
Real-Time Support for GPU

GPU Management

Heechul Yun

1

This Week

• Topic: Real-Time Support for General Purpose
Graphic Processing Unit (GPGPU)

• Today
– Background

– Challenges

– Real-Time GPU Management Frameworks

• No office hour today. I will have on Wed instead.

2

3
Slide from Prof. Kayvon Fatahalian. CMU

Processed Independently

History

• GPU
– Graphic is embarrassingly parallel by nature
– GeForce 6800 (2003): 53GFLOPs (MUL)

– Some PhDs tried to use GPU to do some general
purpose computing, but difficult to program

• GPGPU
– Ian Buck (Stanford PhD, 2004) joined Nvidia and

created CUDA language and runtime.
– General purpose: (relatively) easy to program, many

scientific applications

4

Nvidia Tesla K80 GPGPU

• CUDA cores: 4992

• Peak performance: 8.74 TFLOPs (SP floating)

5

Image source: Nvidia official website

http://www.nvidia.com/object/tesla-servers.html

CPU vs. GPGPU

• CPU
– Designed to run sequential programs faster

– High ILP: pipeline, superscalar, out-of-order, multi-level
cache hierarchy

– Powerful, but complex and big

• GPGPU
– Designed to compute math faster for embarrassingly

parallel data (e.g., pixels)

– No need for complex logics (no superscalar, out-of-order,
cache)

– Simple, less powerful, but small---can put many of them

6

7“From Shader Code to a Teraflop: How GPU Shader Cores Work”, Kayvon Fatahalian, Stanford University

8“From Shader Code to a Teraflop: How GPU Shader Cores Work”, Kayvon Fatahalian, Stanford University

9“From Shader Code to a Teraflop: How GPU Shader Cores Work”, Kayvon Fatahalian, Stanford University

10“From Shader Code to a Teraflop: How GPU Shader Cores Work”, Kayvon Fatahalian, Stanford University

11“From Shader Code to a Teraflop: How GPU Shader Cores Work”, Kayvon Fatahalian, Stanford University

12“From Shader Code to a Teraflop: How GPU Shader Cores Work”, Kayvon Fatahalian, Stanford University

GPU Programming Model

• Host = CPU

• Device = GPU

• Kernel

– Function that executes on the device

– Multiple threads execute each kernel

13

14Source: http://www.sdsc.edu/us/training/assets/docs/NVIDIA-02-BasicsOfCUDA.pdf

15Source: http://www.sdsc.edu/us/training/assets/docs/NVIDIA-02-BasicsOfCUDA.pdf

16Source: http://www.sdsc.edu/us/training/assets/docs/NVIDIA-02-BasicsOfCUDA.pdf

17Source: http://www.sdsc.edu/us/training/assets/docs/NVIDIA-02-BasicsOfCUDA.pdf

Challenges

• Data movement problem
– User <-> kernel

– Host mem <-> gpu mem

– Other device <-> gpu

• Scheduling problem
– No way to prioritize important GPU kernels

– Unsynchronized CPU and GPU scheduling

– No way to preempt once the kernel is launched.

18

User buffer

Kernel buffer

user

kernel

4992 GPU c
ores

4 CPU cores

Graphic DR
AM

Host DRAM

PCIE 3.0

GPU CPU

CPU + Discrete GPU

19

4992 GPU cores 4 CPU cores

Graphic DRAM Host DRAM

PCIE 3.0

Nvidia Tesla K80 Intel Core i7

480 GB/s 25 GB/s

16 GB/s

Data transfer is the bottleneck

An Example

20

CPU GPU GPU CPU

PTask: Operating System Abstractions To Manage GPUs as Compute Devices, SOSP'11

http://www.cs.utexas.edu/users/witchel/pubs/sosp11rossbach-ptask.pdf

Inefficient Data migration

OS executive

capture

GPU

Run!

camdrv GPU driver

PCI-xfer PCI-xfer

xform

copy
to

GPU

copy
from
GPU

PCI-xfer PCI-xfer

filter

copy
from
GPU

detect

IRP

HIDdrv

read()

copy
to

GPU

write() read() write() read() write() read()

capture xform filter detect

#> capture | xform | filter | detect &

21Acknowledgement: This slide is from the paper’s author’s slide

A lot of copies

http://www.cs.utexas.edu/users/witchel/pubs/rossbach11sosp-ptask-slides.pptx

Heterogeneous Processor

• Tighter integration of CPU and GPU

– Memory is shared by both CPU and GPU

22

GPUSync: A Famework for R
eal-Time GP Management

Nvidia Tegra K1

Core1

PMC

Shared DRAM

Shared Memory Controller

GPU coresCore2

PMC

Core3

PMC

Core4

PMC

16 GB/s

Memory Bandwidth Contention
Between CPU and GPU

23

Co-scheduling memory intensive CPU task
affects GPU performance (5X slowdown)

Run alone w/ CPU co-runners

Uncoordinated CPU and GPU
Scheduling

CPU priorities do not
apply to GPU

PTask: Operating System Abstractions To Manage GPUs as Compute Devices, SOSP'11

http://www.cs.utexas.edu/users/witchel/pubs/sosp11rossbach-ptask.pdf

Real-Time GPU Management

• Goals

– Priority scheduling among GPU tasks

– GPU bandwidth (time) guarantee

• Frameworks

– Timegraph

– Gdev

– GPUSync

25

Software Architecture

26
Acknowledgement: This slide is from the paper author’s slide

https://www.usenix.org/sites/default/files/conference/protected-files/kato_atc12_slides.pdf

GDev

• Runtime at the OS level
– Better protection

– Enable kernel code (e.g., filesystem) to use GPU

• Device memory management
– Enable overcommit

– Support shared device memory

• GPU virtualization
– Expose multiple virtual GPUs to users

– Support scheduling among the vGPUs

27

GDev Software Architecture

• Better protection
• GPU accelerated kernel (e.g., fs)

28
Acknowledgement: This slide is from the paper author’s slide

https://www.usenix.org/sites/default/files/conference/protected-files/kato_atc12_slides.pdf

Previous GPU Scheduling

• TimeGraph [ATC11]
– GPU commands are non-preemptive
– Cause long, potentially unbounded, delay to high priority tasks

29Figure source: paper author’s slide

https://www.usenix.org/sites/default/files/conference/protected-files/kato_atc12_slides.pdf

GDev’s BAND Scheduler

• Non-work conserving scheduler
– Monitor consumed b/w, add some delay

• Recent related work: GPES [RTAS14]
– Divide kernel into smaller ones, insert preemption points

30
(*) GPES: A Preemptive Execution System for GPGPU Computing, RTAS'14

Figure source: paper author’s slide

https://www.usenix.org/sites/default/files/conference/protected-files/kato_atc12_slides.pdf

Summary

• GPU Architecture
– Many simple in-order cores

• GPU Programming Model
– SIMD

• Challenges
– Data movement cost
– Non-preemptive scheduling
– Bandwidth bottleneck

• Real-Time Support
– Priority and/or bandwidth based scheduling

31

Real-Time Support for GPU (2/2)

GPU Management

Heechul Yun

32

NVIDIA Jetson Platform

• Integrated CPU-GPU architecture

– CPU and GPU share memory

– cf. discrete GPUs

33

NVIDIA Jetson Platform

34

Heterogeneous System Architecture (HAS)

35

Problems of Sharing Memory

• Bandwidth

– GPU is a heavy bandwidth consumer

– CPU task can suffer.

36

Benchmark Solo Co-run

(unregulated)

Co-run

(regulated)

Gain (%)

Face 22.5 14.8 17.9 39.7

Hog 19.2 12.2 16.4 59.8

Flow 11.1 8.4 10.0 58.3

Problems of Sharing Memory

• Cache coherency

– CPU has caches, GPU has caches
= Multiple copies of the same memory block

– Updated cacheline in one cache must be visible in
other caches

37

