
EECS 388 Lab #8

Playing with Linux Scheduler

In this lab, you will learn to interact with Linux’s CPU schedulers and monitor their behaviors on
Raspberry Pi 4. In the process, you will also learn to use several standard tools and scheduling
related system call APIs.

Part 1. Using scheduler related tools
On a terminal, create the following ‘cpuhog’ program and compile it.

$ cat cpuhog.c

int main()

{

 while(1);

}

$ gcc cpuhog.c -o cpuhog

Now, you shall use the ‘taskset’ utility to launch three instances of the ‘cpuhog’ program as
follows.

$ taskset -c 0 ./cpuhog &

[1] 3361

$ taskset -c 0 ./cpuhog &

[2] 3378

$ taskset -c 0 ./cpuhog &

[3] 3379

The taskset utility controls which CPU core (cores) to execute the given program. In this case, it
forces to schedule at core 0 (due to “-c 0”).

On the terminal, execute the ‘htop’ program. You will see something like the following.
(Alternatively, you can use ‘top’ program).

Next, you will change cpuhog instances’ nice values (i.e., CFS priority values) using the ‘renice’
tool. Open up a new terminal so that we can keep monitoring the output of the top.

Check the PID values of the three cpuhog instances shown on the top screen. In the example
above, they are 3379, 3378, 3361. Your PID values may be different. You can also check the
pid values by using the ‘pidof’ tool as follows.

$ pidof cpuhog

3379 3378 3361

Now, let’s change the nice value of the first cpuhog instance.

$ renice 5 3379

On the terminal executing htop, monitor the CPU utilization the cpuhog instances. You should
see that the CPU utilization of the reniced cpuhog is dropped to around 14% while each of the
other two cpuhog instances utilizes around 43%.

 PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND

 3378 pi 20 0 1720 324 268 R 43.0 0.0 1:54.44 cpuhog

 3361 pi 20 0 1720 304 248 R 42.7 0.0 1:55.71 cpuhog

 3379 pi 25 5 1720 320 264 R 13.9 0.0 1:25.38 cpuhog

Next, you again change the second cpuhog instance’s nice value as follows.
$ renice 5 3378

Then, again monitor the ‘htop’ screen. You should see each of the reniced cpuhog instances
(3379 and 3378) consumes around 20% and the remaining ‘normal’ instance is consuming
around 60%.

 PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND

 3361 pi 20 0 1720 304 248 R 60.3 0.0 2:20.85 cpuhog

 3379 pi 25 5 1720 320 264 R 19.9 0.0 1:33.62 cpuhog

 3378 pi 25 5 1720 324 268 R 19.5 0.0 2:15.20 cpuhog

$ renice 5 3361

Monitor the ‘htop’ screen. You should now see all cpuhog instances equally share the
CPU---33% each.

 PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND

 3379 pi 25 5 1720 320 264 R 33.6 0.0 1:45.66 cpuhog

 3361 pi 25 5 1720 304 248 R 33.2 0.0 2:47.86 cpuhog

 3378 pi 25 5 1720 324 268 R 33.2 0.0 2:27.27 cpuhog

Part 2. Using scheduler related system calls

So far, you have used ‘taskset’ and ‘renice’ tools to control cpu core and nice values of your
cpuhog program. Now, instead of using these external tools, you need to modify the cpuhog.c
code and directly use system calls.

First, modify cpuhog.c to always be scheduled on core 0. You need to use ‘sched_setaffinity’
system call. See the manual.

$ man sched_setaffinity

Then, use the ‘setpriority’ system call to change the task’s nice value to 5. Again, see the
manual for usage.

$ man setpriority

Save the modified code as lab8.c and show it to your TA.

