
EECS 750 Homework #2

Playing with Linux CGROUP

In this homework, you will learn to interact with Linux’s CGROUP (control group).
You should submit three files: hw2-1.png, hw2-2.png, hw2-3.png

You need to have an access to a Linux computer. Alternatively, you can download VirtualBox
and install Ubuntu 16.04 there. In addition, you need a root shell access to the computer to
complete the homework.

Part 0. Preparation
On a terminal, create the ‘cpuhog’ program and copy the binary as follows.

$ cat cpuhog.c

int main()

{

 while(1);

}

$ gcc cpuhog.c -o cpuhog

$ cp -v cpuhog phd

$ cp -v cpuhog master

$ cp -v cpuhog under

Execute them twice as follows.

$ under &
$ under &
$ phd &
$ phd &
$ master &
$ master &

Now, they will be scheduled on any available cores in your computer at the time. For example,
on my computer, the ‘top’ result after that was as follows. Notice that the 6 processes we
launched are all over the cores. This is because Linux’s load balancer distributed the workload.

Part 1. Using ‘cpuset’ controller (subsystem) of CGROUP
The ‘cpuset’ controller can be used to control which cores and memory controllers of the tasks
in a cgroup. This is similar to what ‘taskset’ can do but for a group. Here, we use the cpuset
controller to consolidate all the previously launched programs on core 0.

First, become a root user
$ sudo bash

Now, create a ‘core0’ cgroup using ‘cpuset’ controller and assign the core 0 and the first
memory controller to the cgroup.

cd /sys/fs/cgroup/cpuset/

mkdir core0

echo 0 > core0/cpuset.cpus

echo 0 > core0/cpuset.mems

Now, let’s assign all processes to the created cgroup as follows.

for p in `pidof phd`; do echo $p > core0/tasks ; done

for p in `pidof master` ; do echo $p > core0/tasks ; done

for p in `pidof under`; do echo $p > core0/tasks ; done

Now, if you look at the top screen, you will see all the processes are now running only on core
0.

 PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND

16708 heechul 20 0 4216 620 552 R 16.9 0.0 12:19.43 under

16772 heechul 20 0 4216 728 664 R 16.9 0.0 11:05.86 phd

16773 heechul 20 0 4216 632 564 R 16.9 0.0 11:05.15 phd

16777 heechul 20 0 4216 640 572 R 16.9 0.0 10:59.66 master

16709 heechul 20 0 4216 628 560 R 16.6 0.0 12:18.73 under

16778 heechul 20 0 4216 632 564 R 16.6 0.0 10:58.77 master

Capture the terminal screen of the ‘top’ and save it as ‘hw2-1.png’. You should return the
file as a proof.

Part 2. Using ‘cpu’ controller of CGROUP
The ‘cpu’ controller can be used to interact with the scheduler as a group (of processes). You
can assign CPU share or limit the maximum usage.

First, let’s create the following group hierarchy.

cd /sys/fs/cgroup/cpu

mkdir grad

mkdir grad/phd

mkdir grad/master

mkdir under

Then, assign the previously launched phd, master, and under processes to their respective
cgroups as follows.

for p in `pidof phd`; do echo $p > grad/phd/tasks; done

for p in `pidof master`; do echo $p > grad/master/tasks; done

for p in `pidof under`; do echo $p > under/tasks; done

At this point, notice that ‘under’ processes are using 50% while ‘phd’ and ‘master’ are using 25%
cpu each. This is because the scheduler assign 50% to ‘grad’ cgroup and the other 50% to
‘under’ cgroup.

16708 heechul 20 0 4216 620 552 R 25.2 0.0 13:48.78 under
16709 heechul 20 0 4216 628 560 R 24.8 0.0 13:48.07 under
16772 heechul 20 0 4216 728 664 R 12.6 0.0 12:35.40 phd
16773 heechul 20 0 4216 632 564 R 12.6 0.0 12:34.69 phd
16777 heechul 20 0 4216 640 572 R 12.6 0.0 12:21.35 master
16778 heechul 20 0 4216 632 564 R 12.6 0.0 12:20.47 master

The current situation seems unfair to grad students who may need more computing resources
to conduct research. So, next, we will assign 80% share to ‘grad’ group and only 20% to ‘under’
cgroup as follows.

echo 80 > grad/cpu.shares

echo 20 > under/cpu.shares

The result will be something like the following.

 PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND

16772 heechul 20 0 4216 728 664 R 19.9 0.0 13:36.46 phd
16773 heechul 20 0 4216 632 564 R 19.9 0.0 13:35.76 phd
16777 heechul 20 0 4216 640 572 R 19.9 0.0 13:22.42 master
16778 heechul 20 0 4216 632 564 R 19.9 0.0 13:21.54 master
16709 heechul 20 0 4216 628 560 R 10.3 0.0 15:39.39 under
16708 heechul 20 0 4216 620 552 R 10.0 0.0 15:40.08 under

Next, among phd and master groups, we decide to give a bit more cpu share to the phd cgroup
(60% phd vs. 40% master) as follows.

echo 60 > grad/phd/cpu.shares

echo 40 > grad/master/cpu.shares

The result will be something like the following.

 PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND

16773 heechul 20 0 4216 632 564 R 24.3 0.0 14:52.82 phd
16772 heechul 20 0 4216 728 664 R 23.9 0.0 14:53.52 phd
16777 heechul 20 0 4216 640 572 R 15.9 0.0 14:40.81 master
16778 heechul 20 0 4216 632 564 R 15.9 0.0 14:39.92 master
16709 heechul 20 0 4216 628 560 R 10.3 0.0 16:18.25 under

16708 heechul 20 0 4216 620 552 R 10.0 0.0 16:18.95 under

Notice that phd processes are getting about 48% (100 * 0.8 * 0.6) and the master processes are
getting 32% (100 * 0.8 * 0.4) of the cpu time while the under processes are still getting the same
20% of the total cpu share.

Capture the terminal screen of the ‘top’ and save it as ‘hw2-2.png’. You should return the
file as a proof.

Now, undergrad students were given a major project (Quash project!). So, we decided to limit
the grad group’s maximum cpu share to 50%. To achieve this, you will use CFS bandwidth
controller to limit the maximum budget to 50ms (over 100ms default sampling period) as follows.

echo 50000 > grad/cpu.cfs_quota_us

Now, the final state will look like the following. Notice that under processes are now getting 50%
CPU time, while phd processes are getting 30% and master processes are getting 20%.

 PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND

16709 heechul 20 0 4216 628 560 R 25.6 0.0 18:42.40 under
16708 heechul 20 0 4216 620 552 R 24.6 0.0 18:43.09 under
16773 heechul 20 0 4216 632 564 R 15.3 0.0 18:18.26 phd
16772 heechul 20 0 4216 728 664 R 15.0 0.0 18:18.96 phd
16777 heechul 20 0 4216 640 572 R 10.0 0.0 16:57.77 master
16778 heechul 20 0 4216 632 564 R 10.0 0.0 16:56.88 master

Capture the terminal screen of the ‘top’ and save it as ‘hw2-3.png’. You should return the
file as a proof.

