
EECS 388 Lab #9

Real-Time DNN Inferencing

In this lab, you will learn how to load a Deep Neural Network (DNN) model and perform
inferencing operations on the Raspberry Pi 4.

(Note that much of this lab is derived from the DeepPicar project, shown in the pictures above. If
you want to know more about the project, check https://github.com/mbechtel2/DeepPicar-v2.)

Part 0: Setup the project
Download the project skeleton on your Raspberry Pi 4 (not your PC) as follows.

$ mkdir -p ~/eecs388

$ cd ~/eecs388

$ wget https://ittc.ku.edu/~heechul/courses/eecs388/l9-dnn.tar.gz

$ tar zxvf l9-dnn.tar.gz

In the project folder, we already provide a pre-trained DNN model (model.py and model/), a
sample video file (epoch-1.avi), and interference code (dnn.py).

The DNN model (defined in model.py) is designed to take a camera image as input and
produces a steering angle to stay in the lane as output.

https://github.com/mbechtel2/DeepPicar-v2

The sample video file was originally created from the camera of an RC car driven by a human
pilot. This video will be used as input to the DNN model instead of using an actual camera.
Check the video file as follows. (You can use file browser of the pi desktop instead)

$ vlc epoch-1.avi

Part 1: Getting familiar with the TensorFlow framework

In order to run a DNN-based application, we will useTensorFlow, which is a popular deep
learning software framework from Google.

Using your favorite editor, open the dnn.py file.

In order to run any neural network, TensorFlow uses sessions which hold individual models and
run the operations necessary for the network's architecture. In order to load our DNN model, we
need to create a session and assign the model to that session:

#Load the model

sess = tf.InteractiveSession(config=config)

saver = tf.train.Saver()

model_load_path = "model/model.ckpt"

saver.restore(sess, model_load_path)

From there, we can feed input data to the loaded model to perform inferencing operations and
get the control output. However, we must first collect input data and transform it such that it's
compatible with the model. For this lab, we provide a epoch-1.avi video file and use the
OpenCV image processing library for retrieving its individual frames:

cap = cv2.VideoCapture(vid_path) # Open the video file

…

ret, img = cap.read() # Retrieve the next frame from the video

Even though we now have data to feed to the model, we must further transform it such that it is
compatible with the network architecture. If we look at the provided model.py file, we'll see that
the network's input layer takes an input image with dimensions of 66x200x3.

x = tf.placeholder(tf.float32, shape=[None, 66, 200, 3],
 name="input_x")

Since the video, and by proxy the frames, we use for input are all 320x240x3 large, attempting
to feed it to the model would generate an error. As such, we preprocess each frame such that
its dimensions align with the model's input layer:

Preprocess the image

img = cv2.resize(img, (200,66))

img = img / 255.

At this point, we have valid input data and can feed it to the model:

rad = model.y.eval(feed_dict={model.x: [img]})[0][0]

Once the inferencing operation is complete, we get an output value which represents the
steering angle, in radians, the model thinks a car should use for the given input frame. How this
output value is processed depends on the application and its implementation. For example, we
convert the output value to degrees and then print the output and all relevant timing
characteristics.

Now that we have gone over the necessary steps for loading and running a DNN, try running
the dnn.py program and see how it performs:

$ python dnn.py

On average it should take ~21-22 ms on average to perform inferencing when the CPU is
running at 1.5GHz.

Part 2: Improving network inferencing performance

Taking a closer look at the source code for dnn.py, you can see the following lines towards the
beginning of the file:

#Get and set the number of cores to be used by TensorFlow

if(len(sys.argv) > 1):

 NCPU = int(sys.argv[1])

else:

 NCPU = 1

config = tf.ConfigProto(intra_op_parallelism_threads=NCPU, \

 inter_op_parallelism_threads=NCPU, \

 allow_soft_placement=True, \

 device_count = {'CPU': 1})

By default, we only have TensorFlow use a single core to perform all of the necessary
inferencing operations. This can be changed by simply passing the number of cores we want to
use as a command line argument when we run the program. For example, to run the DNN with
all four cores available on the Pi 4 you would run the following:

$ python dnn.py 4

By doing so, we see a significant improvement to the timing performance of the DNN. At
1.5GHz, we reduce the average inferencing time by half (~11 ms).

Your task is to measure the performance---especially mean, which represents the average, and
max, which represents the worst-case---of the inferencing operations while varying the number
of CPU cores being used from 1 to 4. Your report should include graphs showing how the mean
and max vary as a function of the number of CPU cores.

Appendix A: Installing TensorFlow on your own Pi 4.

While TensorFlow is already installed on the Raspberry Pi 4's in the lab, you can install it on
your own machines as well. This can be done by using the pip package manager for Python
modules. If Python and/or pip aren't already installed, they can be with the following commands:

$ sudo apt-get install python-dev

$ curl https://bootstrap.pypa.io/get-pip.py -o get-pip.py

$ sudo python get-pip.py

Once installed, TensorFlow can be installed with the following commands:

$ sudo apt-get install libhdf5-dev

$ sudo pip install --no-cache-dir tensorflow

Note that the libhdf5-dev library is needed for another module TensorFlow uses, h5py. Lastly,
install OpenCV packages for image processing.

$ sudo apt-get install python-opencv

To use tensorflow in python3, do the following (optional).

$ sudo pip3 install --no-cache-dir tensorflow

$ sudo apt-get install python3-opencv

