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This Week

• Topic: Real-Time Support for General Purpose 
Graphic Processing Unit (GPGPU)

• Today
– Background

– Challenges

– Real-Time GPU Management Frameworks

• No office hour today. I will have on Wed instead.
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History

• GPU
– Graphic is embarrassingly parallel by nature
– GeForce 6800 (2003): 53GFLOPs (MUL)

– Some PhDs tried to use GPU to do some general 
purpose computing, but difficult to program

• GPGPU
– Ian Buck (Stanford PhD, 2004) joined Nvidia and 

created CUDA language and runtime.
– General purpose: (relatively) easy to program, many 

scientific applications
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Nvidia Tesla K80 GPGPU

• CUDA cores: 4992

• Peak performance: 8.74 TFLOPs (SP floating)
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Image source: Nvidia official website

http://www.nvidia.com/object/tesla-servers.html


CPU vs. GPGPU

• CPU
– Designed to run sequential programs faster

– High ILP: pipeline, superscalar, out-of-order, multi-level 
cache hierarchy

– Powerful, but complex and big

• GPGPU
– Designed to compute math faster for embarrassingly 

parallel data (e.g., pixels)

– No need for complex logics (no superscalar, out-of-order, 
cache)

– Simple, less powerful, but small---can put many of them
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GPU Programming Model

• Host = CPU

• Device = GPU

• Kernel 

– Function that executes on the device

– Multiple threads execute each kernel
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14Source: http://www.sdsc.edu/us/training/assets/docs/NVIDIA-02-BasicsOfCUDA.pdf
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Challenges

• Data movement  problem
– User <-> kernel

– Host mem <-> gpu mem

– Other device <-> gpu

• Scheduling problem
– No way to prioritize important GPU kernels

– Unsynchronized CPU and GPU scheduling

– No way to preempt once the kernel is launched.
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CPU + Discrete GPU
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4992 GPU cores 4 CPU cores

Graphic DRAM Host DRAM

PCIE 3.0

Nvidia Tesla K80 Intel Core i7

480 GB/s 25 GB/s

16 GB/s

Data transfer is the bottleneck



An Example
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CPU GPU GPU CPU

PTask: Operating System Abstractions To Manage GPUs as Compute Devices, SOSP'11

http://www.cs.utexas.edu/users/witchel/pubs/sosp11rossbach-ptask.pdf


Inefficient Data migration

OS executive

capture

GPU

Run!

camdrv GPU driver

PCI-xfer PCI-xfer

xform

copy
to

GPU

copy
from 
GPU

PCI-xfer PCI-xfer

filter

copy
from 
GPU

detect

IRP

HIDdrv

read()

copy
to

GPU

write() read() write() read() write() read()

capture xform filter detect

#> capture | xform | filter | detect &

21Acknowledgement: This slide is from the paper’s author’s slide

A lot of copies

http://www.cs.utexas.edu/users/witchel/pubs/rossbach11sosp-ptask-slides.pptx


Heterogeneous Processor

• Tighter integration of CPU and GPU

– Memory is shared by both CPU and GPU
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GPUSync: A Famework for R
eal-Time GP Management

Nvidia Tegra K1

Core1

PMC

Shared DRAM

Shared Memory Controller

GPU coresCore2

PMC
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Core4

PMC

16 GB/s



Memory Bandwidth Contention 
Between CPU and GPU
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Co-scheduling memory intensive CPU task
affects GPU performance  (5X slowdown)

Run alone w/ CPU co-runners



Uncoordinated CPU and GPU 
Scheduling

CPU priorities do not
apply to GPU

PTask: Operating System Abstractions To Manage GPUs as Compute Devices, SOSP'11

http://www.cs.utexas.edu/users/witchel/pubs/sosp11rossbach-ptask.pdf


Real-Time GPU Management

• Goals

– Priority scheduling among GPU tasks

– GPU bandwidth (time) guarantee

• Frameworks

– Timegraph

– Gdev

– GPUSync
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Software Architecture
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Acknowledgement: This slide is from the paper author’s slide

https://www.usenix.org/sites/default/files/conference/protected-files/kato_atc12_slides.pdf


GDev

• Runtime at the OS level
– Better protection

– Enable kernel code (e.g., filesystem) to use GPU

• Device memory management
– Enable overcommit

– Support shared device memory

• GPU virtualization
– Expose multiple virtual GPUs to users

– Support scheduling among the vGPUs

27



GDev Software Architecture

• Better protection
• GPU accelerated kernel (e.g., fs)
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Acknowledgement: This slide is from the paper author’s slide

https://www.usenix.org/sites/default/files/conference/protected-files/kato_atc12_slides.pdf


Previous GPU Scheduling

• TimeGraph [ATC11]
– GPU commands are non-preemptive
– Cause long, potentially unbounded, delay to high priority tasks

29Figure source: paper author’s slide

https://www.usenix.org/sites/default/files/conference/protected-files/kato_atc12_slides.pdf


GDev’s BAND Scheduler

• Non-work conserving scheduler
– Monitor consumed b/w, add some delay

• Recent related work: GPES [RTAS14]
– Divide kernel into smaller ones, insert preemption points
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(*) GPES: A Preemptive Execution System for GPGPU Computing, RTAS'14

Figure source: paper author’s slide

https://www.usenix.org/sites/default/files/conference/protected-files/kato_atc12_slides.pdf


Summary

• GPU Architecture
– Many simple in-order cores

• GPU Programming Model
– SIMD

• Challenges
– Data movement cost
– Non-preemptive scheduling
– Bandwidth bottleneck

• Real-Time Support
– Priority and/or bandwidth based scheduling
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Real-Time Support for GPU (2/2)

GPU Management

Heechul Yun
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NVIDIA Jetson Platform

• Integrated CPU-GPU architecture

– CPU and GPU share memory

– cf. discrete GPUs

33



NVIDIA Jetson Platform
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Heterogeneous System Architecture (HAS)
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Problems of Sharing Memory

• Bandwidth

– GPU is a heavy bandwidth consumer

– CPU task can suffer. 
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Benchmark Solo Co-run 

(unregulated)

Co-run 

(regulated)

Gain (%)

Face 22.5 14.8 17.9 39.7

Hog 19.2 12.2 16.4 59.8

Flow 11.1 8.4 10.0 58.3



Problems of Sharing Memory

• Cache coherency

– CPU has caches, GPU has caches 
= Multiple copies of the same memory block

– Updated cacheline in one cache must be visible in 
other caches
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