
EECS 750 Homework #3

Playing with the perf tool in Linux

In this homework, you will learn to interact with Linux’s perf tool.

 You should submit two files: hw3-1.png, hw3-2.png.

Part 0. Preparation
You need to have an access to a Linux computer. In addition, you need a root shell access to
the computer to complete the homework. Virtual machines are not ideal due to their limited
hardware counter support.

On a terminal, download the IsolBench benchmark suite, which is a collection of synthetic
benchmarks to measure memory performance.

$ git clone https://github.com/CSL-KU/IsolBench

$ cd IsolBench/bench

$ make

Then, configure the kernel as follow to be able to access the hardware performance counters at
the user-level.

$ sudo bash

echo 0 > /proc/sys/kernel/perf_event_paranoid

The following is also needed to be able to use the kernel symbols
echo 0 > /proc/sys/kernel/kptr_restrict

If perf is not already installed in your machine, you need to install it to do this homework, either
using the package manager of your system or building from the source code. The following
shows the latter case.

$ cd <linux-source-code-directory>

$ cd tools/perf/

$ make -j12

Part 1. Basic event counting.
In this part of the homework, we will learn to use ‘perf stat’ module, which monitor and report
selected performance related event counters while running a program.

Before begin, let’s first see what are the available events counters---both hardware and software
counters---on your system.

$ perf list

List of pre-defined events (to be used in -e):

 branch-instructions OR branches [Hardware event]

 branch-misses [Hardware event]

 bus-cycles [Hardware event]

 cache-misses [Hardware event]

 cache-references [Hardware event]

 cpu-cycles OR cycles [Hardware event]

 instructions [Hardware event]

 ref-cycles [Hardware event]

 alignment-faults [Software event]

 bpf-output [Software event]

 context-switches OR cs [Software event]

 cpu-clock [Software event]

 cpu-migrations OR migrations [Software event]

 dummy [Software event]

 emulation-faults [Software event]

 major-faults [Software event]

..

..

Depending on architecture and specific cpu model, the observable events may differ. On the
rightmost column, “[Hardware event]” means that it is counted by a hardware performance
counter, whereas “[Software event]” refers to an event that is accounted by the OS.

Next, we will monitor the behavior of the ‘latency’ benchmark using ‘perf stat’ command as
follows. Note that the ‘latency’ benchmark is a so called ‘pointer-chasing’ application as it
traverses a randomly created linked-list over a large memory space (-m 32768 means 32768
KB, or 32MB memory space is used for the linked list).

$ perf stat ./latency -m 32768

average 74.04 ns | bandwidth 864.40 MB (824.35 MiB)/s

...

 Performance counter stats for './latency -m 32768':

 3917.705675 task-clock (msec) # 1.000 CPUs utilized

...

 13,901,105,074 cycles # 3.548 GHz

 366,597,875 instructions # 0.03 insn per cycle

 63,919,959 branches # 16.316 M/sec

 30,055 branch-misses # 0.05% of all branches

 3.917884912 seconds time elapsed

Among the several measured counters, the highlighted bottom four events are

based on hardware counters.

Due to inherent data dependency in pointer chasing, the program can measure true memory
access latency (as long as your LLC size is less than 32MB; if bigger than that, increase the
allocation size with ‘-m’ option.) In the example above, the measure (worst-case) memory
access latency is 74ns.

You can choose different events to monitor by using ‘-e’ option. The following example monitors
two events, LLC-load-misses and LLC-loads, of the program.

$ perf stat -e instructions,LLC-load-misses,LLC-loads ./latency -m 32768

...

 Performance counter stats for './latency -m 32768':

 366,486,929 instructions

 52,098,592 LLC-load-misses

 53,304,589 LLC-loads

 3.896608828 seconds time elapsed

What you see above is that almost all last-level cache (LLC) accesses were misses. This is
expected because the allocated memory size (32M) of the linked list is bigger than the CPU’s
LLC size. You can also compute the LLC MPKI (miss-per-killo-instructions) of the program as
follows: MPKI = LLC-load-misses / (instructions / 1000).

Capture the terminal screen showing the statistics above kind and save it as ‘hw3-1.png’.
You should return the file as a proof.

Part 2. Detailed analysis via sampled recording.
Now, we will do more detailed performance analysis by profiling the program.

First, profile the latency program as follows.

 $ perf record -e cycles:pp -g ./latency -m 32768

allocated: wokingsetsize=524288 entries

initialized.

duration 3906315 us

average 74.51 ns | bandwidth 858.98 MB (819.19 MiB)/s

readsum 13743869132800

[perf record: Woken up 4 times to write data]

[perf record: Captured and wrote 0.977 MB perf.data (15786 samples)]

This use the ‘cycles’ hardware counter to profile the program. The “:pp” option is added here to
use Intel’s PEBS (Precise Event Based Sampling). AMD or other architectures may not support
this option.

The profiled data is stored in the ‘perf.data’ file. We can then

$ perf report

Samples: 15K of event 'cycles:pp', Event count (approx.): 13956722034

 Children Self Command Shared Object Symbol

+ 99.93% 99.81% latency latency [.] main

 0.05% 0.00% latency [kernel.kallsyms] [k] handle_mm_fault

 0.05% 0.00% latency [kernel.kallsyms] [k] __do_page_fault

 0.05% 0.00% latency [kernel.kallsyms] [k] do_page_fault

...

The result shows the percentage of the time (via ‘cycles’ counter overflows) the program spent
on each function (symbol). Note that the symbols marked as ‘[k]’ are kernel symbols whereas
those with ‘[.]’ are user-level symbols. In this case, the program spent almost all time within the
user-level ‘main’ function.

Next, we will drill-down the profiled data in more detail, using ‘perf annotate’, to see exactly
which part of the code the program spent most of the time.

$ perf annotate

The result shows how much time is spent on each instruction (with matching C code; You can
toggle C source code view by pressing ‘s’ key.)

Capture the terminal screen showing the statistics above kind and save it as ‘hw3-2.png’.
You should return the file as a proof.

Note that this is based on profiling and thus not 100% accurate. In particular, if you don’t use
Intel PEBS mentioned earlier, identified instructions may be slightly off by a few instructions
from the real ones. For a related discussion, please read the following.
https://stackoverflow.com/questions/29528550/perf-annotated-assembly-seems-off

https://stackoverflow.com/questions/29528550/perf-annotated-assembly-seems-off

