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Abstract—In modern Commercial Off-The-Shelf (COTS) mul-
ticore systems, each core can generate many parallel memory
requests at a time. The processing of these parallel requests in
the DRAM controller greatly affects the memory interference
delay experienced by running tasks on the platform.

In this paper, we present a new parallelism-aware worst-case
memory interference delay analysis for COTS multicore systems.
The analysis considers a COTS processor that can generate
multiple outstanding requests and a COTS DRAM controller
that has a separate read and write request buffer, prioritizes
reads over writes, and supports out-of-order request processing.
Focusing on LLC and DRAM bank partitioned systems, our anal-
ysis computes worst-case upper bounds on memory-interference
delays, caused by competing memory requests.

We validate our analysis on a Gem5 full-system simulator
modeling a realistic COTS multicore platform, with a set of
carefully designed synthetic benchmarks as well as SPEC2006
benchmarks. The evaluation results show that our analysis
produces safe upper bounds in all tested benchmarks, while the
current state-of-the-art analysis significantly under-estimates the
delays.

I. INTRODUCTION

In modern Commercial Off-The-Shelf (COTS) multicore
systems, many parallel memory requests can be sent to the
main memory system at any given time for the following two
reasons. First, each core employs a variety of techniques—
such as non-blocking cache, out-of-order issues, and specula-
tive execution—to hide memory access latency. These tech-
niques allow the core to continue to execute new instructions
while it is still waiting for memory requests of previous
instructions to be completed. Second, multiple cores can run
multiple threads, each of which generates memory requests.

These parallel memory requests from the processor put
high pressure on the main memory system. To deliver high
performance, modern DRAM consists of multiple resources
called banks that can be accessed in parallel. For example, a
typical DRAM chip has 8 banks, supporting up to 8 parallel ac-
cesses [20]. To efficiently utilize the available bank level paral-
lelism, modern COTS DRAM controllers employ sophisticated
techniques such as out-of-order request processing, overlapped
request dispatches, and interleaved bank mapping [26], [21],
[5].

While parallel processing of multiple memory requests
generally improves overall memory performance, it is very
difficult to understand precise memory performance especially
when multiple applications run concurrently, because each
memory request is more likely to be interfered by other
requests. In analyzing memory latency on COTS systems,
many early works modeled DRAM as a single resource, having

a constant access time, which is arbitrated by a simple round-
robin policy [27], [36]. Recently, Kim et al. proposed more
realistic analysis model which considers DRAM banks and
the FR-FCFS [26] scheduling policy, which is commonly used
policy in COTS systems. The analysis, however, assumes that
each core can only generate one outstanding memory request
at a time, while in many modern COTS multicore processors,
especially high-performance ones such as Freescale P4080 and
ARM Cortex-A15, a core can generates multiple outstanding
requests [8], [2]. For example, each Cortex-A15 core can
generate up to six outstanding cache-line fill (memory read)
requests, which, in turn, can generate additional write-back
(memory write) requests [2]. Furthermore, the analysis does
not consider the fact that COTS DRAM controllers prioritize
reads over writes and process writes opportunistically [5].

In this work, we present a parallelism-aware memory inter-
ference delay analysis. We model a COTS DRAM controller
that has a separate read and write request buffer. Multiple
outstanding memory requests can be queued in the buffers
and processed out-of-order to maximize memory performance.
Also, reads are prioritized over writes in our model. These fea-
tures are commonly found in modern COTS multicore systems
and crucially important in understanding memory interference.
As such, we claim our system model well represents real
COTS multicore platforms. To minimize interference, we
focus on a system in which the LLC and DRAM banks
are partitioned. This is easily achievable on COTS multicore
systems via software [18], [29]. Our analysis, then, provides an
analytic upper bound on the worst-case memory interference
delay for each read memory request of the task under analysis.
Note that the derived bound does not require any assumption
on the interfering tasks’ memory access patterns. However,
we also show that if the number of read and write requests
generated by each core is known, then the analytical bounds
can be significantly improved.

We evaluate the proposed analysis on the Gem5 full-
system simulator [4], modeling a realistic COTS multicore
platform based on ARM architecture, with a set of synthetic
benchmarks as well as SPEC2006 benchmarks. The synthetic
benchmarks are specially designed to simulate high memory-
interference delay. The results show that our analysis provides
safe upper bounds in all tested benchmarks while [13] signifi-
cantly under-estimates the delays, by up to 62%, in the tested
benchmarks.

The remaining sections are organized as follows: Section II
provides background on COTS multicore systems and LLC
and DRAM bank partitioning techniques. Section III discusses
the state-of-art memory interference delay analysis. We present



Fig. 1: Modern COTS multicore architecture

our analysis in Section IV and provide evaluation results in
Section V. Section VI discusses related work. Finally, we
conclude in Section VII.

II. BACKGROUND: MODERN COTS MULTICORE SYSTEMS

A modern COTS multicore system, shown in Figure 1,
supports a high degree of memory level parallelism through
a variety of architectural features. In this section, we provide
some background on important architectural features of mod-
ern COTS multicore systems, and review existing software
based resource partitioning techniques.

A. Non-blocking Cache and MSHR
At the cache level, non-blocking caches are used to handle

multiple simultaneous cache-misses. This is especially crucial
for the shared last level cache (LLC), as it is shared by
all cores. The state of the outstanding memory requests are
maintained by a set of miss status holding registers (MSHRs).
On a cache-miss, the LLC allocates a MSHR entry to track
the status of the ongoing request and the entry is cleared
when the corresponding memory request is serviced from the
main memory. As such, the number of MSHRs effectively
determines the maximum number of outstanding memory
requests directed to the DRAM controller.

B. DRAM Controller
The DRAM controller receives requests from the LLC (or

other DMA devices) and generates DRAM specific commands
to access data in the DRAM. Modern DRAM controllers often
include separate read and write request buffers and prioritize
reads over writes because writes are not on the critical path for
program execution. Write requests are buffered on the write
buffer of the DRAM controller and serviced when there are no
pending read requests or the write queue is near full [21], [5].
The DRAM controller and the DRAM module are connected
through a command/address bus and a data bus. Modern
DRAM modules are organized into ranks and each rank is
divided into multiple banks, which can be accessed in parallel

provided that no collisions occur on either buses. Each bank
comprises a row-buffer and an array of storage cells organized
as rows and columns. In order to access the data stored in a
DRAM row, an activate command (ACT) must be issued to
load the data into the row buffer first (open the row) before
it can be read or written. Once the data is in the row buffer,
any numbers of subsequent read or write commands (RD, WR)
can be issued to access data in the row. If, however, a request
wishes to access a different row from the same bank, the row
buffer must be written back to the array (close the row) with
a pre-charge command (PRE) first before the second row can
be activated.

C. Memory Scheduling Algorithm

Due to hardware limitations, the memory device takes time
to perform different operations and therefore timing constraints
between various commands must be satisfied by the controller.
The operation and timing constraints of memory devices are
defined by the JEDEC standard [12]. The key facts concerning
timing constraints are: 1) the latency for accessing a closed
row is much longer than accessing a row that is already
open; 2) different banks can be operated in parallel since there
are no long timing constraints between banks. To maximize
memory performance, modern DRAM controllers typically
use a First-Ready First-Come-First-Serve (FR-FCFS) [26]
scheduling algorithm that prioritizes: (1) Ready column access
commands over row access commands; (2) Older commands
over younger commands. This means that the algorithm can
process memory requests in out-of-order of their arrival times.
Note that a DRAM command is said to be ready when it can
be scheduled immediately as it satisfies all timing constraints
imposed by previously scheduled commands and the current
DRAM status.

D. DRAM Bank and Cache Partitioning

In COTS systems, all banks are shared by all cores in
the system. This can cause unpredictable delays due to bank
conflicts. For example, if two applications running in parallel
on different cores access two different rows in the same bank,
they can force the memory controller to continuously pre-
charge the row buffer and open a new row every time an
access is performed. This loss of row locality can result in a
much degraded row hit ratio and thus corresponding latency
increases for both applications.

Software bank partitioning [35], [18], [29] can be used to
avoid the problems of shared banks. The technique leverages
the page-based virtual memory system of modern operating
systems and allows us to allocate memory to specific DRAM
banks. Each core, then, can be assigned to use its private
DRAM banks, effectively eliminates bank sharing among
cores without requiring any hardware modification. Similar
techniques can also be applied to partition the shared LLC as
explored in [38], [19], [6], [31], [17]. It is shown that parti-
tioning DRAM banks and LLC substantially reduce memory
interference among the cores [35].

However, the LLC cache space and DRAM banks are not
the only shared resources contributing to memory interference.
Most notably, at the DRAM chip level, all DRAM banks
fundamentally share the common command and data bus.



Hence, contention in the buses can become a bottleneck.
Furthermore, as many memory requests can be buffered inside
the DRAM controller’s request buffers, its scheduling policy
can greatly affect memory interference delay.

Goal: The goal of this paper is to analyze the worst-
case memory interference delay in a cache and DRAM bank
partitioned system, focusing mainly on delay in the DRAM
controller and command and data bus between the controller
and the DRAM module.

III. THE STATE OF THE ART DELAY ANALYSIS AND THE
PROBLEM

In this section, we first review a state of art memory
interference delay analysis for COTS memory systems [13],
which was proposed by Kim et al., and investigate some of
its assumptions that are not generally applicable in modern
COTS multicore systems.

The analysis models a modern COTS memory system in
great detail. While there has been a similar effort in the past
[32], this is the first work that considers the DRAM bank
level request reordering effect (i.e., out-of-order execution of
young row-hit column requests over older row-miss requests).
Here, we briefly summarize the assumed system model and
part of the memory interference delay analysis, relevant for
the purpose of this paper.

The system model assumes a single channel DRAM con-
troller and a DDR memory module. The DRAM controller
uses FR-FCFS scheduling algorithm. At the high level, the
analysis computes the worst-case memory interference delay
of the task under analysis 1 τi either (1) as a function of
number of memory requests Hi of the task (referred as
request driven approach) or (2) as a function of the number
of memory requests generated by the other tasks on different
cores (referred as job driven approach)—it takes the minimum
of the two—similar to prior work [36]. The unique character-
istics of the analysis is that it considers both inter-bank and
intra-bank (including request reordering) memory interference
delay. For the purpose of this paper, however, we focus on their
inter-bank delay analysis that assumes each core is assigned
dedicated DRAM bank partitions.

The analysis assumes that each memory request of τi is
composed of PRE, ACT, and RD/WR DRAM commands
(i.e., a row-miss) and each of the command can be delayed
by DRAM commands generated by other tasks on different
cores, due to inter-bank timing constraints imposed by the
JEDEC standard [12]. These timing constraint-imposed inter-
bank delay for PRE, ACT, and RD/WR commands are denoted
as LPREinter, L

ACT
inter, and LRWinter, respectively.

One major assumption of the analysis is that each core
can generate only one outstanding memory request to the
DRAM controller. Based on this assumption, the worst-
case per-request inter-bank memory interference delay on
a core p, RDinter

p , is simply expressed by RDinter
p =∑

∀q:q 6=p(L
PRE
inter +LACTinter +LRWinter). Finally, the total memory

interference delay of a task is calculated by multiplying
RDinter

p to the number of total LLC misses Hi of τi.

1The analysis can also be applied to a preemptive fixed-priority system by
considering the overall interference delay of the busy interval for the task
under analysis.

The analysis, however, has two main problems when it is
applied to modern COTS multicore systems. On the one hand,
it is overly optimistic as it assumes that each interfering core
can only generate one outstanding memory request at a time.
Hence, it essentially limits the maximum number of competing
requests to the number of cores in the system. However, this
is not true for many modern COTS multicore processors as
each core can generate many parallel memory requests at a
time. Because DRAM performance is much slower than CPU
performance, these requests are queued inside the DRAM
controller and can aggravate the overall delay.

Figure 2 illustrates this problem that can occur in modern
COTS systems. In the figure, three parallel requests RD1, RD2,
and RD3 are already in the command queue for Bank2, when
the request RD4 has arrived at Bank1. Note that the DRAM
commands are numbered in the order of their arrival times in
the DRAM controller. At memory clock 0, both RD1 and RD4
are ready, but RD1 is scheduled as FR-FCFS policy prioritizes
older requests over younger ones. Similarly, RD2 and RD3 are
prioritized over RD4 at time 4 and 8, respectively. At other
times such as at clock 1, RD4 cannot be scheduled due a
channel timing constraint (tCCD), even though it is ready
w.r.t. the Bank1.

On the other hand, it is also overly pessimistic as a memory
request—composed of PRE, ACT, and RD/WR DRAM sub-
commands—is assumed to suffer inter-bank interference for
each sub-command, while in reality the delays of executing
sub-commands of a memory request are not additive on
efficient modern COTS memory controllers. Figure 3 shows
such a case. In the figure, each bank has one row miss DRAM
request. Hence, each has to open a new row with an ACT
command followed by a RD command. Following the FR-
FCFS policy, ACT1 on Bank2 is executed first at clock 0. Even
though ACT2 is targeting a different bank, it is not scheduled
immediately due to the required minimum separation time
tRRD between two inter-bank ACT commands; i.e., for the
case in the figure, we have LACTinter = tRRD. At clock 4,
however, ACT2 can be issued even though ACT1 on Bank2 is
still in progress. In other words, the two memory requests are
overlapped. Similarly, RD2 cannot be scheduled immediately
after RD1 due to data bus conflict, i.e., LACTinter = tBURST .
But since the requests are overlapped and ACT2 was scheduled
4 clock cycles after ACT1, when RD2 is finally issued at time
11, there is no extra inter-bank delay other than the initial
delay of tRRD. In summary, the overall delay suffered by
the request of Bank1 is equal to max

(
LACTinter, L

RD
inter

)
rather

than LACTinter + LRDinter.
From the point of view of WCET analysis, the former

problem is more serious as it undermines the safety of the com-
puted WCET. We experimentally validated the former problem
on our test platform with carefully engineered synthetic tasks,
as we will detail in Section V-B.

IV. PARALLELISM-AWARE MEMORY INTERFERENCE
DELAY ANALYSIS

We start by formalizing the assumptions of our analysis.
We consider a modern multicore architecture described in
Section II. Specifically, there are Nproc identical cores in a
single processor chip. The processor contains per-core private



(a) Initial bank queue
status

(b) Timing diagram under FR-FCFS schedule

Fig. 2: Inter-bank delay caused by three previously arrived outstanding requests. (DRAM commands are numbered according
to their arrival time to the DRAM controller.)

(a) Initial bank queue
status

(b) Timing diagram under FR-FCFS schedule

Fig. 3: Inter-bank delay caused by a previously arrived row-miss request.

caches and a shared LLC. Both caches are non-blocking and
the numbers of MSHRs in the caches determine the local and
global limit of outstanding memory read requests. We assume
the caches employ a write-back write-allocate policy. Hence
a write to DRAM only occurs when there is a cache miss
(either read or write) in the LLC that evicts a modified cache-
line in the cache, and program execution can proceed without
waiting for the write request to be processed in the DRAM.
Therefore, for the analysis purpose, we only consider memory
interference delay imposed to each read request of the task
under analysis. Note that the number of DRAM read requests
is equal to the number of LLC misses because, in a write-back
write-allocate cache, a write miss also generates a DRAM read
request to allocate the line in the cache and then write to it.
Finally, similarly to [13] and other related work, we assume
that memory delay is additive to a task’s computation time.
We discuss this assumption in more details in Appendix.

On the DRAM controller side, we assume a modern DRAM
controller that supports the FR-FCFS scheduling policy [26],
[30] and is connected to a DRAM module. At each memory
clock tick, we assume a highly efficient FR-FCFS scheduler
that picks the highest priority ready command among all
requests and can overlap multiple requests simultaneously as
long as DRAM bank and channel level timing constraints
and the FR-FCFS priority rules are satisfied [21]. We model
FCFS priorities by assigning timestamps to commands, with
the earliest command having highest priority; the timestamp of
a command corresponds to the arrival time of the generating
request, hence, if a request for a close row generates a PRE,

ACT and RD or WR command, all three commands have the
same timestamp. We assume open-page policy is used for
bank management to maximize data locality. For simplicity,
our analysis assumes a single rank DRAM module, but it can
be extended to consider a multi-rank DRAM module.

All previously mentioned assumptions closely follow com-
mon behavior of COTS DRAM controllers [21]. Hence, based
on such assumptions, in Section IV-A we first provide a
bound on the delay suffered by a read request of the task
under analysis based on the interference caused by other
read requests only. Incorporating the effects of write requests,
which are not on the critical path of the program, requires us
to specify additional assumptions. In general, COTS DRAM
controllers have both a read request buffer and a write request
buffer, and prioritize reads over writes; both read and write
requests are processed in batches of consecutive requests to
amortize the cost of the data bus turnaround delay [5]. The
exact batch processing policy of each controller may vary; for
the purpose of constructing a sound worst-case delay bounds,
we consider a typical watermark approach [5], [21]. The policy
defines a high watermark and a low watermark value for
the number of write requests in the write buffer, as well as
a write batch length Nwd. If the read buffer is empty, the
controller uses the low watermark; otherwise, it uses the high
watermark 2. The controller starts processing a write batch
if the number of queued writes is higher than or equal to the

2The memory controller of the Gem5 simulator [10], which we use in
Section V, also follows the same watermark policy in processing write
requests.



current watermark, and it keeps servicing write requests until it
has issued at least Nwd writes. Finally, queued writes are also
serviced according to FR-FCFS arbitration. The delay analysis
extended with write batch processing is presented in Section
IV-B.

TABLE I: System model parameters.

CPU Nproc Number of cores 4
Nrq Maximum no. of prior read requests 18
Nwd Minimum writes per batch 18

DRAM Qread Read-buffer size 64
controller Qwrite Write-buffer size 64

Whigh High watermark value 54
Wlow Low watermark value 32

DRAM

tRCD Row activation time 8
tBURST Data burst duration 4

tRRD Activate to activate delay 6
tFAW Four activate windows 27

tRC Row cycle time 30

Table I shows the parameters used in the analysis, together
with their values used in the simulator in Section V 3 4. Nrq
denotes the maximum number of prior read requests queued
in the read request buffer, which is determined by the number
of entries in the read MSHR, size of read request buffer
and number of outstanding requests per core. Consistently
with the described watermarking approach for write handling,
we assume Whigh > Wlow ≥ Nwd (i.e., when we reach a
watermark there are enough queued writes to complete a batch
of length Nwd), and Qwrite −Whigh < Nwd (i.e., even if the
buffer is full, performing Nwd writes reduces the number of
queued writes below the high watermark). We also assume that
tBURST = 4, tRRD ≥ 4 and tFAW ≥ 4 · tRRD, which is
true for all modern DDR devices.

Finally, we assume DRAM banks and the LLC space are
partitioned on a per-core basis. In other words, each core
is assigned its own private DRAM banks and LLC space.
This can be easily achieved by using software partitioning
techniques on COTS systems [35], [18].

In summary, our system model significantly differs
from [13] in that (1) it models multiple parallel memory
requests buffered in the DRAM controller, and (2) it maintains
separate read and write request queues in the DRAM controller
and reads are prioritized over writes.

A. Read Batch Delay Analysis
We now present our analysis that considers parallel memory

requests. As mentioned in the previous section, write memory
requests are not in the critical path of program execution
in modern COTS systems. Hence, our primary concern is
memory interference delay to read requests of the task under
analysis. More in detail, in this section we compute an upper
bound on the delay that a newly arrived read request (request
under analysis) can suffer due to a batch of other read requests
only. We discuss the case of write interference in Section IV-B.

3The DRAM parameters in Table I are based on LPDDR2 memory
commonly used with ARM processors. For ease of explanation, figures
throughout the paper are drawn using the timing parameters for DDR3 1066
memory, which are shorter and result in more compact drawings. The derived
analytical bounds are applicable to any modern DDR device.

4We do not consider the auto-refresh operation in our analysis because it
periodically occurs at a relatively long fixed interval and its impact to the
overall memory interference is small (<2%), as discussed in [3], [13].

Given that the maximum number of prior queued read
request is Nrq, the worst case delay L(Nrq) is produced when
the request under analysis has the largest timestamp of all read
requests in the queue. Furthermore, since a read request might
target a close row, in the worst case the request under analysis
is composed of a PRE, an ACT and a RD command. Therefore,
we need to compute the delays LPRE , LACT and LRD

suffered by the PRE, ACT and RD commands, respectively.
As noted in Section III, the challenge is, then, to compose
the three delays by taking into account the overlapping of
memory requests, such that the overall delay is obtained as
the maximum of the per-command delays rather than the sum.

We can formalize this key idea by using the same delay
composition strategy as in [11]. In details, we model each
request as a job executed in sequence on three pipeline stages;
the stages model the interference of PRE commands on other
PRE commands, ACT on ACT, and RD on RD. Note that while
a request can be composed of only one (RD), two (ACT and
RD), or three commands (PRE, ACT and RD), the commands
are always executed in the same sequence according to the
same timing constraints for all requestors. Furthermore, the
priority of a job remains the same for all three stages, since
we assume that all commands of a given request have the
same timestamp. Finally, jobs are executed non-preemptively,
since commands and their related timing constraints cannot be
revoked once issued. Hence, the following main result applies:

Theorem 1: The delay caused by an interfering request to
the request under analysis is upper bounded by the maximum
delay on a single stage, i.e., either the delay caused by
the interfering PRE command to the PRE command under
analysis, or ACT to ACT, or RD to RD.

Proof: The theorem follows from the Non-Preemptive
Pipeline Delay Composition Theorem in [11], where memory
read requests are modeled as jobs executing on three sequential
stages (one each for PRE, ACT and RD), and the per-job
priority among ready jobs, which is fixed over all stages, is
equivalent to the timestamp for the commands of the request 5.

By virtue of Theorem 1, we can compute the overall delay
L(Nrq) to the request under analysis in the following way:
we assume that each interfering request causes delay on a
single stage, with the numbers of interfering PRE, ACT and
RD commands being NPRE , NACT and NRD, respectively;
due to Theorem 1, it must hold NPRE+NACT +NRD = Nrq.
We then compute upper bounds to the delays LPRE(NPRE),
LACT (NACT ), LRD(NRD) caused on the PRE, ACT and RD
command under analysis, respectively, and we compute the
overall delay L(Nrq) as follows:

L(Nrq) = max
NPRE+NACT+NRD=Nrq

(
LPRE(NPRE) +

+ LACT (NACT ) + LRD(NRD)
)
. (1)

Before we compute the upper bounds, we need to make
some fundamental observations. First of all, each set of

5Note that we do not need to consider the per-stage delay included in
the theorem, since our goal is to compute the delay suffered by the request
under analysis rather than its latency. The blocking term due to lower priority,
meaning higher timestamp, requests is included in the constant delays in
Equations 3, 4.
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Fig. 4: Out-of-order ACT processing due to bank timing constraints.
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Fig. 5: Command Bus Conflicts for ACT Commands.

interfering PRE, ACT or RD commands must be executed
continuously such that the corresponding command under
analysis cannot be scheduled until all interfering commands
have completed. As an example, consider Figure 4 for the
delay caused by ACT commands. While Bank2 has two ACT
commands with lower timestamp than the ACT under analysis
(ACT3), only ACT1 can interfere with ACT3 because ACT3
can be issued at time 4, while ACT2 must wait for PRE2
to be issued. Furthermore, after ACT3 is issued, the request
under analysis can immediately start the tRCD timer and
then attempt to issue a RD command; hence, further ACT
commands cannot delay the request under analysis by trig-
gering ACT-related timing constraints (tRRD and tFAW ).
However, these later-scheduled commands could still cause
command bus contention, since the command bus is shared
among the three stages. To better understand this situation,
consider Figure 5, which shows a pattern for 4 interfering
ACT commands of Banks 2 to 5. Since the tFAW con-
straint is activated by four consecutive ACT commands and
tFAW ≥ 4·tRRD for all memory devices, one could assume
that the worst case delay is equal to tFAW . In reality, as
Figure 5 shows, the ACT command under analysis (ACT6)
can be further delayed due to command bus contention. First
at time 20, since Bank 2 has a PRE2 command with smaller
timestamp that ACT commands of other banks and PRE2 must
be issued rather than ACT6. Then, since the tRCD constraint
for RD5 elapses at time 21, RD5 is also issued before ACT6,
resulting in a total delay of 22 time units rather than 20.
Since in general considering the exact effect of command
bus conflicts is extremely difficult, in the rest of the section
we pessimistically assume that a command always suffers

worst case bus conflicts independently of the number of other
interfering commands.

Based on the intuition above, we can show the following
delay upper bounds:

LPRE(NPRE) = 2 ·NPRE , (2)
LACT (NACT ) = tFAW − 3 · tRRD − 1 +

+ max
(
NACT · (tRRD + 2),

bNACT /4c · (tFAW + 2) +

+ (NACT%4) · (tRRD + 2)
)
, (3)

LRD(NRD) = tBURST − 1 +

+ NRD · (tBURST + 2). (4)

where % represents the module operator. The following Lem-
mas 2, 4, 5 formally prove the bounds on LPRE(NPRE),
LACT (NACT ), LRD(NRD). Note that intuitively, the two
clock cycles of delay added to most timing parameters in
Equations 3, 4 represent the effect of bus conflicts; Lemma
3 is used to bound the effect of command bus conflicts for
ACT and RD commands.

Lemma 2: The maximum delay caused by NPRE inter-
fering PRE commands on the PRE under analysis is upper
bounded by Equation 2.

Proof: Since the request under analysis does not share its
bank with any other request in the queue, each interfering PRE
command can only cause interference for one clock cycle on
the command bus. However, we also need to add command
bus contention from later-scheduled ACT and RD commands.

Since tRRD ≥ 4 and tBURST = 4, at most one
ACT command and one RD command can be issued every
4 cycles; the remaining 2 cycles must thus be available for



PRE commands. Now assume that the PRE under analysis
is ready at time 0. In the worst case there cannot be an
ACT or RD command scheduled at time 0; otherwise, such
command would be overlapped with the PRE under analysis,
thus reducing the overall delay. In summary, an interfering
PRE command must be scheduled at time 0, and then we
can have 2 cycles of command bus contention from ACT, RD
commands for every 2 issued PRE commands; therefore, the
bound in Equation 2 holds.

Lemma 3: The maximum command bus contention caused
by PRE and RD command on an ACT command that interferes
with the request under analysis is 2 cycles. Similarly, the
maximum command bus contention caused by PRE and ACT
command on a RD command that interferes with the request
under analysis is 2 cycles.

Proof: Any two RD or two ACT commands must be
separated by at least 4 cycles, thus command bus contention
caused by RD or ACT commands is limited to one cycle.

Since we are interested in command bus contention on ACT
or RD commands that interfere with the request under analysis,
it follows that the request under analysis must have already
issued its PRE command. Since the request under analysis
has the largest timestamp, all other banks in use must have
been precharged at least once; hence, the time at which any
further PRE command can be issued must be dependent on
the issue time of the previous ACT (tRAS constraint) or RD
command (tRTP command) on the same bank. Again due
to the separation of ACT and RD commands, no two PRE
commands can be issued back-to-back. Hence, command bus
contention caused by PRE commands is also limited to one
cycle, completing the proof.

Lemma 4: The maximum delay caused by NACT inter-
fering ACT commands on the ACT under analysis is upper
bounded by Equation 3.

Proof: Assume that the ACT under analysis is ready
at time 0. In the worst case, either the tFAW or tRRD
constraint could be activated by an ACT issued at time -1;
this ACT does not need to be included in the set of NACT
interfering commands, since it has already been issued before
the ACT under analysis is ready. If the tRRD constraint is
triggered, this causes a delay of tRRD − 1 on the first ACT
in the interfering set. Since 4 ACTs must be issued to trigger
tFAW and each ACT can be issued tRRD after the previous
one (i.e., a total of 3·tRRD cycles between the first and fourth
ACT), if the tFAW constraint is triggered it causes an initial
delay of tFAW − 3 · tRRD − 1. Since tFAW ≥ 4 · tRRD,
the latter case maximizes the delay.

According to Lemma 3, each ACT command can suf-
fer command bus contention for at most two cycles. Since
the continuous sequence of interfering ACTs must respect
the tRRD constraint, the interfering delay after the initial
tFAW − 3 · tRRD cycles must thus be upper bounded by
NACT · (tRRD + 2). Since furthermore the ACT commands
must also satisfy the tFAW constraint, the delay is also
bounded by bNACT /4c·(tFAW+2)+(NACT%4)·(tRRD+
2). Taking the maximum of the bounds results in Equation 3.

Lemma 5: The maximum delay caused by NRD interfering
RD commands on the RD under analysis is upper bounded by

Equation 4.
Proof: Assume that the RD under analysis is ready at

time 0. Similarly to the proof of Lemma 4, in the worst case
a RD command not included in the set of NRD interfering
commands could be issued at time -1, resulting in an initial
delay of tBURST − 1 cycles. Due to Lemma 3 and the
constraint on tBURST , each interfering RD command can
cause a further delay of tBURST + 2, yielding Equation 4.

Finally, the following theorem derives the bound on L(Nrq)
by maximizing Equation 1 based on the derived bounds.

Theorem 6: The maximum delay L(Nrq) suffered by the
request under analysis due to Nrq other read requests is upper
bounded by:

L(Nrq) = tFAW + tBURST − 3 · tRRD − 2 +

+ max
(
Nrq · tMAX, bNrq/4c · (tFAW + 2) +

+ (Nrq%4) · tMAX
)
, (5)

where tMAX = max(tRRD, tBURST ) + 2.
Proof: The theorem follows immediately by evaluating

Equation 1 according to Equations 2, 3, 4. Note that since
tRRD, tBURST > 2 for all DDR devices, the values of
LACT and LRD increase more with each additional request
compared to LPRE ; hence, L(Nrq) is maximal for NPRE =
0, resulting in LPRE(0) = 0. Then, in Equation 5 the constant
term tFAW + tBURST − 3 · tRRD − 2 is obtained by
summing the two constant delay terms in Equations 3, 4, while
the max term is obtained by maximizing the sum of Equations
3, 4 with NACT +NRD = Nrq .

B. Write Batch Delay Analysis
We next consider the delay caused by write handling,

according to the watermark policy described in Section IV, to
the delay of the read request under analysis. We first compute
the maximum number NB of write batches that can delay
the execution of the batch of read requests considered in
Section IV-A. Then, we determine the maximum delay LW

caused by a single write batch. The overall delay suffered
by the request under analysis can then be computed as
RD = L(Nrq) +NB · LW .

Theorem 7: The maximum number of write batches that
can delay the execution of the read batch for the request under
analysis is:

NB = 1 +
⌈Nrq
Nwd

⌉
, (6)

and each batch delays the request under analysis for at most
Nwd writes.

Proof: First note that while the request under analysis is
in the read buffer, the controller must use the high watermark
by definition. Furthermore, as noted earlier in this section,
a write request (write-back from cache) can only happen as
a result of a read request (fetch in cache), which has been
generated by the same core.

In the worst case, the write buffer can be full due to prior
requests when the request under analysis arrives. Since we
assume Qwrite − Whigh < Nwd, this forces the controller
to execute a single write batch; at most Nwd writes can
be serviced after the request under analysis arrives before



the number of queued writes becomes lower than the high
watermark and the batch ends.

Now note that as each of the Nrq prior read request is
completed, the corresponding interfering core can add a new
read request to the read queue. These later read requests have
higher timestamp than the read under analysis, and thus cannot
delay it as discussed in Section IV-A; however, each such read
request can also generate a write request, for a total of Nrq
later write requests that can be enqueued before the request
under analysis is completed. Since a write batch is triggered as
soon as the high watermark is reached, in the worst case later
write requests can trigger dNrq/Nwde additional batches, each
comprising Nwd writes. Considering the batches generated by
prior and later writes yields Equation 6.

Theorem 8: A write batch of length Nwd delays the read
under analysis by at most:

LW = (Nwd + 1) · tRC. (7)

Proof: In the worst case, all queued write requests might
belong to the same core and target different rows in the same
bank. This forces a delay tRC between the ACT commands of
successive writes in the bundle, which is the longest possible
timing constraint. Similarly, an additional tRC delay might be
required between the last read issued before the write batch
and the first write in the batch, and between the last write in
the batch and the first read issued after the batch ends. This
leads to a total delay of (Nwd+1)·tRC, concluding the proof.

Note that the delay computed in Equation 7 is extremely
pessimistic, since it assumes a pathological case where all
queued writes have been produced by the same core. In
practice, if the write buffer size is large enough, at any point in
time the buffer is likely to contain requests by different cores.
Since the write queue also employs FR-FCFS, such requests
would then overlap over pipeline stages, as shown for reads
in Section IV-A. This would result in a bound:

LW = 2 · tRC + 2 + L(Nwd − 1), (8)

where the term 2 · tRC accounts for the delay between the
last read/first write and last write/first read, L(Nwd − 1) is
the pipelined delay suffered by the last write and computed
based on Equation 5, and finally the term 2 accounts for
the bus conflicts suffered by the ACT command of the first
write in the batch, as detailed in Lemma 3 6. While there is
no formal guarantee that Equation 8 upper bounds the delay
caused by every write batch, we nevertheless use the bounds
of both Equation 7 and Equation 8 in our evaluation since the
employed full-system simulator cannot produce a pathological
case similar to the one in the proof of Theorem 8.

C. Request and Job Driven Analysis

Sections IV-A and IV-B compute the worst-case delay RD
suffered by a read request of task τi based on read and write
requests of other interfering cores, respectively. If τi produces
HR
i read requests, the worst-case delay suffered by the task

6Note that we do not need to add command bus contention for either the
last write request in the batch or the first read request after the batch, since bus
contention is already accounted for in the delay suffered by those requests.

can then simply be obtained as HR
i ·RD. Note that this request

driven analysis makes no assumption on the behavior of the
interfering cores. However, if number of requests produced
by interfering cores is known, then a job driven analysis can
result in lower delay bounds. This is especially true in the
case of write-induced delay, since most programs generate
a significantly lower amount of write requests compared to
read requests, while the worst case per-request pattern used
in Theorem 7 requires a higher number of interfering write
requests compared to the Nrq interfering read requests.

Therefore, assume that the maximum number of read re-
quests AR and write requests AW generated by interfering
cores during the execution of τi is known ([13] discusses how
to derive it based on the tasks’ schedule), as well as the number
HW
i of write requests generated by τi itself. We can then

bound the delay induced by write and read batches on the
HR
i read requests of a job of τi as follows.

Write batches: note that at most AW + HW
i write requests

can be inserted in the write queue after the job of τi begins.
Following the same reasoning as in the proof of Theorem 7,
the maximum number of write batches that can interfere with
reads of τi is thus N tot

B = 1 + d(AW +HW
i )/Nwde.

Read batches: since task τi generates HR
i reads, we need

to consider the delay for HR
i read batches. Let xk to denote

the number of interfering prior read requests that compose the
k− th batch for τi; the read batch delay is then

∑HR
i

k=1 L(xk).
In the worst case, there can be Nrq queued reads before a job
of τi starts; hence, it must hold

∑HR
i

k=1 xk = Nrq +AR.
The total job driven delay JD for a job of τi can then be
obtained by summing the delay induced by read and write
batches. To simplify notation, define ĀR = Nrq + AR;
maximizing the read batch delay expression over the values
of xk yields a total delay:

JD = HR
i · (tFAW + tBURST − 3 · tRRD − 2) +

+ max
(
ĀR · tMAX, bĀR/4c · (tFAW + 2) +

+ (ĀR%4) · tMAX
)

+N tot
B · LW . (9)

V. EVALUATION RESULTS

In this section, we first present details of our simulation
setup. We then present our evaluation results obtained using a
set of synthetic and SPEC2006 benchmarks.

A. Simulation Setup

We use Gem5 full-system simulator [4] with a realistic
memory controller model [10] that closely captures important
timing and structural characteristics of COTS DRAM con-
trollers. On the Gem5 simulator, we model a quad core ARM
(out-of-order) system, largely based on the ARM Cortex A15
processor [2]. Both L1 and L2 caches are non-blocking: The
core-private L1 cache can generate up to 6 outstanding cache-
line fill requests and 6 corresponding write-back requests to
the shared L2 cache; while the L2 cache in a real Cortex-
A15 supports up to 11 outstanding read requests [2], our
simulated system supports up to 24 outstanding read requests
(4 cores · 6 requests) to minimize additional interference in the
MSHRs [34] as our focus is in the DRAM-level interference.
The simulator setup is shown in Table II.



TABLE II: Baseline processor and DRAM system configuration

Core Quad-core, ARMv7, out-of-order, 4GHz frequency
L1-I&D caches private 32 K-byte, 2-way set-assoc., hit latency: 1ns/2ns(I/D); MSHRs: 2/6(I/D)

L2 cache shared 1MByte, 16-way set assoc., 12ns hit latency, 24 MSHRs

DRAM controller 64-entry read buffer, 64-entry write buffer, 85%/50% high/low watermark,
18 minimum writes-per-switch, addr. mapping: RoRaBaChCo, open-page policy

DRAM chip LPDDR2 @ 533Mhz (1 rank and 8banks)
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Fig. 6: Measured and analytic worst-case response times of a
Latency benchmark with three memory-intensive co-runners

On the simulator we run a full Linux 3.14 kernel which
is patched to use the PALLOC [35] memory allocator. We
use PALLOC to partition DRAM banks and the shared L2
cache. For the purpose of our evaluation, we assign one private
DRAM bank and 1/4 (256KiB) private L2 cache partition to
each core. Therefore, there are neither cache space evictions
nor DRAM bank conflicts caused by memory accesses from
contending cores.

B. Results with Synthetic Benchmarks

We now investigate the validity of our analysis compared
to experimental results obtained using a set of carefully
engineered synthetic benchmarks.

In this experiment, our goal is to simulate and measure
the worst-case memory interferences on a system in which
DRAM banks and the LLC are partitioned. We use Latency
benchmark [37] as the task under analysis. The benchmark
is a pointer-chasing application over a randomly shuffled
linked-list. Due to data dependency, it can only generate one
outstanding memory request at a time. Furthermore, because
the size of linked list is two times bigger than the size of the
LLC, each memory access is likely to result in a cache miss,
hence generating a DRAM request. As a result, its execution
time highly depends on DRAM performance and any delay
in its memory access will directly contribute to its execution
time increase.

We first run the Latency benchmark alone on Core0 to
collect its solo execution time and the number of LLC misses.
We then co-schedule three memory intensive tasks on the
other cores (Core1-3) to generate high memory traffic and
measure the response time increase of the Latency benchmark.
Note that the number of LLC misses of Latency does not
change between solo and co-scheduled execution as the LLC
space is partitioned. Furthermore, because each core also has

a dedicated DRAM bank, the number of DRAM row hits
and misses also would not change. Therefore, any response
time increase mainly comes from contention in the DRAM
controller and its shared command and data bus which we
modeled in Section IV. For co-scheduled memory intensive
tasks, we use the Bandwidth benchmark [37], which writes
a big array continuously. Because the benchmark does not
have data dependencies in accessing memory, modern out-
of-order cores can generate as many outstanding requests as
possible. Furthermore, because a write miss in the Bandwidth
benchmark generates two requests, a cache-line refill (read)
and a write-back (write), the read and write buffers in the
DRAM controller will quickly be occupied, which in turn will
delay the requests of the task under analysis.

Figure 6 shows both measured and analytically calculated
response times of the Latency benchmark (normalized to its
solo execution time). In the figure, Kim denotes the analysis in
[13] while Ours denotes our analysis in Section IV. We present
three variations of our analysis: Ours(ideal) represents our read
delay analysis Equation 5 without considering write draining.
It is equivalent as assuming that the size of the write-queue of
the DRAM controller is infinite and therefore write draining
never delays pending reads; Ours(opt) and Ours(worst) repre-
sent two versions of our analysis that consider write-draining
as described in Section IV-B. They differ in that Ours(opt) uses
Equation 8 to calculate a single batch of write draining delay
while Ours(worst) uses Equation 7 for the same. From the
figure, we make several important observations. First, as ex-
pected, Kim significantly under-estimates the actual measured
delay—by 63%. This is because the analysis models only
three competing memory requests while in this experiment
there can be up to 36 competing memory requests (6 reads
and writes from each competing core). Second, Ours(ideal)
also under-estimate the delay because it does not take the
write-draining into account. On the other hand, Ours(opt) more
closely matches with the measured result. This is because, in
this experiment, the write requests are processed in parallel as
assumed in Equation 8. Lastly, Ours(worst) produces a safe
but highly pessimistic bound as it considers the pathological
case, which is difficult to produce in real experiments.

C. Results with SPEC2006 Benchmarks

In this subsection, we present results with SPEC2006
benchmarks. The basic experiment setup is the same as the
previous subsection—i.e., one task under analysis and three
co-scheduled Bandwidth benchmark instances—except that we
now use SPEC2006 benchmarks as the tasks under analysis
instead of the Latency benchmark.

Figure 7 shows the results. Overall, the results show a sim-
ilar trend as observed in Section V-B. Compared to measured
response times, Kim under-estimates the response times of all
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tested benchmarks as it only consider thee concurrent requests.
Among our analysis, Ours(ideal) also under-estimate all but
two benchmarks (471.omnetpp and 456.hmmer) as it does not
consider write-draining. Ours(opt), on the other hand, is close
to the measured values and no tested benchmark is under-
estimated. However, the degree of pessimism in the analysis
varies considerably among the benchmarks depending on their
memory access characteristics. Lastly, Ours(worst) produces
highly pessimistic results, especially for memory intensive
benchmarks such as 471.omnetpp. Again, this is because the
analysis considers a highly pathological situation which is
difficult to generate in real experiments. Still, if the benchmark
under analysis is critical and not memory intensive, which are
often the case in many time-critical control applications, such
a bound can be useful. For example, Ours(worst) produces a
reasonable delay bound for 444.namd because the number of
read requests to be analyzed is relatively small.

VI. RELATED WORK

As memory performance is becoming increasingly im-
portant in modern multicore systems, there has been great
interest in the real-time research community to minimize and
analyze memory related interference delay for designing more
predictable real-time systems.

Initially, many researchers model the cost to access the main
memory as a constant and view the main memory as a single
resource shared by the cores [36], [23], [33], [28]. However,
modern DRAM systems are composed of many sophisticated
components and the memory access cost is far from being a
constant as it varies significant depending on the states of the
variety of components comprising the memory system.

Many researchers turn to hardware approaches and develop
specially designed real-time DRAM controllers that are highly
predictable and provide certain performance guarantees. The
works in [24], [7], [32], [14] implement hardware based private
banking schemes which eliminate interferences caused by
sharing the banks. They differ in that close page policy is
used in [24], [7] while open page policy is used in [32], [14].
The works in [22], [1], [9] utilize interleaved bank mapping,
which effectively transforms multiple memory banks as a

single unit of access to simplify resource management. They,
however, use different arbitration policies such as TDM [9],
round-robin [22], and CCSP [1]. The work in [15] proposes
a DRAM command scheduling method to efficiently support
variable transaction sizes while providing WCET guarantees.
While these proposals are valuable, especially for hard real-
time systems, they generally do not offer high average perfor-
mance. For example, none of the real-time DRAM controllers
implement read prioritization and write buffering—a common
performance optimization technique to hide write processing
delay in the critical path, which is modeled in our work. Also,
the real-time DRAM controllers are not available in COTS
systems.

To improve performance isolation in COTS systems, sev-
eral recent papers proposed software-based bank partitioning
techniques [35], [18], [29]. They exploit the virtual memory
of modern operating systems to allocate memory on specific
DRAM banks without requiring any other special hardware
support. Similar techniques have long been applied in par-
titioning shared caches [16], [17], [38], [31], [19]. These
resource partitioning techniques eliminate space contention of
the partitioned resources, hence improve performance isola-
tion. However, as shown in [35], [13], modern COTS systems
have many other still shared components that affect memory
performance. A recent attempt to analyze these effects [13],
which is reviewed in Section III, considers many aspects
of COTS DRAM controllers such as request re-ordering,
but it does not consider read prioritization and assumes
one outstanding memory request per core can be requested
to the DRAM controller. In contrast, we model a modern
COTS DRAM controller that handles multiple outstanding
memory requests from each core and out-of-order memory
request processing (i.e., prioritizing reads over writes). We
believe our system model and the analysis capture commonly
found architectural features in modern COTS systems, hence
better applicable for analyzing memory interference on COTS
multicore systems.

VII. CONCLUSION

We have presented a new parallelism-aware worst-case
memory interference delay analysis for COTS multicore sys-
tems. We model a COTS DRAM controller that has a separate
read and a write request buffer, which buffer multiple outstand-
ing memory requests from the LLC and processes them in
out-of-order: it prioritizes reads over writes and row-hits over
misses. These are common characteristics of COTS memory
systems but known to be difficult to analyze for worst-case
performance.

In this work, we have shown that memory interference
delays in such a complex COTS system can be analytically
bounded, with the help of appropriate software-based resource
partitioning mechanisms [18], [29], [35]. Our analysis pro-
vides an analytic upper bound on the worst-case memory
interference delay for each read memory request of the task
under analysis and the derived bound does not require any
assumption on the interfering tasks’ memory access patterns.
We also have shown that if the number of read and write
requests generated by each core is known, then the analytical
bounds can be improved. We have validated our analysis



on the Gem5 full-system simulator using both synthetic and
SPEC2006 benchmarks.

Compared to previous COTS focused effort [13], which
significantly under-estimates the delays (by up to 63%), we
claim our system model and the derived analysis bound are
more closely matched with real COTS systems. Our evalu-
ation results, however, also clearly have shown the inherent
weaknesses of COTS architecture when it comes to worst-case
performance; in particular, while architectural optimizations
such as write buffering and batch processing have beneficial
effects on average-case performance, they nevertheless induce
pathological arrival patterns that result in highly pessimistic
delay bounds. As future work, we will examine low-cost
architectural supports for COTS systems that can provide
better isolation and reduce pessimism in the analysis.
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APPENDIX

Note that throughout the paper, we assume delay additivity:
the memory interference delay is additive to the execution time
of the task under analysis. Such assumption is similarly used
by related work on main memory delay analysis [13], [32].
However, one might ask whether the underlying processor
hardware truly satisfies the assumption. The following two
definitions, which use a similar formalism as in [25], formally
capture this concept7.

Definition 9 (Instructions Semantics): A program fragment
is a sequence of n (possibly one) instructions ι0 . . . ιn. We
write s t−−−−→

ι0...ιn
s′ to mean that executing instructions ι0 . . . ιn

takes t time and causes the processor to transition from
state s to s′. In general, a set of instructions could cause
the processor to transition from s to one of multiple states
s′ (non-determinism). In this case, we define the maximum
time to execute a set of instruction starting from state s as:
max(s, ι0 . . . ιn) = max{t|s t−−−−→

ι0...ιn
s′}.

Definition 10 (Delay Additivity): An architecture is not de-
lay additive if there exists a program fragment and a processor
state s such that: there are states s1, s2, with s t1−→

ι0
s1, s

t2−→
ι0

s2,

t1 > t2, and max(s1, ι1 . . . ιn) > max(s2, ι0 . . . ιn).
Essentially, an architecture is not delay additive if suffering
some delay while executing an instruction causes additional
delay on the rest of the program; in this case, computing the
modified execution time of the task as the execution time when
running in isolation plus the delay factor HR

i ·RD according to
request driven analysis would not be safe, since the task could
suffer an increase in execution time larger than HR

i ·RD.
We argue that determining whether a given architecture is

delay additive is outside the scope of this paper. In general,
one could conceive of instruction scheduling policies that are
not additive; in particular, any policy that behaves similarly
to a bin-packing heuristic (where items are instructions and
bins are execution units) would likely violate additivity. This
said, we make the following two key observations: (1) in
practice, when instruction latency is large as is the case for
main memory accesses, modern out-of-order architectures are
likely to behave in a delay additive manner. If the delay
suffered by a memory instruction increases between solo and
co-scheduled execution, then typically either the same (if the
pipeline stalled) or more instructions can be executed out-
of-order in parallel with the memory instruction. Thus, the
increase in execution time can either be equal or less than the
added instruction delay. (2) The goal of the paper is to derive
a bound that can be shown to be safe through measurement. In
general, software systems running on COTS hardware can only
be certified through measurement; formally proving that an
analysis bound is correct would require complete knowledge
of the underlying hardware, which is typically not available
for COTS systems. Still, being able to derive safe bounds is
invaluable at design time, since applications are typically first
developed in isolation and then integrated together.

7Delay additivity is strictly related, but not equivalent, to the concept of
timing anomalies [25]. Intuitively, an architecture exhibits a timing anomaly
if taking less time to execute an instruction leads to a larger overall execution
time; while an architecture if not delay additive is taking more time to execute
an instruction leads to an even larger execution time.


