Real-Time Support for GPU

GPU Management

Heechul Yun

THE UNIVERSITY OF
KANSAS

This Week

* Topic: Real-Time Support for General Purpose
Graphic Processing Unit (GPGPU)

* Today
— Background
— Challenges
— Real-Time GPU Management Frameworks

* No office hour today. | will have on Wed instead.

— K

THE UNIVERSITY OF

Pipeline entities

®
".'rD 'n,'.l[j
L V5 V5
L J .
e v4 | -

Fragments (shaded)

Fragments

Pixels
Slide from Prof. Kayvon Fatahalian. CMU

History

* GPU
— Graphic is embarrassingly parallel by nature
— GeForce 6800 (2003): 53GFLOPs (mu)

— Some PhDs tried to use GPU to do some general
purpose computing, but difficult to program

* GPGPU

— lan Buck (Stanford PhD, 2004) joined Nvidia and
created CUDA language and runtime.

— General purpose: (relatively) easy to program, many
scientific applications

THE UNIVERSITY OF

Nvidia Tesla K80 GPGPU

* CUDA cores: 4992
* Peak performance: 8.74 TFLOPS (sp floating)

http://www.nvidia.com/object/tesla-servers.html

CPU vs. GPGPU

* CPU

— Designed to run sequential programs faster

— High ILP: pipeline, superscalar, out-of-order, multi-level
cache hierarchy

— Powerful, but complex and big

* GPGPU

— Designed to compute math faster for embarrassingly
parallel data (e.g., pixels)

— No need for complex logics (no superscalar, out-of-order,
cache)

— Simple, less powerful, but small---can put many of them

— K

THE UNIVERSITY OF

CPU-“style” cores

ALU

(Execute)

1

Data Cache
(A big one)

Beyond Programmable Shading: Fundamentals

“From Shader Code to a Teraflop: How GPU Shader Cores Work”, Kayvon Fatahalian, Stanford University

%

SIGGRAPH2008

7

Slimming down

ALU

(Execute)

Idea #1:

Remove components that
help a single instruction
stream run fast

0

leyond Programmable Shading: Fundamentals

“From Shader Code to a Teraflop: How GPU Shader Cores Work”, Kayvon Fatahalian, Stanford University

o

SIGGRAPH2008

8

Add ALUs

ALU1

ALU2

ALU3

ALU 4

ALUS

ALU6

ALU7

ALU B

coxf] cex]f o cox

Shared Ctx Data

“From Shader Code to a Teraflop: How GPU Shader Cores Work”, Kayvon Fatahalian, Stanford University

o

SIGGRAPH2008

ldea #2:

Amortize cost/complexity of
managing an instruction
stream across many ALUs

SIMD processing

9

Modifying the shader “,

SIGGRAPH2008
- <VEC8_diffuseShader>:

VEC8_sample vec_r@, vec_v4, t0, vec_s@
ALU1 ALU2| | ALU3 | | ALU4 VEC8_mul wvec_r3, vec_v@, cbo[@]
VEC8_madd vec_r3, vec_vl, cb®[1], vec_r3
VEC8_madd vec_r3, vec_v2, cb®[2], vec_r3
VEC8_clmp vec_r3, vec_r3, 1(0.8), 1(1.8)
VEC8_mul vwvec_o@, vec_r@, vec_r3
VEC8_mul wvec_ol, wvec_rl, vec_r3
m m VEC8_mul wvec_o2, vec_r2, vec_r3

VEC8_mov wvec_o3, 1(1.8)

ﬂ E ﬂ New compiled shader:
Processes 8 fragments

using vector ops on vector
ot Shadine: Fundemenial registers 21

ALUS5 | | ALUG| | ALU7 | | ALUB

“From Shader Code to a Teraflop: How GPU Shader Cores Work”, Kayvon Fatahalian, Stanford University

128 fragments in parallel

o

SIGGRAPH2008

—
i

HT

d

=
==

1

=]
=i/

aC
8, .
]

-~

000d 4doog oDdo
000 dooa oodo
1L 2
4 L L
B0C OBC 880
0000 0000
0000 0000

—+
10

0000
0000

I

000

000

B B 5

di

[[

L 00 B 00 aC 00 ac
8¢ «00 | @0* *00 | @g* *0oo | g -
oC 00 | OC 00 | @c 00 | O

A I_}I L
« @bt BRe -
an 1

4
=
-
5
4
~

DAINOAO

“From Shader Code to a Teraflop: How GPU Shader Cores Work”, Kayvon Fatahalian, Stanford University 11

."f. | !1. .‘t-
« @« [BEe @5 (BEe @5
D0 | Ol 0 | O 00

5
-
y

)|
B
)|

x| 8 se

LI]

- - am 1 - - = 1 -
OC 00D | OC 0 | @OC

—
i

FH [

—
i

FEH

-]
i

16 cores =128 ALUs

= 16 simultaneous instruction streams

&

SIGGRAPH2008

But what about branches?

- eI
ime
(clocks) ALU1T ALUZ2 ALUS
<unconditional
shader code>
if (x > @) {
X = 0;
X refl = Ka;
5
<resume unconditional
Not all ALUs do useful work! shader code>
WOI'St case. 1/8 performance
Beyond Programmable Shading: Fundamentals 27

“From Shader Code to a Teraflop: How GPU Shader Cores Work”, Kayvon Fatahalian, Stanford University 12

GPU Programming Model

* Host = CPU
e Device = GPU
e Kernel

— Function that executes on the device
— Multiple threads execute each kernel

THE UNIVERSITY OF

Example: Increment Array Elements <3

nVvIiDIA

CPU program CUDA program

void increment_cpu(float *a, float b, int N) __global__ void increment_gpu(float "a, float b, int N)

{ {

int idx = blockldx.x * blockDim.x + threadldx.x;
for (int idx = 0; idx<N; idx++) if (idx < N)

a[idx] = a[idx] + b; ————]p- a[idX] = a[idx] + b;
}

void main()
void main()

{
dim3 dimBlock (blocksize);

"“increment_cpu{a, b, N); dim3 dimGrid(ceil(N / (float)blocksize));
increment_gpu<<<dimGrid, dimBlock>>>(a, b, N);

2 NVIDIA Corporation 2008

Source: http://www.sdsc.edu/us/training/assets/docs/NVIDIA-02-BasicsOfCUDA.pdf

Arrays of Parallel Threads <X

NVIDIA

® A CUDA kernel is executed by an array of threads
® All threads run the same code

® Each thread has an ID that it uses to compute memory
addresses and make control decisions

threadID

float % = input[threadID];
float v = func(x);
output[threadID] = y;

© NVIDIA Corporation 2008

Source: http://www.sdsc.edu/us/training/assets/docs/NVIDIA-02-BasicsOfCUDA.pdf

CUDA Programming Model <X

NVIDIA

A kernel is executed by a
grid of thread blocks

Block Block
(1, 0) (2, 0)

® A thread block is a batch o
of threads that can S @
cooperate with each A T
other by:

® Sharing data through . I
shared memory

® Synchronizing their Block (1,1)
execution

Thread | Thread | Thread | Thread | Thread
0.0) | 1,0) | 2.0 | 3.0 | (40

® Threads from different Torend | Taread | Thread | Thread | Thrend
blocks cannot cooperate

Thread | Thread | Thread | Thread | Thread
0.2) | 1.2 | 2.2) | (3D | &2

© NVIDIA Corporation 2008

Source: http://www.sdsc.edu/us/training/assets/docs/NVIDIA-02-BasicsOfCUDA.pdf

Memory Model rf%n
¢ Registers
® per thread
® Data lifetime = thread lifetime
® | ocal memory
® Per thread off-chip memory (physically in device DRAM)
® Data lifetime = thread lifetime
® Shared memory
® per thread block on-chip memory
® Data lifetime = block lifetime
® Giobal (device) memory
® Accessible by all threads as well as host (CPU)
® Data lifetime = from allocation to deallocation
® Host (CPU) memory
® Not directly accessible by CUDA threads

© NVIDIA Corporation 2008

Source: http://www.sdsc.edu/us/training/assets/docs/NVIDIA-02-BasicsOfCUDA.pdf

Challenges

User buffer user
* Data movement problem
— User <-> kernel Kernel buffer kernel
— Host mem <-> gpu mem
. GPU CPU
— Other device <-> gpu oy —
| | Iolre'lsll | |
* Scheduling problem

— No way to prioritize important GPU kernels
— Unsynchronized CPU and GPU scheduling

— No way to preempt once the kernel is launched.
— KU

THE UNIVERSITY OF

THE UNIVERSITY OF
KANSAS

CPU + Discrete GPU

Nvidia Tesla K80

4992 GPU cores

g ocor |

Graphic DRAM

PCIE 3.0

Intel Core i7

4 CPU cores

I ;- I

Host DRAM

16 GB/s

Data transfer is the bottleneck

An Example

“Hand”

\ events
AR Recognition
+HID Input

Point cloud

Noise
Filtering

Geometric
Transform

catusbh | xform filter hidinput &

o, Bl - - cPU

|||||||||||||

PTask: Operating System Abstractions To Manage GPUs as Compute Devices, SOSP'11 20

http://www.cs.utexas.edu/users/witchel/pubs/sosp11rossbach-ptask.pdf

Inefficient Data migration

#> capture | xform | filter | detect &

filter
5
i
2
3
GPU
= Run! :
 pE = A lot of copies

Acknowledgement: This slide is from the paper’s author’s slide 2l

http://www.cs.utexas.edu/users/witchel/pubs/rossbach11sosp-ptask-slides.pptx

Heterogeneous Processor

* Tighter integration of CPU and GPU
— Memory is shared by both CPU and GPU

PMC

PMC

PMC PMC |||||

Corel

Core2

Core3 Cored GPU cores

Nvidia Tegra K1

Shared Memory Controller

16 GB/s

Shared DRAM

THE UNIVERSITY OF

22

Memory Bandwidth Contention
Between CPU and GPU

mode GPU h o 2 mode GPU
face detection FE ol face detectia
total FPS: 7.0682 wsigl total FPST1=

Run alone w/ CPU co-runners

Co-scheduling memory intensive CPU task
affects GPU performance (5X slowdown)

EEEEEEEEEEEEE

23

Uncoordinated CPU and GPU
Scheduling

Mouse Move Frequency
180 —

-—No GPU work

d
=
)]
o

=
S 140 —

—xform (nocomm)

CPU priorities do not
apply to GPU

S
=
o
o

100
30
60
40
20

Mouse Events / se

0 20000 40000 60000
Time (milliseconds)

KANSAS PTask: Operating System Abstractions To Manage GPUs as Compute Devices, SOSP'11

http://www.cs.utexas.edu/users/witchel/pubs/sosp11rossbach-ptask.pdf

Real-Time GPU Management

e Goals

— Priority scheduling among GPU tasks
— GPU bandwidth (time) guarantee

* Frameworks
— Timegraph
— Gdev
— GPUSync

— K

THE UNIVERSITY OF

Software Architecture

“ ser Other Applications
Runtimes |htelligence lAPI
space
I Runtime I
Command Command Command
(ioctl) (ioctl) (ioctl)
\|
0S N Device Driver O‘“ e*
Cleng I/O Request PO
Device GPU
KANSAS Acknowledgement: This slide is from the paper author’s slide

26

https://www.usenix.org/sites/default/files/conference/protected-files/kato_atc12_slides.pdf

GDev

* Runtime at the OS level

— Better protection

— Enable kernel code (e.g., filesystem) to use GPU
* Device memory management

— Enable overcommit

— Support shared device memory
* GPU virtualization

— Expose multiple virtual GPUs to users
— Support scheduling among the vGPUs

— K

THE UNIVERSITY OF

GDev Software Architecture

Other
Libraries

Application
l API

User lAPI

space
Wrapper Library

mand Intelligence | API (ioctl) API (ioctl)

ctl)
B . Command
0S Device Driver < |
ll/ O Request OS Module

Unified, OS-oriented approach

Device GPU to GPU resource management!

* Better protection

* GPU accelerated kernel (e.g., fs)
— KU

KANSAS Acknowledgement: This slide is from the paper author’s slide

28

https://www.usenix.org/sites/default/files/conference/protected-files/kato_atc12_slides.pdf

Previous GPU Scheduling

@ E . vGPU1 Execution . vGPU2 Execution I] GPU Scheduler I
- - | f VGPU1 Request f vGPU2 Request l Compute Offload

CPU QXD_E\D > Time

GPU

Time

Load unbalanced!

 TimeGraph [ATC11]

— GPU commands are non-preemptive
— Cause long, potentially unbounded, delay to high priority tasks

KANSAS . .
Figure source: paper author’s slide 29

https://www.usenix.org/sites/default/files/conference/protected-files/kato_atc12_slides.pdf

Y 4
GDev’s BAND Scheduler
@ @ Il vGPu1 Execution [voPU2 Execution [GPU Scheduler
B Bl A cruirequest B voPuzRequest | ComputeOffload

ISR ISR ISR ISR ISR
R\ N A\ X
IR TR0 Tl | ninnl

wait

CPU

ait

>50%7? >50%"7?

GPU

Load balanced(_

* Non-work conserving scheduler
— Monitor consumed b/w, add some delay

 Recent related work: GPES [RTAS14]
KU~ Divide kernel into smaller ones, insert preemption points

Kavsas (%) GPES: A Preemptive Execution System for GPGPU Computing, RTAS'14

Figure source: paper author’s slide 30

https://www.usenix.org/sites/default/files/conference/protected-files/kato_atc12_slides.pdf

Summary

 GPU Architecture
— Many simple in-order cores

* GPU Programming Model
— SIMD

* Challenges
— Data movement cost
— Non-preemptive scheduling
— Bandwidth bottleneck
e Real-Time Support
— Priority and/or bandwidth based scheduling

— K

THE UNIVERSITY OF

Real-Time Support for GPU (2/2)

GPU Management

Heechul Yun

32

NVIDIA Jetson Platform

/:&5? cPuo | [As7cpus |
L1-D

~

— cf. discrete GPUs

L1l - SRR L1-D
48KB | 32KB askB | kB | X1 GPU A
AST CPU L2 4 A
B SM O SM 1
[TTTITTTTTTTIOI] | ([[TTTTTTTTITTTT]
- 128 cores 128 cores J
A53 CPU 0 A53 CPU 3 | \\eeeesrend)/ oo
L1-1 L1-D | ***| L1 L1-D GPU L2
32KB [32KB 32KB | 32KB 256 KB
AS3CPULZ
512 KB /
| Memory Controller |
DRAM! DRAM DRAM DRAM DRAM
Bank 0 Bank 1 Bank 2 s Bank 20 Bank 31
128 MB 128 MB 128 MB 128 MB 128 MB

'DRAM bank count and size depend on device package

* Integrated CPU-GPU architecture
— CPU and GPU share memory

— KU

THE UNIVERSITY OF
KANSAS

33

NVIDIA Jetson Platform

Jetson TX2 Jetson TX1

GPU MVIDIA Pascal™, 2546 CUDA cores NVIDIA Maxwell ™ 255 CUDA cores

HMP Dual Denver 2/2 MB L2 +
CPU Quad ARM® A57/2 MB L2 Quad ARM® A57/2 MB L2
Video 4K x 2K 60 Hz Encode (HEVC] 4K x 2K 30 Hz Encode [HEVC)

4K x 2K 60 Hz Decode (12-Bit Support) 4K x 2K 60 Hz Decode (10-Bit Support]
Memo 8 GB 128 bit LPDDR4 4 GB &4 bit LPDDR4
Y 58.3 GB/s 25.6 GB/s

Display 2x DSI, 2x DP 1.2 /HDMI 20/ eDP 1.4 2xDSI, 1x eDP 1.4/ DP 1.2/ HOMI
S| Up to 6 Cameras (2 Lane) Up to 6 Cameras [2 Lane)

CSI2 D-PHY 1.2 (2.5 Gbps/Lane) CSI2 D-PHY 1.1 (1.5 Gbps/Lane]
FCIE Gen 2 | 1xé + 1x1 0OR 2x1 + 1x2 Gen 2 | 1x4 + 1x1

Data Storage

32 GB eMMC, SDIO, SATA

16 GB eMMC, SDIO, SATA

Other

CAN, UART, SPI, I2C, 125, GPIOs

UART, SPI, 12C, 125, GPI0Os

USB

USB3.0+USB 2.0

Connectivity

1 Gigabit Ethernet, 802 11ac WLAN, Bluetooth

Mechanical

50 mm x 87 mm [400-Pin Compatible Board-to-Board Connector]

1\
THE UNIVERSITY OF

34

Heterogeneous System Architecture (HAS)

Main Memory

Physical addresses

. Device Taddressesé Virtual Taddressesé

Device CPU

Problems of Sharing Memory

e Bandwidth

— GPU is a heavy bandwidth consumer
— CPU task can suffer.

Benchmark Solo Co-run Co-run Gain (%)
(unregulated) (regulated)
Face 22.5 14.8 17.9 39.7
Hog 19.2 12.2 16.4 59.8
Flow 11.1 8.4 10.0 58.3

THE UNIVERSITY OF

36

Problems of Sharing Memory

* Cache coherency

— CPU has caches, GPU has caches
= Multiple copies of the same memory block

— Updated cacheline in one cache must be visible in
other caches

THE UNIVERSITY OF

