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Abstract—Unpredictable variation in execution times due to
contention in shared hardware resources in integrated CPU-GPU
multicore platforms remains a major challenge for safety-critical
real-time systems. We present BandWatch, a system-wide mem-
ory bandwidth regulation system, which dynamically regulates
both CPU cores and the GPU to protect the performance of
critical real-time tasks while minimizing the negative throughput
impact to the throttled non real-time tasks. BandWatch is imple-
mented on Linux as a kernel module on a NVIDIA Jetson Nano
platform. The extensive evaluation results using both real-world
and synthetic workloads show the effectiveness of BandWatch.

I. INTRODUCTION

The demand for embedded hardware capable of executing
complex applications has led to an increased adoption of
heterogeneous multicore platforms that integrate multiple CPU
cores and a GPU on a single chip. These platforms can
deliver higher throughput while minimizing the size, weight,
and power (SWaP) requirements of the system. However, it is
challenging to provide predictable timing guarantees needed to
design safety-critical real-time systems on such heterogeneous
hardware platforms.

One major cause of performance variation stems from
the existence of many shared hardware resources, such as
shared cache and DRAM banks, which can be contended
when multiple tasks try to access them simultaneously. The
effect of such contention can be severe – orders of magnitude
slowdowns in some extreme cases [8], [10], [16], [29] –
which is especially problematic for safety-critical systems,
such as cars and airplanes, that often require strong isolation
for certification [13], [14].

While mitigation of shared resource contention in multicore
has been extensively studied in the real-time systems com-
munity [3], [8], [19], [24], [33], [35], by either partitioning
the resources or rate throttling, relatively few works have
focused on heterogeneous multicore platforms [3], [28] and,
to our knowledge, none can support holistic memory band-
width throttling of both CPU cores and the integrated GPU
(iGPU) on a commercial off-the-shelf (COTS) heterogeneous
multicore.

In this paper, we focus on mitigating the shared resource
contention problem in heterogeneous multicore platforms,
particularly contention in shared main memory, and implement
a holistic system-wide memory bandwidth regulation system,
which we call BandWatch, on a popular COTS heterogeneous
multicore platform, namely Jetson Nano [22]. This system

leverages available hardware features in the Nano’s Tegra X1
SoC to monitor the memory controller’s utilization and to
selectively throttle the memory bandwidth from the integrated
GPU and other accelerators [22]. In addition, BandWatch
leverages and extends an existing software-based memory
throttling mechanism called MemGuard [35] to monitor and
control the memory bandwidth at a per core level within the
CPU complex. By combining these two mechanisms, Band-
Watch can provide strong isolation guarantees to a critical real-
time (RT) task while still allowing simultaneous accesses to
the shared resources from non real-time (NRT) tasks running
on different CPU cores or the GPU with adaptive bandwidth
throttling of the NRT tasks.
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Fig. 1: Memory usage trace of SD-VBS [30] mser benchmark

BandWatch’s adaptive regulation scheme is motivated by the
observation that memory bandwidth throttling of NRT tasks is
not always needed to protect the RT task. For example, Figure
1 shows the memory utilization (memory controller busy
cycles over a sampling period) and the memory bandwidth (in
MB/s) of the SD-VBS [30] benchmark mser over the duration
of its execution time. Note that, for a significant duration of
the runtime, there is limited memory traffic, followed by a
section of periodically peaking requests. A static regulation
approach to this task would either weaken mser’s own peak
bandwidth potential or need to reduce the memory bandwidth
of the other applications on the system.

Our adaptive throttling approach tries to minimize unneces-
sary throttling by carefully monitoring the memory usage of
both CPU cores and the GPU holistically. There are two major
challenges to realize adaptive throttling: the first is the lack of
mechanisms to throttle the memory traffic of the integrated



GPU. Fortunately, there exists detailed documentation for the
Tegra X1 SoC, which include descriptions on its hardware-
based throttling capability in the memory controller. From the
documentation, we were able to implement a Linux kernel
driver that directly controls the memory controller’s registers
to realize the GPU throttling capability. Second, unlike homo-
geneous multicore processors, a heterogeneous multicore may
implement a request prioritization scheme that favors CPU
cores over GPU in accessing memory, due to different latency
and bandwidth sensitivities between CPU and GPU workloads.
Therefore, a single metric based adaptive strategy designed for
homogeneous multicore (e.g., [24]) may not work well on a
heterogeneous multicore SoC.

In summary, this paper makes the following contributions:
• We propose BandWatch, a holistic system-wide memory

bandwidth regulation system for heterogeneous multicore
platforms.

• We implement hardware- and software-based GPU and
CPU throttling capabilities, respectively, and an adaptive
throttling strategy to protect critical RT tasks with mini-
mal throughput impact to NRT tasks.

• We show our approach achieves good isolation for RT
tasks while significantly improving throughput of NRT
tasks through extensive experiments on a real platform.

To our knowledge, BandWatch is the first software system that
implements an adaptive memory bandwidth regulation of both
CPU and iGPU on a COTS heterogeneous multicore platform.

II. BACKGROUND

In this section, we provide necessary background on
NVIDIA Tegra X1 SoC, which supports hardware-based mem-
ory bandwidth throttling of the GPU, and MemGuard, which
provides software-based memory throttling of the individual
CPU cores.

A. NVIDIA Tegra X1 SoC

In this work, we use the the NVIDIA Jetson Nano hardware
platform, which is equipped with NVIDIA’s Tegra X1 MPSoC
chip. The X1 chip features a quad-core ARM Cortex-A57
CPU and a 128-core GPU based on Maxwell architecture.
Importantly, X1 provides memory utilization monitoring and
memory access throttling capabilities, as explained in the
following.

Memory Controller: X1’s memory controller is responsible
for handling all memory requests to the main memory. Figure
2 shows how various system blocks are multiplexed through
multiple layers (rings) of Priority Tier Snap Arbiters (PTSA).
These arbiters implement a proprietary Round-Robin schedul-
ing policy [21]. The default hierarchy implementation within
the Tegra X1 memory controller places the CPU read/write
into the top ring; the display, video engines, image processors,
and audio engines into the second ring; and everything else,
including the GPU (GM20B), into the third ring.

The PTSAs provide a hardware throttling mechanism
(Throttling Logic in Figure 2) to selectively throttle the mem-
ory requests into the rings. This enables the system to meet

Fig. 2: The Tegra Snap Arbiter, adapted from [21]

latency requirements by keeping a DRAM-limited system from
being overburdened with outstanding memory requests. With
this mechanism, in combination with the hierarchy of the
memory controller, the default Tegra X1 memory subsystem
improves CPU latency by limiting the number of back-
pressuring requests when the DRAMs are saturated. If enabled,
the throttling is triggered when the number of outstanding
requests exceeds a programmable threshold. In Section IV-C,
we evaluate this mechanism in detail.

Activity Monitors: The Tegra X1 includes activity monitors
to dynamically measure the utilization of various units in the
system, which are originally designed to determine which
power management policy should be enacted. An activity
monitor block contains a 32-bit counter for memory controller
clock cycles, which is incremented when any memory con-
troller access event is detected. In addition, the block contains
a dedicated counter for a running average of the past 128
samples as well as a programmable watermark level which can
be used to generate interrupts when the utilization exceeds the
value. The sampling period is a configurable value between
1µs and 1ms. Importantly, the Tegra X1 [21] contains two
separate memory controller activity monitors: MC-ALL which
reports the total clock cycles from all memory events and MC-
CPU which reports only the memory events sourced from the
CPU complex. These monitors can be used in conjunction to
derive an approximate memory controller utilization from the
GPU, which we use to implement BandWatch.

The system’s total memory utilization Uall can be calculated
as Uall =

Ball

L ∗100 where L is the sampling period in cycles



and Ball is the busy cycles reported by MC-ALL. For this
work, the sampling period of the activity monitors is set to
10 µs and as we lock the memory controller clock speed
at 1,600MHz (i.e., L = 1, 600 × 106/105 = 16, 000). The
CPU cluster’s memory utilization can be similarly calculated
as Ucpu =

Bcpu

L ∗100 , where Bcpu is the busy cycles reported
by the MC-CPU. Lastly, the GPU’s memory utilization Ugpu

can be approximated as Ugpu = Uall − Ucpu.
For the GPU utilization, as seen in Figure 2, GPU memory

events are not distinguished between other non-CPU memory
events; we assume in this paper limited memory traffic outside
the CPU and GPU. Also note that activity monitoring is
coarse-grained; it can only be applied to either the entire
system or the entire CPU complex. It is not possible to mon-
itor each core’s memory utilization. Likewise, the throttling
capability can be applied to the CPU, GPU, and other clients
into the memory controller—but not individual CPU cores.

B. MemGuard
MemGuard [35] is a loadable Linux kernel module which

can throttle each CPU core’s memory requests at a set rate
using the core’s hardware performance counters. Specifically,
it periodically (e.g., 1ms) monitors each core’s LLC miss
counter and programs the counter to generate an interrupt
once the set budget is reached within the regulation period.
Once the interrupt is generated, the memory bandwidth budget
is exhausted and the core remains idle until the next period
begins, at which point the core’s budget is replenished. In
this way, MemGuard provides a per-core memory bandwidth
throttling capability. In this work, we employ both X1’s
hardware throttling – mainly for GPU memory traffic – and
MemGuard for throttling individual CPU cores. The combined
use of these two techniques enables efficient system-wide
memory bandwidth management, as explained in the subse-
quent section.

III. BANDWATCH

In this section, we describe the design of BandWatch.

A. Assumptions and Objectives
We consider a heterogeneous multicore processor that com-

prises multiple CPU cores and an integrated GPU, all ac-
cessing a single shared main memory (DRAM) subsystem.
We assume that the CPU cores and the integrated GPU are
partitioned such that some are assigned to execute real-time
(RT) tasks while the rest are assigned to execute non-real-
time (NRT) tasks. This paper focuses on a specific partitioning
scheme where one CPU core is reserved for RT tasks, with the
remaining cores assigned to NRT tasks. The same partitioning
scheme has been used in many prior works (e.g., [24], [25],
[34]) due to its simplicity and practicality. Note, however,
our work can support any disjoint partitioning schemes. For
instance, it should be possible to assign the integrated GPU
or multiple CPU cores for RT tasks (see Section V). In this
setting, the primary objective for BandWatch is to isolate RT
tasks from interference produced by the NRT tasks while
minimizing performance loss of the NRT tasks.

B. Design Overview

BandWatch is built upon three core mechanisms. First,
a monitoring mechanism is used to determine the system’s
memory utilization (Activity Monitor; see Section IV-B) and
bandwidth usage. Second, a hardware throttling mechanism
(see Section IV-C) is employed to regulate the memory traffic
from the integrated GPU. Third, MemGuard [35], a software
throttling mechanism, is used to regulate the memory traffic
from the CPU cores. Using these mechanisms, BandWatch
dynamically monitors the system’s memory usage and throttles
the memory requests from the NRT tasks (from the NRT cores
and the GPU) if the RT task is expected to suffer slowdown.
Figure 3 shows a high-level system architecture of BandWatch.

Fig. 3: BandWatch system architecture

C. Runtime Regulation

BandWatch’s basic regulation strategy is as follows. It first
checks if the RT core is producing significant memory traffic.
If not, no NRT CPU cores or the GPU are throttled. If the
RT core is sufficiently memory intensive, then BandWatch
throttles both NRT CPU cores and the GPU (if the RT task
does not use the GPU) in order to protect the performance of
the RT core(s). The degree of throttling levels vary depending
on the memory utilizations of the system.

Figure 4 shows BandWatch’s core regulation algorithm,
which is built on top of MemGuard’s [35] implementation.
As described in II-B, MemGuard replenishes the memory
budgets of the CPU cores to prepare the next iteration of
monitoring at a regular interval (currently 1ms). The function
periodic timer handler is called after memory bandwidth
statistics for the RT core, over the previous regulation period,
become available. The RT core’s memory bandwidth usage
Brt is obtained from MemGuard (Line 3). Next, the RT core
statistics over the last regulation period are used to determine
if the RT task is actively producing memory requests (Line 4).
The Tcpu is set to the value of 75MB/s, which was empirically
determined. If the RT CPU is memory-active, BandWatch
throttles the NRT CPU cores to 75MB/s (Line 6), while the
GPU is throttled to a level proportional to the CPU memory



1 function periodic timer handler ;
2 begin
3 Brt ← RT core’s memory usage ;
4 if Brt > Tcpu then
5 foreach NRT core ci do
6 program ci to throttle at Tcpu;

7 Ucpu ← CPU’s memory utilization ;
8 TLgpu =

Ucpu

Umax
cpu
∗ TLmax

gpu ;
9 program MC to throttle GPU at TLgpu ;

10 else
11 foreach NRT core ci do
12 unthrottle ci ;

13 unthrottle GPU ;

Fig. 4: BandWatch Implementation

utilization (line 7). The rationale behind the dramatic throttling
of the CPU, and progressive throttling of the GPU, stems
from the inherent priority hierarchies built into the Tegra X1
memory controller. This design enables an interfering CPU
core to cause significantly more slowdown for the RT CPU
core than a GPU kernel. The amount of throttling on the GPU,
TLgpu, is set proportional to the relative CPU utilization in the
range [0, Tmax

gpu ] (these values are explained in Sections IV-B
and IV-C). The Ucpu

Umax
cpu

is adequate to use for this calculation as
this occurs while the NRT cores have been throttled—making
the utilization primarily from the RT core. Lastly, if the RT
core is not using memory, the NRT CPU cores and GPU are
allowed to freely use as much memory bandwidth as needed.

IV. EVALUATION

In this section, we evaluate the effectiveness of BandWatch
on a real platform using synthetic and real-world workloads.

A. Hardware and Software Setup

For hardware, we use the NVIDIA Jetson Nano platform,
which is based on a Tegra X1 SoC. The X1 SoC has a
quad-core ARM Cortex-A57 CPU and a 128-core Maxwell
GPU. The CPU has 48K private L1-I and 32K L1-D caches
and a 2MB shared L2 cache. Both CPU and GPU share
a 4GB LPDDR4 main memory (25.6GB/s peak bandwidth),
which is accessed though a common memory controller. For
software, we use NVIDIA’s Linux for Tegra (L4T) version
32.6.1, Ubuntu 18.04.6, Linux Kernel 4.9.253 and the CUDA
version 10.2.300. Throughout the evaluation, we use the
SD-VBS [30] benchmark suite as real-world real-time (RT)
workloads, while using IsolBench [29] and HeSoC-mark [11]
benchmark suites as non-real-time (NRT) synthetic CPU and
GPU workloads, respectively. We configured the hardware to
run at the maximum performance mode and disabled DVFS
and graphical user interface to improve repeatability.

B. Memory Utilization Monitoring

We first measure the memory utilization and bandwidth
usage of each RT and NRT workloads in isolation. We

use the memory controller’s activity monitor, described in
Section II-A, to measure the memory utilization while using
the CPU core’s hardware performance counter (L2 cache miss)
to measure the memory bandwidth. For the RT workloads, we
ran them to completion and recorded their execution times as
well. For the synthetic NRT workloads, we ran them for five
seconds and collected the data.

TABLE I: Characteristics of SD-VBS (RT)

Benchmark Time (s) Utilization Bandwidth (MB/s)
disparity 5.6 .06 793

sift 5.7 .02 239
mser 1.5 .03 360

tracking 1.5 .01 129
texture synthesis 41.8 0 1.9

TABLE II: Characteristics of synthetic workloads (NRT).

Benchmark Utilization Bandwidth (MB/s)
bandwidth(read) .17 4280
bandwidth(write) .26 3259

cudainterf(memset) .81 8116
cudainterf(memcpy) .82 3980

Table I presents the results of the SD-VBS benchmarks,
which show varied memory utilization and bandwidth char-
acteristics. The most memory intensive one is disparity with
6% memory utilization and a 793MB/s memory bandwidth.
On the other hand, texture synthesis is the least memory
intensive. Note that memory utilization and bandwidth are
strongly correlated though not perfectly proportional as the
relationship between the two metrics varies depending on the
memory access patterns and whether the memory requests
are processed efficiently (or inefficiently) at the memory
controller.

Table II shows the results of the synthetic NRT workloads
of which the first two are read and write modes of bandwidth
from the IsolBench suite [29] and the last two are the memset
and memcpy modes of cudainterf from the HeSoC benchmark
suite [11]. Both bandwidth and cudainterf are designed to
generate maximum possible memory traffic—from the CPU
and the GPU, respectively. For example, bandwidth runs on
a CPU core and repeatedly reads or writes a large array at
a cache-line granularity. The array size is configured as twice
the L2 cache size so that the memory operations generate a lot
of L2 cache misses. On the other hand, cudainterf launches a
CUDA kernel on the GPU, which performs large amounts of
memset or memcpy operations in parallel from the GPU cores.
Note that the GPU based cudainterf workloads achieve much
higher memory utilization and bandwidth compared to the
CPU based bandwidth workloads, which suggest that the GPU
can generate more memory traffic than the CPU. Recall that
the CPU’s memory requests have shorter latency allowance
(i.e., the number of cycles a memory request can stay outstand-
ing in the memory controller’s queue; see Section II-A) than
GPU’s memory requests. This helps CPU memory requests
achieve lower latency but at the cost of lower bandwidth. On



the other hand, GPU requests can achieve higher bandwidth
at the cost of relatively higher latency.

Note that BandWatch’s algorithm (Figure 4) requires the
knowledge of maximum memory utilization Umax

cpu from a
single (RT) CPU core. As bandwidth(read) achieves the high-
est CPU memory bandwidth, we select its observed memory
utilization 0.17 as the value in the rest of the experiments that
use BandWatch.

C. GPU Throttling

BandWatch uses the memory controller’s throttling mecha-
nism, described in Section II-A, to regulate the GPU memory
traffic. In this experiment, we evaluate the effect of the
throttling mechanism. The experiment setup is that we launch
a memory intensive synthetic GPU benchmark from the HeSoc
benchmark suite and measure its reported memory bandwidth
as we vary the throttling level of the memory controller using
a custom kernel module. The memory controller supports 32
discrete throttling levels [21].

Fig. 5: MC throttling effect on GPU memory bandwidth.

Figure 5 shows the results. As can be seen, as the throttling
level increases the measured memory bandwidth decreases
inverse proportionally. Given that the memory controller’s
throttling mechanism applies to not just the GPU but all
other peripherals, including display and disk I/O devices,
which are connected to the Ring 1 or above (see Figure 2
in Section II-A), we limit the maximum throttle level, Tmax

gpu ,
of BandWatch to 16 to minimize potentially negative perfor-
mance impact of throttling to the real-time tasks, which may
still need to load data from disk, for example. In our experi-
ments, memory traffic generated by non-GPU I/O devices are
small and do not impact the execution of tasks even at the
maximum throttling level. I/O intensive workloads is beyond
the scope of the paper.

D. Dynamic Regulation

In this subsection, we evaluate BandWatch’s effectiveness in
providing isolation to the real-time tasks to provide inter-core
isolation as well as minimizing the performance degradation
from bandwidth throttling.
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(a) SD-VBS on RT CPU
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(b) cudainterf(memset) on NRT GPU

Fig. 6: Slowdowns suffered by (a) SD-VBS on the RT CPU
core and (b) cudarinterp(memset) on the GPU. In both sub-
graphs, the X-axis shows the RT task and the Y-axis shows the
normalized slowdown compared to the performance obtained
in isolation.

1) Against GPU interference: We first evaluate Band-
Watch’s effectiveness in providing isolation in the presence
of memory intensive NRT GPU kernels. The basic setup is
to run a RT task from the SD-VBS benchmark suite on a
dedicated RT core (core 0) while co-scheduling synthetic NRT
tasks on the GPU. In this experiment, we use one instance of
cudainterf (memset), which executes a memset CUDA kernel
on the integrated GPU. Because CPU and GPU share the
LPDDR4 main memory, the RT task and the co-scheduled
NRT task may suffer slowdowns due to contention in the main
memory. We compare unregulated baseline, static throttling
and dynamic throttling, which implements BandWatch’s adap-
tive algorithm (Figure 4). For static throttling, we apply a
constant level of GPU throttling for the entire duration of the
RT task’s execution. The static throttling level is determined
by exhaustively testing all possible GPU throttling levels and
choosing the least throttled level that achieves less than 10%
or less slowdown of the RT task. For dynamic, the throttling
level varies dynamically in response to the changes in memory
utilization and the RT task’s memory bandwidth usage over
time. The algorithm’s hyper parameters Brt and Tcpu are
experimentally determined to be both at 75MB/s.

Figure 6 shows the normalized slowdowns of the five SD-
VBS benchmarks (RT) and the corresponding cudainterf mem-
set instances (NRT). Note first that in unregulated, disparity



and mser suffer significant slowdowns—1.54X and 1.89X—
while sift and tracking suffer modest slowdowns—1.14X and
1.15X respectively. Lastly, text synthesis suffers almost no
interference. The observed slowdowns are due to contention
in the main memory, which is the only major shared resource
between the CPU and the iGPU, and thus is roughly propor-
tional to each RT task’s memory intensity in Table I. With
static throttling, which statically assigns the GPU throttling
level at 3, the slowdowns suffered by the RT task markedly
reduced as the interfering GPU’s memory traffic is throttled
by the memory controller’s throttling mechanism. However,
the static throttling dramatically reduce the performance of
the throttled NRT tasks. For instance, the cudainterf instance,
which is co-scheduled with disparity, suffers 3.3X slowdown.

With dynamic throttling, in contrast, BandWatch is able
to mitigate the slowdown incurred by the co-running GPU
kernel while at the same time minimizing slowdown suf-
fered by the throttled NRT task by dynamically adjusting
the GPU throttling level based on the RT task’s memory
intensity changes over time. Concretely, for the similar level
of slowdowns experienced by disparity, BandWatch is able to
reduce NRT task’s slowdown from 3.3X to 2.2X. Similarily, it
reduces the slowdown of the NRT task co-scheduled with mser
from 2.4X to 1.6X. Overall, BandWatch’s dynamic throttling
enables significantly better performance for the throttled NRT
GPU kernel, cudarinterf(memset), while still providing similar
levels of performance isolation to the RT tasks. We also
repeated the experiment but using cudainterf(memcpy) as the
NRT task and got similar results.

2) Against CPU interference: In this experiment, we eval-
uate BandWatch’s effectiveness in providing isolation in the
presence of memory intensive NRT CPU tasks. The basic setup
is similar to the previous experiment in that we run a RT
task from the SD-VBS benchmark suite on a dedicated RT
core (core 0) while co-scheduling synthetic NRT tasks, but
differs in that three instances of bandwidth(write), which run
on the rest of CPU cores (core 1-3), are used as the NRT
task. Because the NRT tasks are also running from the CPU,
we cannot utilize the memory controller level throttling to
regulate the NRT tasks. Instead we use MemGuard [35]’s OS-
level throttling mechanism, which utilizes each CPU core’s
performance counters and interrupt handlers to periodically
regulate the memory traffic based on the user-defined mem-
ory bandwidth budget. We determine the memory bandwidth
budget for static throttling by sweeping the allowed memory
budget for the NRT tasks in increments of 25 MB starting
from 0 up until the execution time slowdown of the protected
RT task is acceptable.

Figure 7 shows the results. Note first that the RT tasks
suffer significantly more from memory traffic generated by
the NRT CPU cores. For instance, the disparity suffers 3.4X
slowdowns from the bandwidth(write) co-runners compared to
1.5X slowdown from cudainterp(memset) despite the fact that
the latter generates higher memory bandwidth. This is because
the memory controller prioritizes CPU’s memory traffic over
GPU’s by assigning lower latency allowance cycles to the CPU
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(b) bandwidth(write) on NRT CPU core

Fig. 7: Slowdowns suffered by (a) SD-VBS on the RT CPU
core, and (b) bandwidth(write) on NRT CPU cores

traffic. Unfortunately, however, the memory controller cannot
differentiate between the CPU cores thus equally prioritizing
both RT and NRT CPU memory traffic, hence the higher
slowdown for the RT task. To protect the RT task, static
throttling has to throttle the NRT CPU cores, which resulted in
up to 14.7X slowdown, as observed in Figure 7b. In contrast,
BandWatch’s dynamic throttling can drastically reduce the
NRT core slowdowns while providing a similar degree of
isolation benefits to the RT tasks.

3) Against CPU and GPU interference: Lastly, we evalu-
ate BandWatch’s effectiveness in providing isolation in the
presence of memory intensive NRT GPU and NRT CPU
tasks. The setup is identical as before except that we use
both the cudainterp(memset) and bandwidth(write) as NRT
GPU and CPU tasks, respectively, and both are scheduled
simultaneously for each RT task from SD-VBS. Note that in
this experiment, both the GPU and the NRT CPU cores may be
throttled to protect the RT task. For static throttling, we again
exhaustively search all possible throttling settings and used the
best possible settings. For BandWatch’s dynamic throttling, no
manual intervention is needed as it can dynamically throttle
both NRT CPU cores as well as the GPU.

Figure 8 shows the results. As in the previous two exper-
iments, static throttling does protect the RT tasks but at a
very high cost to the throughput of the throttled NRT tasks,
especially those that run from the NRT CPU cores. In contrast,
BandWatch’s dynamic throttling provides a same degree of
protection at a much lower cost to the NRT tasks.
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(c) bandwidth(write) on NRT CPU cores

Fig. 8: Slowdowns suffered by (a) SD-VBS on the RT CPU
core and (b) cudainterp(memset) on NRT GPU, and (c) band-
width(write) on NRT CPU cores

V. DISCUSSION

BandWatch relies on a hardware-level throttling feature in a
specific memory controller found in Tegra X1 SoC for iGPU
throttling. It also utilizes the memory utilization monitoring
capability in the X1 SoC. As such, it may not be directly
applicable on other SoCs. Note, however, that many COTS
memory controllers do support some forms of Quality-of-
Service (QoS) features [26], including throttling. Memory
utilization monitoring capabilities are also available in other
memory controllers [24], [28]. Moreover, ARM’s recent Mem-
ory Partitioning and Monitoring (MPAM) specification [6]
provides Instruction-Set Architecture (ISA) level support for
throttling and monitoring capabilities on shared resources
in the memory hierarchy, including the memory controllers,
which will be supported in many future hardware designs. As

such, we believe our approach will be applicable in future
hardware platforms with minor modifications.

Our current implementation focuses on a particular system
model where a single CPU core is reserved for RT tasks while
the rest of the CPU cores and the iGPU are assigned for NRT
tasks. Assigning multiple CPU cores for RT tasks was explored
in prior work on real-time gang scheduling [2], [4] and can be
incorporated in BandWatch. Likewise, using the iGPU for RT
tasks was also previously explored [3] and can be supported
in BandWatch by disabling iGPU throttling and dedicating the
iGPU for RT tasks.

VI. RELATED WORK

Mitigation of shared resource contention in multicore has
been extensively studied in the real-time systems commu-
nity [3], [8], [15], [17], [18], [20], [24], [32], [33], [35].
Two main approaches have been partitioning and bandwidth
throttling.

The partitioning approach tries to improve isolation by re-
serving dedicated hardware resources. LLC space and DRAM
bank partitioning techniques have been extensively studied
and shown to be effective [17], [19], [20], [33]. However,
partitioning techniques often require knowledge of address
to resource mapping information, which is often difficult to
obtain, or special hardware support. They also often do not
provide sufficient isolation as there could be many other
resources that are still being shared.

Memory bandwidth throttling is another popular approach,
which can be implemented in software in most modern mul-
ticore processors [3], [8], [24], [35]. Those software-based
throttling techniques utilize per-core hardware performance
counters and enforce a user-defined bandwidth budget period-
ically, usually at a granularity of milliseconds due to software
handling overhead. For example, Saeed et al., recently pro-
posed a memory utilization based feedback control system that
dynamically throttles the memory bandwidth usage of non-
real-time CPU cores when the system-wide memory utilization
reaches a certain threshold.

The use of heterogeneous computing platforms for real-
time applications has received significant attention in recent
years [5], [7], [11], [12], [23], [31]. The integrated GPUs and
other accelerators in heterogeneous platforms are challenging
to provide real-time guarantees because they often share the
main memory and other resources with the CPU [9]. Mem-
ory bandwidth throttling is also explored in heterogeneous
platforms in several recent works. Ali et al. and Homa et
al., proposed to throttle CPU cores to protect real-time GPU
kernels [1], [3]. Serrano-Cases et al. and Zini et al. explored
the use of various hardware-level QoS features, including the
ARM QoS feature for system bus-level throttling, in Xilinx
MPSoCs to regulate the contention [26], [37]. EWarP [28]
utilized both the ARM QoS feature and the software based
CPU memory bandwidth throttling to holistically regulate
memory bandwidth based on the memory utilization on a
Xilinx MPSoC. In contrast, our work leverages the hardware
throttling capability in the memory controller of Tegra X1



SoC to throttle iGPU, and we propose a simple but effective
adaptive throttling policy that holistically regulates both CPU
and GPU bandwidth to ensure predictable execution of real-
time tasks.

Recently, Intel and ARM began to support some hard-
ware assisted partitioning and bandwidth throttling capabili-
ties, namely Intel RDT [27] and ARM MPAM [36], which
provided ISA-level support for low-overhead shared resource
management. However, they are currently available only on
some high-end server processors and have their own technical
limitations [27], [36] in providing isolation needed for use in
embedded and real-time systems. In this work, we use both
hardware and software based throttling mechanisms. However,
we differ from most prior works in that we support system-
wide throttling on a COTS heterogeneous SoC that integrates
both the CPU and GPU.

VII. CONCLUSION

In this paper, we have presented BandWatch, a system-
wide memory bandwidth regulation system. BandWatch is de-
signed to provide memory performance isolation for RT tasks
against interference from CPU cores as well as GPU executing
non-real-time workloads. By combining hardware-level GPU
throttling capability in NVIDIA’s Tegra X1 and well-known
software-based CPU core throttling mechanism, BandWatch
implemented an adaptive throttle policy that can throttle both
CPU cores and the GPU to protect the performance of critical
RT tasks, while minimizing negative performance impact to
the throttled NRT tasks.
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