Virtual Machine Monitor
Recap

• Emulator
 – Emulate hardware (e.g., Nintendo) in software

• Java virtual machine (JVM)
 – Platform neutral machine (typically s/w) that runs java bytecode

• Virtual machine monitor (VMM)
 – A kind of OS for virtual machines
Java Bytecode

- Java bytecode = instructions for JVM
- One byte opcode + variable length args – 198 instructions are in use

Figure source: http://www.cs.toronto.edu/~matz/dissertation/matzDissertation-latex2html/node5.html
Recap: Java Virtual Machine

Java program .class files → class loader

Java byte code → Java interpreter

Performance killer

Java API .class files

host system (Windows, Linux, etc.)
Recap: Types of VMM

- **Native (or Type 1) VMM**
 - VMM runs directly on top of bare hardware
 - Vmware ESX, Microsoft Hyper-V
 - VMM is a kind of a OS on its own right

- **Hosted (or Type 2) VMM**
 - VMM runs within an OS
 - VirtualBox, VMWare Workstation
 - VMM relies on functionalities of the host OS
Today

- Virtualization
- Container
- Docker
Virtualizing Interrupts & I/O

• VMM receives h/w interrupts
 – Determines which VM to receive
 – Emulate interrupt controller for the VM

• VMM emulate a specific h/w devices
 – Guest OS \rightarrow VMM \rightarrow devices
 • E.g., AMD Lance PCNet ethernet device

• Lots of I/O \rightarrow performance killers
Para-virtualization

• Idea: provides simple/fast APIs to guests
 – Instead of emulating actual hardware (e.g., PCNet32 ethernet card)

 – Pros
 • can be a lot faster (more efficient I/O)

 – Cons
 • need to modify the guest OS
I/O in Xen via Shared Buffer

Request Consumer
Private pointer in Xen

Request Producer
Shared pointer updated by guest OS

Response Producer
Shared pointer updated by Xen

Response Consumer
Private pointer in guest OS

- **Request queue** - Descriptors queued by the VM but not yet accepted by Xen
- **Outstanding descriptors** - Descriptor slots awaiting a response from Xen
- **Response queue** - Descriptors returned by Xen in response to serviced requests
- **Unused descriptors**
IOMMU

• Problem: How to do DMA in a VM?
 – DMA controller needs host physical address, not guest physical address

• IOMMU
 – MMU for IO devices
 – maps guest physical → host physical for the I/O devices

https://en.wikipedia.org/wiki/Input%E2%80%93output_memory_management_unit#/media/File:MMU_and_IOMMU.svg
LXC: OS (Linux) Container

- Same kernel, separate user-space
- Virtualize OS, not machine
- Low overhead, flexible
Docker: Application Container

- A container contain one application (process)
- Built on top of OS containers
- Even more flexible
Summary

• Virtual Machine (hardware virtualization)
 – Trap & emulate
 – Binary translation
 – Para-virtualization
 – Hardware support for virtualization

• Containers
 – OS container: same kernel, different user-space
 – App container: same kernel, per-process space