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Perception in Autonomous Vehicles

* Object detection
— Happens in 3D

e Camera, Radar, Lidar, ...
— Lidar-based deep neural networks
— Timeliness

— Time/accuracy requirements are
environment dependent
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https://blogs.nvidia.com/blog/2017/11/23/safer-autonomous-driving/
https://newsroom.intel.com/editorials/experience-counts-particularly-safety-critical-areas/

Lidar-based Object Detection DNNs

* Point cloud to 3D bounding boxes (End-to-end)
— Examples: Voxelnet, SECOND, PointPillars, CenterPoint

* Challenges: High computational cost, deadline-unaware
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Execution Time Analysis of PointPillars

e Timing of PointPillars*:

e
Backbone

Transform

29ms(20%) 45ms(34%) 63ms(46%)
* High computational cost (>130 ms)

* No flexibility in execution timing
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(*) Executed on Jetson AGX Xavier



Architecture of PointPillars (multi-head)
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Anytime Perception for Lidar-based Object
Detection DNNs

* Enable dynamictime and accuracy tradeoff

* Prior work on anytime perception
— Image-based, mostly object classification [1-6]

* QOur key contribution
— First work to enable anytime perception in the lidar domain
— Novel scheduler framework: Accuracy + Timeliness

[1]S. Heo et al., , “Real-time object detection system with multi-path neural networks,” in 2020 RTAS

[2]J).-E. Kim et al., “Anytimenet: Controlling time quality tradeoffs in deep neural network architectures,” in 2020 DATE

[3] S. Bateni et al., “Apnet: Approximation-aware real-time neural network,” in 2018 RTSS

[4] S. Yao et al., “Scheduling real-time deep learning services as imprecise computations,” in 2020 RTCSA

[5]S. Lee et al., “Subflow: A dynamic induced-subgraph strategy toward real-time dnninference and training,” in 2020 RTAS

[6]S. Liu et al., “Real-time task scheduling for machine perceptionin in intelligent cyber-physical systems,” IEEE Transactions on Computers, pp. 1-1, 2021.
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Anytime-Lidar

* Enable anytime perception for lidar-based object detection DNNs
1. Imprecise computation on the backbone
2. Scheduling of detection heads
3. Predicting past results of skipped heads
4. Scheduling the above three

Point
Cloud

Transform
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Imprecise Backbone

* Time and accuracy trade-off
by skipping blocks

— Added early exists to skip
block 3 or blocks 2+3

— Each block takes equal time

Deconv

— Take advantage of multi-
block structure

EEEEEEEEEEEEE



Schedulable Detection Heads

e Allow skipping a subset of

detection heads

Bus, Trailer

— Linearly save time from
convolutions and NMS

e Address safety concerns

Traffic cone,

— Proper det. head scheduling Pedestrian

— Projection

| |
| |
| |
ARl g Projections Jid
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Projection

* Project the past results of
skipped det. heads to the
current frame

* Projection/CPU - NN/GPU
parallel execution

Bicycle
Pedestrian

Frame t-200ms . Frame t—=100ms i Frame t

---------------------------------------------------------------------

Cons. Vehlcle
Barrier Bus, Trailer
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Scheduling

 Maximize detection accuracy
while meeting the deadline : _
with two-phase scheduler. WG oiections B

Previous

det. head

selections
and results

Time/accuracy
statistics
collected offline

Backbone, det. heads

Scheduler Phase 1 Scheduler Phase 2 and projection
configuration

Remaining




Scheduling

e First scheduling phase: Determine the number of backbone
blocks and the number of detection heads to run

* Done using time/accuracy statistics collected offline

RPN Detection heads RPN Detection heads

blocks | 2 3 4 5 6 blocks 1 2 3 4 5 6

] 309 | 422 52.2 62.1 70.6 78.2 | 67.0 67.5 70.7 T4.4 | 79.2 80.6

2 463 | 56.8 | 66.9 76.8 85.4 93.2 2 75.4 77.5 82.1 8.2 91.9 03.3

3 618 | 719 81.8 | 92.0 100.6 107.9 3 T79.8 84.9 90.7 | 95.6 | 989 100.0

* Numbers are in milliseconds.

WCET table Normalized accuracy table
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Scheduling

* Second scheduling phase: Decide AxC=P
which detection heads to execute - 1x3.5=35

— Provides safety while optimizing 2x0.7=1.4

accuracy

— Priority = Age x Confidence 3x0.6=1.8
3x2.0=6.0
4x1.2=4.8

Traffic cone, 1 X 4.5 — 4_5

Pedestrian
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* Introduction
* Anytime-Lidar
e Evaluation

* Conclusion
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Evaluation

PointPillars (OpenPCDet*, PyTorch)

* Evaluated on NVIDIA Jetson AGX Xavier
— 512-core Volta iGPU
— 8 core ARM v8.2 64-bit CPU
— 16 GBs of RAM

* Evaluated using nuScenes dataset

— Used ten scenes each being 20 seconds

* Implemented by modifying Multi-head .
() PyTorch

— KU
KANSAS
(*) OpenPCDet Development Team, “OpenPCDet: An Open-source Toolbox for 3D Object Detection from Point Clouds,” 16

https://qgithub.com/open—-mmlab/OpenPCDet , 2020.


https://github.com/open-mmlab/OpenPCDet

Evaluation

* Divide the dataset of ten scenes into two equal sets
— Calibration set
— Testing set

* Collect time/accuracy statistics for all requiring methods
(calibration)

* For each method being evaluated:

— For each deadline in a list of deadlines from 140ms to 60ms:
* Process all samples in the testing scenes one by one
* Nullify detection results for samples where deadline is missed
e Calculate NDS* (nuScenes Detection Score)

-~ KU

KANSAS (*) H. Caesar, et Al., “nuScenes: A multimodal dataset for autonomous driving,” in 2020 IEEE/CVF Conference on Computer Vision

and Pattern Recognition (CVPR), pp. 11618-11628, 2020.



Evaluation

 Methods used for comparison:

Method Number of model | Number of | RPN stage Detection head
parameters RPN blocks selection scheduling

PointPillars-3 6075K 3

PointPillars-2 2626K 2

PointPillars- 1 723K 1

mmm) | MultiStage

RoundRobin Circulating

ClsScrSum Class scores sum

NearOptumal 923K 3 v Aging + Ground Truth

Ours Aging + Aged confidences
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Effect of Enabling Fine-grained Anytime Perception
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 Meet tighter deadlines (60ms vs 100ms)
* Maintain superior accuracy all the time
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Effect of Head Scheduling Method
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* Disabled projection when testing

* Our method schedules the detection heads close to optimal
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Effect of Projection
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* Projection can work with any head selection scheme and
increases accuracy by 10% on average
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Conclusion

* |n this work, we presented:

— A novel scheduling framework for lidar-based Al pipelines

* Enables anytime perception through a combination of methods
— Imprecise backbone, detection head scheduling, projection

— We implemented our method on Multi-head PointPillars and
evaluated its performance on Jetson AGX Xavier

— Results show that our method significantly surpass baseline methods
and enables anytime perception for lidar-based Al pipelines

e GitHub Link: https://github.com/CSL-KU/Anytime-Lidar
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https://github.com/CSL-KU/Anytime-Lidar
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