Real-Time Support for GPU

GPU Management Heechul Yun

This Week

- Topic: Real-Time Support for General Purpose Graphic Processing Unit (GPGPU)
- Today
 - Background
 - Challenges
 - Real-Time GPU Management Frameworks
- No office hour today. I will have on Wed instead.

Pipeline entities

Slide from Prof. Kayvon Fatahalian. CMU

History

- GPU
 - Graphic is embarrassingly parallel by nature
 - GeForce 6800 (2003): 53GFLOPs (MUL)
 - Some PhDs tried to use GPU to do some general purpose computing, but difficult to program
- GPGPU
 - Ian Buck (Stanford PhD, 2004) joined Nvidia and created CUDA language and runtime.
 - General purpose: (relatively) easy to program, many scientific applications

Nvidia Tesla K80 GPGPU

- CUDA cores: 4992
- Peak performance: 8.74 TFLOPs (SP floating)

Image source: Nvidia official website

CPU vs. GPGPU

- CPU
 - Designed to run sequential programs faster
 - High ILP: pipeline, superscalar, out-of-order, multi-level cache hierarchy
 - Powerful, but complex and **big**
- GPGPU
 - Designed to compute math faster for embarrassingly parallel data (e.g., pixels)
 - No need for complex logics (no superscalar, out-of-order, cache)
 - Simple, less powerful, but **small**---can put **many** of them

CPU-"style" cores

Beyond Programmable Shading: Fundamentals

Slimming down

Add ALUs

Idea #2:

Amortize cost/complexity of managing an instruction stream across many ALUs

SIMD processing

Beyond Programmable Shading: Fundamentals

Modifying the shader

21

Fetch/ Decode					
ALU 1	ALU 2	ALU 3	ALU 4		
ALU 5	ALU 6	ALU 7	ALU 8		
Ctx	Ctx	Ctx	Ctx		
Ctx	Ctx	Ctx	Ctx		
Shared Ctx Data					

Beyond Programmable Shading: Fundamentals

<vec8_diffuseshader>:</vec8_diffuseshader>
VEC8_sample vec_r0, vec_v4, t0, vec_s0
VEC8_mul v <mark>e</mark> c_r3, vec_v0, cb0[0]
VEC8_madd vec_r3, vec_v1, cb0[1], vec_r3
VEC8_madd vec_r3, vec_v2, cb0[2], vec_r3
VEC8_clmp vec_r3, vec_r3, 1(0.0), 1(1.0)
VEC8_mul vec_o0, vec_r0, vec_r3
VEC8_mul vec_o1, vec_r1, vec_r3
VEC8_mul vec_o2, vec_r2, vec_r3
VEC8_mov v <mark>≥</mark> c_o3, 1(1.0)

New compiled shader:

Processes 8 fragments using vector ops on vector registers

128 fragments in parallel

= 16 simultaneous instruction streams

Beyond Programmable Shading: Fundamentals

MINOAD

"From Shader Code to a Teraflop: How GPU Shader Cores Work", Kayvon Fatahalian, Stanford University 11

But what about branches?

Beyond Programmable Shading: Fundamentals

GPU Programming Model

- Host = CPU
- Device = GPU
- Kernel
 - Function that executes on the device
 - Multiple threads execute each kernel

Example: Increment Array Elements DVIDIA CPU program CUDA program void increment_cpu(float *a, float b, int N) __global__ void increment_gpu(float *a, float b, int N) { int idx = blockldx.x * blockDim.x + threadldx.x; if (idx < N) for (int idx = 0; idx<N; idx++) a[idx] = a[idx] + b; a[idx] = a[idx] + b; } } void main() ł void main() dim3 dimBlock (blocksize); dim3 dimGrid(ceil(N / (float)blocksize)); increment_cpu(a, b, N); increment_gpu<<<dimGrid, dimBlock>>>(a, b, N); } } © NVIDIA Corporation 2008 30

Source: http://www.sdsc.edu/us/training/assets/docs/NVIDIA-02-BasicsOfCUDA.pdf

Arrays of Parallel Threads

A CUDA kernel is executed by an array of threads
All threads run the same code
Each thread has an ID that it uses to compute memory addresses and make control decisions

© NVIDIA Corporation 2008

4

Source: http://www.sdsc.edu/us/training/assets/docs/NVIDIA-02-BasicsOfCUDA.pdf

CUDA Programming Model

A kernel is executed by a grid of thread blocks

- A thread block is a batch of threads that can cooperate with each other by:
 - Sharing data through shared memory
 - Synchronizing their execution

Threads from different blocks cannot cooperate

© NVIDIA Corporation 2008

Source: http://www.sdsc.edu/us/training/assets/docs/NVIDIA-02-BasicsOfCUDA.pdf

Memory Model

Registers

Per thread

Data lifetime = thread lifetime

Local memory

Per thread off-chip memory (physically in device DRAM)

Data lifetime = thread lifetime

Shared memory

- Per thread block on-chip memory
- Data lifetime = block lifetime

Global (device) memory

- Accessible by all threads as well as host (CPU)
- Data lifetime = from allocation to deallocation

Host (CPU) memory

Not directly accessible by CUDA threads

© NVIDIA Corporation 2008

Challenges

- Data movement problem
 - User <-> kernel
 - Host mem <-> gpu mem
 - Other device <-> gpu
- Scheduling problem

- No way to prioritize important GPU kernels
- Unsynchronized CPU and GPU scheduling
- No way to **preempt** once the kernel is launched.

CPU + Discrete GPU

Data transfer is the bottleneck

An Example

 catusb | xform | filter | hidinput &

 CPU
 GPU
 GPU

 KU
 GPU
 GPU

 KU
 Second Seco

PTask: Operating System Abstractions To Manage GPUs as Compute Devices, SOSP'11

Inefficient Data migration

#> capture | xform | filter | detect & <u>xform</u> filter <u>capture</u> detect user write() read() write() read() write() read() nead() copy copy COD CODY IRP kernel from from 3P **JPI** camdrv **GPU driver** HIDdrv PCI-xfe PCI-Riel-xfe PCI-xfer **GPU** KU KU KANSAS Run! A lot of copies

Acknowledgement: This slide is from the paper's author's slide

Heterogeneous Processor

- Tighter integration of CPU and GPU
 - Memory is shared by both CPU and GPU

Memory Bandwidth Contention Between CPU and GPU

Run alone

w/ CPU co-runners

Co-scheduling memory intensive CPU task affects GPU performance (5X slowdown)

Uncoordinated CPU and GPU Scheduling

Mouse Move Frequency

CPU priorities do not apply to GPU

PTask: Operating System Abstractions To Manage GPUs as Compute Devices, SOSP'11

Real-Time GPU Management

- Goals
 - Priority scheduling among GPU tasks
 - GPU bandwidth (time) guarantee
- Frameworks
 - Timegraph
 - Gdev
 - GPUSync

Software Architecture

GDev

- Runtime at the OS level
 - Better protection
 - Enable kernel code (e.g., filesystem) to use GPU
- Device memory management
 - Enable overcommit
 - Support shared device memory
- GPU virtualization
 - Expose multiple virtual GPUs to users
 - Support scheduling among the vGPUs

GDev Software Architecture

• Better protection

KU THE UNIVERSITY OF KANSAS

• GPU accelerated kernel (e.g., fs)

Previous GPU Scheduling

Load unbalanced!

• TimeGraph [ATC11]

KU THE UNIVERSITY OF KANSA

- GPU commands are non-preemptive
- Cause long, potentially unbounded, delay to high priority tasks

GDev's BAND Scheduler

Load balanced

• Non-work conserving scheduler

KU

THE UNIVERSITY OF KANSA

- Monitor consumed b/w, add some delay
- Recent related work: GPES [RTAS14]
 - Divide kernel into smaller ones, insert preemption points

(*) GPES: A Preemptive Execution System for GPGPU Computing, RTAS'14

Summary

- GPU Architecture
 - Many simple in-order cores
- GPU Programming Model
 SIMD
- Challenges
 - Data movement cost
 - Non-preemptive scheduling
 - Bandwidth bottleneck
- Real-Time Support
 - Priority and/or bandwidth based scheduling

Real-Time Support for GPU (2/2)

GPU Management Heechul Yun

NVIDIA Jetson Platform

¹DRAM bank count and size depend on device package

- Integrated CPU-GPU architecture
 - CPU and GPU share memory
 - cf. discrete GPUs

NVIDIA Jetson Platform

	Jetson TX2	Jetson TX1			
GPU	NVIDIA Pascal™, 256 CUDA cores	NVIDIA Maxwell ™, 256 CUDA cores			
CPU	HMP Dual Denver 2/2 MB L2 + Quad ARM® A57/2 MB L2	Quad ARM® A57/2 MB L2			
Video	4K x 2K 60 Hz Encode (HEVC) 4K x 2K 60 Hz Decode (12-Bit Support)	4K x 2K 30 Hz Encode (HEVC) 4K x 2K 60 Hz Decode (10-Bit Support)			
Memory	8 GB 128 bit LPDDR4 58.3 GB/s	4 GB 64 bit LPDDR4 25.6 GB/s			
Display	2x DSI, 2x DP 1.2 / HDMI 2.0 / eDP 1.4	2x DSI, 1x eDP 1.4 / DP 1.2 / HDMI			
CSI	Up to 6 Cameras (2 Lane) CSI2 D-PHY 1.2 (2.5 Gbps/Lane)	Up to 6 Cameras (2 Lane) CSI2 D-PHY 1.1 (1.5 Gbps/Lane)			
PCIE	Gen 2 1x4 + 1x1 OR 2x1 + 1x2	Gen 2 1x4 + 1x1			
Data Storage	32 GB eMMC, SDIO, SATA	16 GB eMMC, SDIO, SATA			
Other	CAN, UART, SPI, I2C, I2S, GPIOs	UART, SPI, I2C, I2S, GPIOs			
USB	USB 3.0 + USB 2.0				
Connectivity	1 Gigabit Ethernet, 802.11ac WLAN, Bluetooth				
Mechanical	50 mm x 87 mm (400-Pin Compatible Board-to-Board Connector)				

Heterogeneous System Architecture (HAS)

Problems of Sharing Memory

- Bandwidth
 - GPU is a heavy bandwidth consumer
 - CPU task can suffer.

Benchmark	Solo	Co-run (unregulated)	Co-run (regulated)	Gain (%)
Face	22.5	14.8	17.9	39.7
Hog	19.2	12.2	16.4	59.8
Flow	11.1	8.4	10.0	58.3

Problems of Sharing Memory

- Cache coherency
 - CPU has caches, GPU has caches
 - = Multiple copies of the same memory block
 - Updated cacheline in one cache must be visible in other caches

