Proposal: Efficient Deterministic Execution Runtime

Author One, Author Two
{author1,author2} @ku.edu
University of Kansas, USA

I. PROJECT DESCRIPTION

Nowadays, shared memory multiprocessors (SMP) are be-
coming more and more popular in the commodity systems and
software programmers are expected to write multi-threaded
programs to fully utilize available processor cores. However,
writing multi-threaded programs are much more difficult than
sequential programs because interleaved accesses to shared
memory by multiple threads may result in unanticipated out-
come even though inputs are the same. The bugs, caused by
memory interleaving, are particularly problematic since it is
very difficult to diagnose and reproduce; sometimes even days
of stress test fail to manifest the same problem [3].

Many methods are developed to ease the burden of program-
mers to detect, reproduce, and avoid the interleaving problem
of multi-threaded programs. One recent approach is determin-
istic execution [4], [2]. The key idea of this approach is to
completely eliminate the interleaving problem by providing a
deterministic global order—using logical time—of all shared
accesses. It significantly reduces state space which then would
result in lower verification cost. Enforcing a global order,
however, usually comes at the cost of increased execution time.
While existing solutions have shown reasonable performance
for scientific multithreaded applications in which threads are
generally homogeneous and not I/O intensive especially during
the multithreaded execution phase. However, performance will
degrade significantly for more general multi-threaded appli-
cations in which threads are heterogeneous (i.e., each thread
performs different code) and use lots of I/O operations because
each thread may need to wait for a certain global logical time
to be reached.

In this project, we aim to improve deterministic execution
performance of general multi-thread applications with unbal-
anced blocking I/O operations by reducing the difference be-
tween the physical time progress and the logical time progress
of each thread. To do this, we categorize I/O operations
into two groups: deterministic blocking and non-deterministic
blocking operations. The examples of deterministic blocking
operations are sleep() where programmers specify explicit
blocking time. In this case, we can improve deterministic
execution performance by adding deterministic logical time
when the kernel wakes up the blocking thread. The amount
of logical time to add is deterministic, which is based on the
supplied physical time, and therefore maintain determinism.

Non-deterministic blocking calls (e.g., read(), write(),
poll()) are, however, more difficult to handle, since the physical
execution time of those calls are inherently nondeterministic

because it depends on internal operating system state and
physical device state. We will explore two possibilities. First,
we will experiment a deterministic method to predict proper
logical execution time based on system call parameters such
as length and timeout. Also, we will experiment a method
to introduce limited numbers of non-determinism to improve
accuracy of the prediction. For example, we can measure
physical blocking time of the call and then map into finite
number of predefined logical time. While latter method will
introduce non-determinism but the total interleaving space will
be smaller than full

Deliverables: We will develop an efficient deterministic
execution framework with the consideration of the I/O inter-
ference. Also, to show the effectiveness of our framework, we
will provide performance analysis of some unbalanced parallel
benchmarks from the PARSEC benchmark suite [1] and real-
world applications such as Apache and Mysql.

REFERENCES

[1] C. Bienia, S. Kumar, J. P. Singh, and K. Li. The PARSEC Benchmark
Suite: Characterization and Architectural Implications. Technical Report
TR-811-08, Princeton University, January 2008.

[2] J. Devietti, B. Lucia, L. Ceze, and M. Oskin. DMP: deterministic
shared memory multiprocessing. In Proceeding of the 14th international
conference on Architectural support for programming languages and
operating systems, pages 85-96. ACM, 2009.

[3] S. Lu, S. Park, E. Seo, and Y. Zhou. Learning from mistakes: a
comprehensive study on real world concurrency bug characteristics. ACM
SIGARCH Computer Architecture News, 36(1):329-339, 2008.

[4] M. Olszewski, J. Ansel, and S. Amarasinghe. Kendo: efficient determin-
istic multithreading in software. In Proceeding of the 14th international
conference on Architectural support for programming languages and
operating systems, pages 97-108. ACM, 2009.



