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Perception in Autonomous Vehicles

• Object detection

– Happens in 3D

• Camera, Radar, Lidar, …

– Lidar-based deep neural networks

– Timeliness

– Time/accuracy requirements are 
environment dependent

2Image credits(up):     https://blogs.nvidia.com/blog/2017/11/23/safer-autonomous-driving/
Image credits(down): https://newsroom.intel.com/editorials/experience-counts-particularly-safety-critical-areas/#gs.8azpk6

https://blogs.nvidia.com/blog/2017/11/23/safer-autonomous-driving/
https://newsroom.intel.com/editorials/experience-counts-particularly-safety-critical-areas/


Lidar-based Object Detection DNNs

• Point cloud to 3D bounding boxes (End-to-end)

– Examples: Voxelnet, SECOND, PointPillars, CenterPoint

• Challenges: High computational cost, deadline-unaware
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Execution Time Analysis of PointPillars

• Timing of PointPillars*:

• High computational cost  (>130 ms)

• No flexibility in execution timing
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Architecture of PointPillars (multi-head)
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(*) B. Zhu, Z. Jiang, X. Zhou, Z. Li, and G. Yu, “Class-balanced grouping and sampling for point cloud 3d object detection,” CoR
R, vol. abs/1908.09492, 2019.



Anytime Perception for Lidar-based Object 
Detection DNNs

• Enable dynamic time and accuracy tradeoff

• Prior work on anytime perception
– Image-based, mostly object classification [1-6]

• Our key contribution
– First work to enable anytime perception in the lidar domain

– Novel scheduler framework: Accuracy + Timeliness
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Anytime-Lidar

• Enable anytime perception for lidar-based object detection DNNs
1. Imprecise computation on the backbone
2. Scheduling  of detection heads
3. Predicting past results of skipped heads
4. Scheduling the above three
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Imprecise Backbone

• Time and accuracy trade-off 
by skipping blocks

– Added early exists to skip 
block 3 or blocks 2+3

– Each block takes equal time

– Take advantage of multi-
block structure
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Schedulable Detection Heads

• Allow skipping a subset of 
detection heads

– Linearly save time from 
convolutions and NMS

• Address safety concerns

– Proper det. head scheduling

– Projection
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Projection

• Project the past results of 
skipped det. heads to the 
current frame

• Projection/CPU - NN/GPU 
parallel execution

11

Car
Truck, 

Cons. Vehicle

Bus, TrailerBarrier

Motorcycle,
Bicycle

Traffic cone,
Pedestrian

. . .

Frame tFrame t-100msFrame t-200ms

PCT SDHS IBB

Projections



Scheduling

• Maximize detection accuracy 
while meeting the deadline 
with two-phase scheduler.
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Scheduling

• First scheduling phase: Determine the number of backbone 
blocks and the number of detection heads to run

• Done using time/accuracy statistics collected offline
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Scheduling

• Second scheduling phase: Decide 
which detection heads to execute

– Provides safety while optimizing 
accuracy

– Priority = Age x Confidence
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Evaluation

• Implemented by modifying Multi-head 
PointPillars (OpenPCDet*, PyTorch)

• Evaluated on NVIDIA Jetson AGX Xavier

– 512-core Volta iGPU

– 8 core ARM v8.2 64-bit CPU

– 16 GBs of RAM

• Evaluated using nuScenes dataset

– Used ten scenes each being 20 seconds

16(*) OpenPCDet Development Team, “OpenPCDet: An Open-source Toolbox for 3D Object Detection from Point Clouds,” 
https://github.com/open-mmlab/OpenPCDet , 2020.

https://github.com/open-mmlab/OpenPCDet


Evaluation

• Divide the dataset of ten scenes into two equal sets
– Calibration set

– Testing set

• Collect time/accuracy statistics for all requiring methods 
(calibration)

• For each method being evaluated:
– For each deadline in a list of deadlines from 140ms to 60ms:

• Process all samples in the testing scenes one by one

• Nullify detection results for samples where deadline is missed

• Calculate NDS* (nuScenes Detection Score)

17(*) H. Caesar, et Al., “nuScenes: A multimodal dataset for autonomous driving,” in 2020 IEEE/CVF Conference on Computer Vision 
and Pattern Recognition (CVPR), pp. 11618–11628, 2020.



Evaluation

• Methods used for comparison:
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Effect of Enabling Fine-grained Anytime Perception
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• Meet tighter deadlines (60ms vs 100ms)

• Maintain superior accuracy all the time



Effect of Head Scheduling Method
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• Disabled projection when testing

• Our method schedules the detection heads close to optimal

Overhead 4.75 ms 0.50 ms 1.50 ms



Effect of Projection
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• Projection can work with any head selection scheme and 
increases accuracy by 10% on average



Conclusion

• In this work, we presented:

– A novel scheduling framework for lidar-based AI pipelines

• Enables anytime perception through a combination of methods
– Imprecise backbone, detection head scheduling, projection

– We implemented our method on Multi-head PointPillars and 
evaluated its performance on Jetson AGX Xavier

– Results show that our method significantly surpass baseline methods 
and enables anytime perception for lidar-based AI pipelines

• GitHub Link: https://github.com/CSL-KU/Anytime-Lidar

22

https://github.com/CSL-KU/Anytime-Lidar
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