Multicore Resource Management for Embedded Real-Time Systems

Heechul Yun
University of Kansas
High-Performance **Multicores** for Embedded **Real-Time** Systems

• **Why?**
 – Intelligence \rightarrow more performance
 – Space, weight, power (SWaP), cost
Time Predictability Challenge

• Hardware resources are shared among the cores
• Tasks can suffer significant **interference delays**
 – unpredictable, non-deterministic ➔ non-certifiable, unsafe
Example: Real-Time Obstacle Detection and Avoidance

- Co-runners were launched on idle CPU cores
- 5X slowdown in detection speed (~10fps → 2fps)
 - can fail to avoid obstacle
 - e.g., 10m/s aircraft (MAV) can move 1m in 100ms
Research Mission

• Our research goal is to build **predictable**, **efficient**, and **safe** computing infrastructure for the next generation of intelligent embedded real-time systems, a.k.a., Cyber Physical Systems (CPS).

• Approach
 – Develop software/hardware mechanisms
 – Develop analysis framework
Research Results

Certifiable Multicore Architecture

- **Core1**
- **Core2**
- **Core3**
- **Core4**

Shared DRAM

High Performance Real-Time Memory Controller

Operating System

- **B/W Regulator**
- **B/W Regulator**
- **B/W Regulator**
- **B/W Regulator**

System Library

Memory Controller

BWLOCK
In submission

MemGuard
TC’15, RTAS’13, ECRTS’12

PALLOC
RTAS’14

Shared cache, MSHR
OSPERT’15, RTAS’16

UAV simplex
In preparation

BWLOCK
In submission

Medusa
CPSNA’15

Memory delay analysis
ECRTS’15, RTAS’16

In submission

In preparation
PALLOC

- DRAM bank-aware kernel memory allocator
- Can void bank conflict

SMP OS

- Core1
- Core2
- Core3
- Core4

CPC

Memory Controller (MC)

- Bank 1
- Bank 2
- Bank 3
- Bank 4

Improved Isolation

OS Controlled MSHR Partitioning

- Experimentally showed cache partitioning doesn’t provide cache performance isolation in non-blocking caches
- Proposed a OS/hardware collaborative solution that guarantees cache perf. isolation

[RTAS16] Prathap Kumar Valsan (*), Heechul Yun, Farzad Farshchi (*). Taming Non-blocking Caches to Improve Isolation in Multicore Real-Time Systems. In IEEE Intl. Conference on Real-Time and Embedded Technology and Applications Symposium (RTAS), 2016 (Best paper award. *: KU students)
References

- [RTAS16-1] Prathap Kumar Valsan (*), Heechul Yun, Farzad Farshchi (*). Taming Non-blocking Caches to Improve Isolation in Multicore Real-Time Systems. In IEEE Intl. Conference on Real-Time and Embedded Technology and Applications Symposium (RTAS), 2016 (Best paper award. *: KU students)
On-going Projects

• Multicore Resource Management
 – OS, architecture research for time predictability
 – Funding Agencies: NSF, ETRI

• UAV Software Platform
 – ROS (Robot Operating System) based autopilot and real-time sensor (radar and vision) processing
 – Funding Agencies: NASA
Autonomous Racing

Dr. Madhur Behl
University of Pennsylvania

http://www.f1tenth.org/
Prospective Students

• Solid background in operating systems and computer architecture
• Good system programming skills
• **Interests and experiences in building Intelligent cyber-physical systems**
 – ROS, python, Linux, OpenCV, CUDA
 – PID control, real-time sensor fusion

• Send me your CV and schedule a meeting