

Anytime-Lidar: Deadline Aware 3D Object Detection

<u>Ahmet Soyyigit</u>¹, Shuochao Yao², Heechul Yun³ ^{1,3} University of Kansas, Lawrence, KS ² George Mason University, Fairfax, VA

Perception in Autonomous Vehicles

- Object detection
 - Happens in 3D
 - Camera, Radar, Lidar, ...
 - Lidar-based deep neural networks
 - Timeliness
 - Time/accuracy requirements are environment dependent

Image credits(up): https://blogs.nvidia.com/blog/2017/11/23/safer-autonomous-driving/ Image credits(down): https://newsroom.intel.com/editorials/experience-counts-particularly-safety-critical-areas/#gs.8azpk6

Lidar-based Object Detection DNNs

- Point cloud to 3D bounding boxes (End-to-end)
 - Examples: Voxelnet, SECOND, PointPillars, CenterPoint
- Challenges: High computational cost, deadline-unaware

Execution Time Analysis of PointPillars

• Timing of PointPillars*:

- High computational cost (>130 ms)
- No flexibility in execution timing

Architecture of PointPillars (multi-head)

(*) B. Zhu, Z. Jiang, X. Zhou, Z. Li, and G. Yu, "Class-balanced grouping and sampling for point cloud 3d object detection," CoR R, vol. abs/1908.09492, 2019.

Anytime Perception for Lidar-based Object Detection DNNs

- Enable dynamic time and accuracy tradeoff
- Prior work on anytime perception

– Image-based, mostly object classification [1-6]

- Our key contribution
 - First work to enable anytime perception in the lidar domain
 - Novel scheduler framework: Accuracy + Timeliness

[1] S. Heo et al., , "Real-time object detection system with multi-path neural networks," in 2020 RTAS

[2] J.-E. Kim et al., "Anytimenet: Controlling time quality tradeoffs in deep neural network architectures," in 2020 DATE

[3] S. Bateni et al., "Apnet: Approximation-aware real-time neural network," in 2018 RTSS

[4] S. Yao et al., "Scheduling real-time deep learning services as imprecise computations," in 2020 RTCSA

[5] S. Lee et al., "Subflow: A dynamic induced-subgraph strategy toward real-time dnn inference and training," in 2020 RTAS

[6] S. Liu et al., "Real-time task scheduling for machine perception in in intelligent cyber-physical systems," IEEE Transactions on Computers, pp. 1–1, 2021.

Outline

- Introduction
- Anytime-Lidar
- Evaluation
- Conclusion

Anytime-Lidar

- Enable anytime perception for lidar-based object detection DNNs
 - 1. Imprecise computation on the backbone
 - 2. Scheduling of detection heads
 - 3. Predicting past results of skipped heads
 - 4. Scheduling the above three

8

Imprecise Backbone

- Time and accuracy trade-off by skipping blocks
 - Added early exists to skip block 3 or blocks 2+3
 - Each block takes equal time
 - Take advantage of multiblock structure

Schedulable Detection Heads

- Allow skipping a subset of detection heads
 - Linearly save time from convolutions and NMS
- Address safety concerns
 - Proper det. head scheduling
 - Projection

Projection

- Project the past results of skipped det. heads to the current frame
- Projection/CPU NN/GPU parallel execution

Scheduling

• Maximize detection accuracy while meeting the deadline with two-phase scheduler.

Scheduling

- <u>First scheduling phase</u>: Determine the **number of backbone** blocks and the **number of detection heads** to run
- Done using time/accuracy statistics collected offline

RPN	Detection heads					
blocks	1	2	3	4	5	6
1	30.9	42.2	52.2	62.1	70.6	78.2
2	46.3	56.8	66.9	76.8	85.4	93.2
3	61.8	71.9	81.8	92.0	100.6	107.9

RPN	Detection heads					
blocks	1	2	3	4	5	6
1	67.0	67.5	70.7	74.4	79.2	80.6
2	75.4	77.5	82.1	88.2	91.9	93.3
3	79.8	84.9	90.7	95.6	98.9	100.0

* Numbers are in milliseconds.

WCET table

Normalized accuracy table

Scheduling

- <u>Second scheduling phase</u>: Decide
 which detection heads to execute
 - Provides safety while optimizing accuracy
 - Priority = Age x Confidence

Outline

- Introduction
- Anytime-Lidar
- Evaluation
- Conclusion

Evaluation

- Implemented by modifying Multi-head PointPillars (OpenPCDet*, PyTorch)
- Evaluated on NVIDIA Jetson AGX Xavier
 - 512-core Volta iGPU
 - 8 core ARM v8.2 64-bit CPU
 - 16 GBs of RAM
- Evaluated using nuScenes dataset
 - Used ten scenes each being 20 seconds

Evaluation

- Divide the dataset of ten scenes into two equal sets
 - Calibration set
 - Testing set
- Collect time/accuracy statistics for all requiring methods (calibration)
- For each method being evaluated:
 - For each deadline in a list of deadlines from 140ms to 60ms:
 - Process all samples in the testing scenes one by one
 - Nullify detection results for samples where deadline is missed
 - Calculate NDS* (nuScenes Detection Score)

Evaluation

• Methods used for comparison:

Method	Number of model	Number of	RPN stage	Detection head
	parameters	RPN blocks	selection	scheduling
PointPillars-3	6078K	3		
PointPillars-2	2626K	2		
PointPillars-1	1723K	1		
MultiStage				
RoundRobin				Circulating
ClsScrSum	9235K	3	\checkmark	Class scores sum
NearOptimal	72551			Aging + Ground Truth
Ours				Aging + Aged confidences

Effect of Enabling Fine-grained Anytime Perception

- Meet tighter deadlines (60ms vs 100ms)
- Maintain superior accuracy all the time

Effect of Head Scheduling Method

- Disabled projection when testing
- Our method schedules the detection heads close to optimal

Effect of Projection

• Projection can work with any head selection scheme and increases accuracy by 10% on average

Conclusion

- In this work, we presented:
 - A novel scheduling framework for lidar-based AI pipelines
 - Enables anytime perception through a combination of methods

 Imprecise backbone, detection head scheduling, projection
 - We implemented our method on Multi-head PointPillars and evaluated its performance on Jetson AGX Xavier
 - Results show that our method significantly surpass baseline methods and enables anytime perception for lidar-based AI pipelines
- GitHub Link: <u>https://github.com/CSL-KU/Anytime-Lidar</u>

Thank You

Disclaimer:

This research is supported in part by NSF grants CNS1815959, CPS-2038923, and CPS-2038658

More details can be found in the following publication.

Ahmet Soyyigit, Shuochao Yao, Heechul Yun. "Anytime-Lidar: Deadline Aware 3D Object Detection." *IEEE* International Conference on Embedded and Real-Time Computing Systems and Applications (RTCSA), IEEE, 2022

