controls which CPU core (cores) to execute the given program. In this case, it forces to schedule at core 0 (due to "-c 0").

On the terminal, execute the 'htop' program. You will see something like the following. (Alternatively, you can use 'top' program).

File Edit Tabs Help												
1 [
PID	USER		PRI	NI	VIRT	RES	SHR	S	CPU%	MEM%	TIME+	Command
3361	pi		20	Θ	1720	304	248	R	33.7	0.0	0:39.89	./cpuhog
3379	pi		20	Θ	1720	320	264		33.7	0.0	0:38.36	./cpuhog
3378	pi		20	Θ	1720	324	268		33.0	Θ.Θ	0:38.64	./cpuhog
4044	pi		20	Θ	116M	30220	24224	S	2.0	1.5	0:00.61	gnome-screenshot
6708	root		20	Θ	247M	56280	38392	S	2.0	2.8	3:13.18	/usr/lib/xorg/Xor
1731	pi		20	Θ	8184	2860	2288		1.3	0.1	0:07.38	htop
2867	pi		20	Θ	501M	138M	61124	S	0.7	7.2	0:46.93	/usr/lib/chromium
1077	pi		20	Θ	558M	132M	84164	S	Θ.7	6.8	0:47.75	/usr/lib/chromium
6727	root		20	Θ	247M	56280	38392	S	0.7	2.8	0:01.53	/usr/lib/xorg/Xor
2161	pi		20	Θ	425M	144M	103M	S	Θ.7	7.4	0:09.02	/usr/lib/chromium
1142	pi		20	Θ	365M	80332	58148	S	Θ.Θ	4.0	0:40.30	/usr/lib/chromium
1121	pi		20	Θ	558M	132M	84164	S	Θ.Θ	6.8	0:14.22	/usr/lib/chromium
1218	pi		20	Θ	289M	73288	38932	S	Θ.Θ	3.7	0:08.43	/usr/lib/chromium
824	pi		20	Θ	64476	16936	12968	S	Θ.Θ	0.9	0:00.74	openboxconfig-
F1Help	F2	Setup	F3Se	earch	<mark>F4</mark> Fili	ter <mark>F5</mark> Ti	ree <mark>F</mark>	S	ortBy	7Nice	- <mark>F8</mark> Nice	+F9Kill F10Quit

Next, you will change cpuhog instances' nice values (i.e., CFS priority values) using the 'renice' tool. Open up a new terminal so that we can keep monitoring the output of the top.

Check the PID values of the three cpuhog instances shown on the top screen. In the example above, they are 3379, 3378, 3361. Your PID values may be different. You can also check the pid values by using the 'pidof' tool as follows.

\$ pidof cpuhog
3379 3378 3361

Now, let's change the nice value of the first cpuhog instance.

\$ renice 5 3379

On the terminal executing htop, monitor the CPU utilization the cpuhog instances. You should see that the CPU utilization of the reniced cpuhog is dropped to around 14% while each of the other two cpuhog instances utilizes around 43%.

PID USE	R PR	NI	VIRT	RES	SHR	S	%CPU	%MEM	TIME+	COMMAND
3378 pi	20	0	1720	324	268	R	43.0	0.0	1:54.44	cpuhog
3361 pi	20	0	1720	304	248	R	42.7	0.0	1:55.71	cpuhog

3379 pi 25 5 1720 320 264 R 13.9 0.0 1:25.38 cpuhog

Next, you again change the second cpuhog instance's nice value as follows. \$ renice 5 3378

Then, again monitor the 'htop' screen. You should see each of the reniced cpuhog instances (3379 and 3378) consumes around 20% and the remaining 'normal' instance is consuming around 60%.

PID	USER	PR	NI	VIRT	RES	SHR	S	%CPU	%MEM	TIME+	COMMAND
3361	pi	20	0	1720	304	248	R	60.3	0.0	2:20.85	cpuhog
3379	pi	25	5	1720	320	264	R	19.9	0.0	1:33.62	cpuhog
3378	pi	25	5	1720	324	268	R	19.5	0.0	2:15.20	cpuhog

\$ renice 5 3361

Monitor the 'htop' screen. You should now see all cpuhog instances equally share the CPU---33% each.

PID USER	PR	NI	VIRT	RES	SHR S	5 %CPL	J %MEM	TIME+	COMMAND
3379 pi	25	5	1720	320	264 I	R 33.6	5 0.0	1:45.66	cpuhog
3361 pi	25	5	1720	304	248 I	R 33.2	0.0	2:47.86	cpuhog
3378 pi	25	5	1720	324	268 I	R 33.2	0.0	2:27.27	cpuhog

Part 2. Using scheduler related system calls

So far, you have used 'taskset' and 'renice' tools to control cpu core and nice values of your cpuhog program. Now, instead of using these external tools, you need to modify the cpuhog.c code and directly use system calls.

First, modify cpuhog.c to always be scheduled on core 0. You need to use 'sched_setaffinity' system call. See the manual.

\$ man sched_setaffinity

Then, use the 'setpriority' system call to change the task's nice value to 5. Again, see the manual for usage.

\$ man setpriority

Save the modified code as lab8.c and show it to your TA.