
EECS 750 Homework #1

Playing with Linux Schedulers

In this homework, you will learn to interact with Linux’s CPU schedulers and monitor their
behaviors. In the process, you will also learn to use several standard tools and scheduling
related system call APIs. ​You should submit four files: hw1-1.png, hw1-2.png, hw1-3.png
and hw1-4.c

You need to have an access to a Linux computer. Alternatively, you can download VirtualBox
and install Ubuntu 16.04 there. ​Note that the virtual machine must be configured to have at least
two CPU cores.

Part 1. Using scheduler related tools
On a terminal, create the following ‘cpuhog’ program and compile it.

$ cat cpuhog.c

int main()

{

 while(1);

}

$ gcc cpuhog.c -o cpuhog

Now, you shall use the ‘taskset’ utility to launch three instances of the ‘cpuhog’ program as
follows.

$ taskset -c 0 ./cpuhog &

[1] 21095

$ taskset -c 0 ./cpuhog &

[2] 21098

$ taskset -c 0 ./cpuhog &

[3] 21099

The taskset utility controls which CPU core (cores) to execute the given program. In this case, it
forces to schedule at core 0 (due to “-c 0”).

On the terminal, execute the ‘top’ program and press ‘1’. You will see something like the
following.

Next, you will change cpuhog instances’ nice values (i.e., CFS priority values) using the ‘renice’
tool. Open up a new terminal so that we can keep monitoring the output of the top.

Check the PID values of the three cpuhog instances shown on the top screen. In the example
above, they are 21095, 21098, 21099. Your PID values may be different. You can also check
the pid values by using the ‘pidof’ tool as follows.

$ pidof cpuhog

21099 21098 21095

Now, let’s change the nice value of the first cpuhog instance.

$ renice 5 21095

On the terminal executing top, monitor the CPU utilization the cpuhog instances. You should
see that the CPU utilization of the reniced cpuhog is dropped to around 14% while each of the
other two cpuhog instances utilizes around 43%.

 PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND

21098 heechul 20 0 4216 676 608 R 43.0 0.0 8:46.10 cpuhog

21099 heechul 20 0 4216 636 568 R 43.0 0.0 8:41.75 cpuhog

21095 ​heechul 25 5 4216 632 564 R ​13.9​ 0.0 8:20.28 cpuhog

Capture the terminal screen of the ‘top’ and save it as ‘hw1-1.png’. You should return the
file as a proof.

Next, you again change the second cpuhog instance’s nice value as follows.

$ renice 5 21098

Then, again monitor the ‘top’ screen. You should see each of the reniced cpuhog instances
(21095 and 21098) consumes around 20% and the remaining ‘normal’ instance is consuming
around 60%.

 PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND

21099 heechul 20 0 4216 636 568 R 60.5 0.0 15:40.46 cpuhog

21095 ​heechul 25 5 4216 632 564 R ​19.9​ 0.0 10:37.26 cpuhog
21098 ​heechul 25 5 4216 676 608 R ​19.9​ 0.0 15:06.33 cpuhog

Capture the terminal screen of the ‘top’ and save it as ‘hw1-2.png’. You should return the
file as a proof.

$ renice 5 21099

Monitor the ‘top’ screen. You should now see all cpuhog instances equally share the
CPU---33% each..

 PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND

21098 ​heechul 25 5 4216 676 608 R ​33.6​ 0.0 15:56.59 cpuhog
21095 ​heechul 25 5 4216 632 564 R ​33.2​ 0.0 11:27.52 cpuhog
21099 ​heechul 25 5 4216 636 568 R ​33.2​ 0.0 18:01.04 cpuhog

Capture the terminal screen of the ‘top’ and save it as ‘hw1-3.png’. You should return the
file as a proof.

Next, we will use a real-time scheduler to schedule one of the cpuhog instance. ​This requires a
root permission. If you don’t have a root access, you can skip this part.

On the terminal, use the ‘chrt’ tool to change a cpuhog instance’s scheduler from CFS to a
real-time scheduler (SCHED_FIFO) with a real-time priority value 1 as follows.

$ sudo chrt -f -p 1 21098

You should see that the cpuhog instance occupies 100% cpu time, while the other two use 0% .

 PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND

21098 ​heechul ​-2 ​ 5 4216 676 608 R ​100.0​ 0.0 22:31.53 cpuhog

Then, change the task’s scheduler back to the CFS as follows.

$ sudo chrt -o -p 0 21098

Part 2. Using scheduler related system calls

So far, you have used ‘taskset’ and ‘renice’ tools to control cpu core and nice values of your
cpuhog program. Now, instead of using these external tools, you need to modify the cpuhog.c
code and directly use system calls.

First, modify cpuhog.c to be always scheduled on core 0. You need to use ‘sched_setaffinity’
system call. See the manual.

$ man sched_setaffinity

Then, use the ‘setpriority’ system call to change the task’s nice value to 5. Again, see the
manual for usage.

$ man setpriority

Save the modified code as hw1-4.c and return it.

