
EECS 750 Mini Project #2

PALLOC on Raspberry Pi 3

In this mini-project, you will learn to patch your Linux kernel to replace the kernel’s memory
allocator with your own (PALLOC). Using PALLOC, you will enable color-aware memory
allocation at the kernel and use it to control memory allocation of a user program. You should
return mini-proj2-1.txt, mini-proj2-2.txt and mini-proj2-3.txt.

Part 1. Patch your kernel with PALLOC
Once you boot to the Pi 3, it’s time to patch your kernel to support palloc. Below assumes that
your linux kernel repository is located in ‘linux’ subdirectory of your current directory.

$ git clone https://github.com/heechul/palloc

$ cd linux

$ patch -p1 < ../palloc/palloc-4.4.patch

First, you should change the kernel configuration as follows.
$ make oldconfig

...

 Enable PALLOC (CGROUP_PALLOC) [N/y/?] (NEW) y

Alternatively, you can directly modify ‘.config’ file to include “CONFIG_CGROUP_PALLOC=y” line.
After changing the kernel configuration file, do the following to rebuild the kernel.

$ make -j4 zImage modules dtbs

Again, this will take about 1.5 hour. Note that it has to rebuild everything because the patch
changes linux/mmzone.h linux/cgroup_subsys.h, which are included in many part of the kernel.

Once the complication is done, again, do the following to install everything.

$ sudo make modules_install

$ sudo cp arch/arm/boot/dts/*.dtb /boot/

$ sudo cp arch/arm/boot/dts/overlays/*.dtb* /boot/overlays/

$ sudo cp arch/arm/boot/zImage /boot/kernel7.img

If everything went smoothly, then reboot the system and check if the kernel is the one you just
compiled.

$ sync; sync; sudo reboot

...

$ uname -a

Linux raspberrypi 4.9.80-v7+ #1 SMP Mon Feb 12 23:07:22 UTC 2018 armv7l
GNU/Linux

If your kernel was booted successfully, you would be able to see the following debugfs files.

$ sudo bash

cd /sys/kernel/debug/palloc/

ls -al

total 0

drwxr-xr-x 2 root root 0 Dec 31 1969 .

drwx------ 29 root root 0 Dec 31 1969 ..

-rw------- 1 root root 0 Feb 23 17:52 alloc_balance

-rw------- 1 root root 0 Feb 23 17:52 control

-rw------- 1 root root 0 Feb 23 17:52 debug_level

-rw------- 1 root root 0 Feb 23 17:52 palloc_mask

-rw------- 1 root root 0 Dec 31 1969 use_mc_xor

-rw------- 1 root root 0 Feb 23 17:52 use_palloc

Copy the output of ‘ls -al’ on the /sys/kernel/debug/palloc directory of your Pi3, save it as
‘mini-proj2-1.txt’ file. You should return the file as a proof.

Part 2. Configuring PALLOC

Next, let’s configure the palloc for Pi 3. You Pi 3 has 512KB L2 cache (16 way set associative)
and 32KB L1 data cache (4way). We use physical address bit 14,15 for page coloring in
PALLOC to partition the L2 cache using four different colors. Configure PALLOC bitmask as
follows.

echo 0xc000 > palloc_mask

Then, enable PALLOC as follows.

echo 1 > use_palloc

Lastly, let’s check if everything is configured and enabled properlly.

cat control

..

mask: 0xc000

weight: 2 (bins: 4)

bits: 14-15

XOR bits: disabled

Use PALLOC: enabled

Save the output of ‘cat /sys/kernel/debug/palloc/control’ on your Pi3 as ‘mini-proj2-2.txt’
file. You should return the file as a proof.

Part 3. Color-aware memory allocation using PALLOC

As in Mini Project #1, you will need IsolBench benchmark suite. You can skip the following, if
you already downloaded it on your Pi3.

$ git clone https://github.com/CSL-KU/IsolBench

$ cd IsolBench/bench

$ make

As in the previous project, you will use the ‘latency’ and ‘bandwidth’ benchmarks. In addition,
you need ‘pagetype’ program included in IsolBench suite..

$ sudo cp latency bandwidth /usr/local/bin/

$ sudo cp pagetype /usr/local/bin/

We are now ready to use PALLOC. First, create a ‘subject’ cgroup using PALLOC and configure
it to use color 0 as follows.

cgcreate –g palloc:subject

echo 0 > /sys/fs/cgroup/palloc/subject/palloc.bins

As we use 2 physical address bits for coloring, there are 4 different colors (2^2 = 4). Now, let’s
launch a bandwidth instance on the ‘subject’ cgroup as follows.

cgexec -g palloc:subject bandwidth -t 1000

Now, check the bandwidth instance’s address space to see if the pages are allocated using
color 0. Use pagetype program you installed earlier as follows.

pagetype -L -p `pidof bandwidth`

voffset offset flags

10 2a436 color=1 __RU_lA____M______________________

11 2a437 color=1 __RU_lA____M______________________

21 30302 color=0 ___U_lA____Ma_b___________________

22 21db1 color=0 ___U_lA____Ma_b___________________

1971 221e2 color=0 ___U__A____Ma_b___________________

76961 18eb0 color=0 ___U_lA____Ma_b___________________

76962 1a673 color=0 ___U_lA____Ma_b___________________

76963 185a1 color=0 ___U_lA____Ma_b___________________

...

...

 total 1313 5

 color[0] 1109 4

 color[1] 75 0

 color[2] 66 0

 color[3] 63 0

The results shows that 1109 pages (~4MB) are allocated using color 0.

Save the output as ‘mini-proj2-3.txt’ file. You should return the file as a proof.

